Российская Академия Наук Уфимский Институт Математики

на правах рукописи

Адлер Всеволод Эдуардович

ДИСКРЕТНЫЕ СИММЕТРИИ НЕЛИНЕЙНЫХ ЦЕПОЧЕК

01.01.02 (дифференциальные уравнения)

Диссертация на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук профессор А.Б. Шабат

 \mathbf{y} da - 1994

Данный текст является перепечаткой. Все изменения перечислены ниже:

- 1. В оригинале было 126 стр. набранных на ChiWriter'e. При переводе на ТЕХ слегка изменились формат страницы и начертание отдельных формул. Это касается, почти исключительно, лишь шрифтов и размеров. Примеры наиболее существенных отклонений: дроби типа $\frac{3}{2} \frac{z_x z_{xx}^2}{z_x^2 + 1}$ теперь пишутся, как в (3.18), $\frac{3z_x z_{xx}^2}{2(z_x^2 + 1)}$; в двух-трех случаях однострочная формула разбита на две или наоборот; в системе (1.5), (1.6) удалена общая фигурная скобка (в ТЕХ'е нумерованные формулы трудно скобковать).
- 2. В оригинале нумерация описывалась фразой:

Нумерация утверждений, формул и рисунков своя в каждом разделе; при ссылках на другие разделы используется запись типа "Теорема 1.1", "формула (3.14)".

В данной версии всегда используется нумерация через точку, и потому вторая часть фразы удалена (стр. 5). Кроме того, ликвидированы сокращения вида [33–36]. Все это сделано для того, чтобы можно было использовать hyperT_EX. Заодно добавлены обратные ссылки на литературу.

- Как водится, исправлено несколько коварно вкравшихся опечаток. Не считая орфографических погрешностей, это:
 - c. 14: $[45,64] \rightarrow [39,45]$
 - c. 16: $\widetilde{\alpha}_{k\pm 1} = \alpha_{k\pm 1} \pm \alpha_k \to \widetilde{\alpha}_{k\pm 1} = \alpha_{k\pm 1} + \alpha_k$
 - c. 19, (4.5): $\Psi \rightarrow \psi$
 - с. 20: Леммой 8 Леммой 4.2
 - с. 28: потенциала (13) состоит потенциала (5.14) состоит
 - с. 30: и действуя на них операторами (1) \rightarrow и действуя на них операторами A
 - с. 30: перейти от f_j к переменным (3.7) \rightarrow перейти от f_j к переменным
 - с. 58: теорем 3 и 4 \rightarrow теорем 15.1 и 15.2
 - c. 59: $q_{xy} = \operatorname{sh} q \to q_{xy} = \operatorname{sh} 2q$
 - с. 80 (формула, следующая за (23.5): $(2\alpha_2 + s) \rightarrow (2\alpha_2 s)$
- 4. Рисунки 11.1, 13.1, 15.1, иллюстрирующие итерации отображений (численный счет) временно отсутствуют.
- 5. Добавлено данное пояснение.

© В.Э. Адлер, 1994, 2001

Оглавление

Введение			4
1	Олевающая цепочка		8
-	1	Преобразование Дарбу	8
	2	Автопреобразования одевающей цепочки	11
	3	Преобразования Бэклунда для уравнений типа KdV. I	14
	4	Спектральные свойства одевающей цепочки	18
	5	Удаление собственных значений	22
2	${f V}$ равнения Пенлеве ${f P}_4$ и ${f P}_5$		29
	6	Спектральная теория 4-го и 5-го трансцендентов Пенлеве	29
	7	Групповые свойства P ₄	30
	8	Рациональные решения Р ₄	33
	9	Случай центров	36
	10	Групповые свойства P ₅	39
3	В Принцип нелинейной суперпозиции как интегрируемое от		
	раж	ражение	
	11	Интегрируемость по Лиувиллю	41
	12	Преобразование Абеля	44
	13	Перекройки многоугольника	47
4	Примеры цепочек и их автопреобразований		50
	14	Общая схема	50
	15	Оператор Дирака	52
	16	Преобразования Бэклунда для уравнений типа KdV. II	58
	17	О многополевых нелинейных системах Шредингера	62
	18	Модель Ландау-Лифшица и другие примеры	67
5	Трансформационные свойства уравнений Пенлеве		72
	19	Калибровочные преобразования	72
	20	Второе уравнение Пенлеве	73
	21	Вырождение третьего уравнения Пенлеве	75
	22	Третье и вырожденное пятое уравнения Пенлеве	76
	23	Шестое уравнение Пенлеве	79
Литература			82

Введение

В диссертации изучаются дискретные автопреобразования нелинейных интегрируемых цепочек. Простейшим примером служат преобразования

$$B_{k}: \begin{cases} \widetilde{f}_{k} = f_{k} + \frac{\beta_{k} - \beta_{k-1}}{f_{k} + f_{k-1}}, & \widetilde{\beta}_{k} = \beta_{k-1}, \\ \widetilde{f}_{k-1} = f_{k-1} - \frac{\beta_{k} - \beta_{k-1}}{f_{k} + f_{k-1}}, & \widetilde{\beta}_{k-1} = \beta_{k}, \\ & \widetilde{f}_{j} = f_{j}, & \widetilde{\beta}_{j} = \beta_{j}, & j \neq k, k-1, \end{cases}$$
(0.1)

действующие на бесконечном наборе переменных f_j и параметров β_j цепочки

$$f'_{j+1} + f'_j = f^2_{j+1} - f^2_j + \beta_{j+1} - \beta_j, \quad j \in \mathbb{Z}.$$
 (0.2)

Эта цепочка задает последовательность преобразований Дарбу ([13], см. также [12, 22, 25, 38, 45]) для операторов Шредингера $-D^2 + u_j$, где $u_j = f_j^2 - f'_j + \beta_j$, а формула (0.1) задает принцип нелинейной суперпозиции для этих преобразований. Известно, что преобразование Дарбу (0.2) является *х*-частью преобразования Бэклунда для модифицированного уравнения Кортевега – де Вриза

$$f_t = f_{xxx} - 6(f^2 + \beta)f_x \tag{0.3}$$

интегрируемого методом обратной задачи. Преобразования (0.1) позволяют размножать точные решения цепочки (0.2) и одновременно уравнения (0.3). Это применение принципа нелинейной суперпозиции давно известно [24, 28, 33, 38]. В диссертации развиваются две новых точки зрения на этот объект.

Во-первых, преобразования типа (0.1) приводят к дискретным отображениям, которые представляют самостоятельный интерес и активно изучаются в последнее время [7, 29, 31, 32, 43, 44]. Можно проверить, что в группе B, порожденной B_j , выполняются тождества

$$B_j^2 = (B_j B_{j+1})^3 = (B_i B_j)^2 = 1, \quad i \neq j \pm 1, \tag{0.4}$$

то есть *В* изоморфна группе финитных перестановок бесконечного числа элементов. Преобразования (0.1) задают нелинейное действие этой группы в пространстве переменных f_j, β_j , то есть своего рода дискретную динамическую систему. В [41] показано, что при наложении условия периодичности

$$f_{j+N} = f_j, \quad \beta_{j+N} = \beta_j \tag{0.5}$$

эта система является интегрируемой в смысле дискретной версии теоремы Лиувилля, принадлежащей Веселову [43]. Известно [39, 64], что система (0.2), (0.5) определяет конечнозонные решения уравнения mKdV. В [45] показано, что она эквивалентна уравнению Лакса-Новикова или системе Дубровина, которые впервые были использованы для описания конечнозонных потенциалов [53, 58]. Таким образом, в периодическом случае преобразования (0.1), цепочка (0.2) и уравнение (0.3) представляют три разных уровня дискретизации одного и того же объекта — прямолинейной динамики на якобиане гиперэллиптической кривой. Итак, с одной стороны, наличие у уравнения (0.3) нетривиальной дискретной симметрии позволяет строить его точные решения, а с другой стороны, наличие у преобразований (0.1) непрерывных симметрий приводит к интегрируемости соответствующего дискретного отображения.

Вторая точка зрения на преобразования (0.1) основана на связи между нелинейными цепочками и уравнениями Пенлеве, обнаруженной недавно в работах Шабата, Веселова и автора [3, 41, 45]. Эта связь доставляет целое новое семейство точнорешаемых спектральных задач, с потенциалами и волновыми функциями, выражающимися через трансценденты Пенлеве. Например, накладывая на цепочку (0.2) ослабленное условие периодичности

$$f_{j+3} = f_j, \quad \beta_{j+3} = \beta_j + 2,$$
 (0.6)

получаем, что $y = f_1 - x$ удовлетворяет четвертому уравнению Пенлеве (\mathbf{P}_4)

$$y'' = \frac{(y')^2}{2y} + \frac{3}{2}y^3 + 4xy^2 + 2(x^2 - a)y + \frac{b}{y}$$

где $2a = \beta_2 - 2\beta_1 + \beta_0$, $2b = -(\beta_3 - \beta_2)^2$. Если соответствующий оператор Шредингера $-D^2 + u_1$ регулярен, то его спектр состоит из трех арифметических прогрессий $\beta_j + 2n$, j = 1, 2, 3, $n \ge 0$. При этом преобразования (0.1) приводят к дифференциальной подстановке, переводящей P_4 с одним набором параметров в P_4 с новыми параметрами. Такие автоподстановки уравнений Пенлеве известны под названием преобразований Бэклунда или Шлезингера (чтобы избежать путаницы, в диссертации используется второй термин) и изучались многими авторами, см. напр. [1, 5, 17, 18, 30, 47, 48, 49, 50, 51, 54, 55]. Они сводят интегрирование уравнения к случаю, когда параметры лежат в некоторой фундаментальной области, а также позволяют размножать точные решения.

Остальные уравнения Пенлеве (кроме первого) также имеют представления в виде периодически замкнутой цепочки преобразований Дарбу для подходящего дифференциального оператора, причем принцип нелинейной суперпозиции порождает преобразования Шлезингера и для этих уравнений. Преимущество такого представления состоит в более простой и симметричной записи как самих уравнений Пенлеве, так и их автопреобразований, что облегчает получение некоторых важных результатов. Кроме того, этот подход непосредственно обобщается на системы более высоких порядков, приводящие к высшим аналогам уравнений Пенлеве, и облегчает изучение групповых свойств преобразований Шлезингера. Например, из тождеств (0.4) сразу видим, что дискретная группа P_4 содержит аффинную группу Вейля \tilde{A}_2 — результат, полученный ранее в работе [30].

Следует отметить, что, в отличие от рассмотренного выше случая периодического замыкания (0.5), дискретное отображение, возникающее после наложения условия (0.6), по-видимому неинтегрируемо. Его можно считать разностным аналогом 4-го уравнения Пенлеве (о различных способах дискретизации уравнений Пенлеве см. напр. [20, 21]).

Диссертация состоит из 23 разделов, объединенных в 5 глав. Нумерация утверждений, формул и рисунков своя в каждом разделе. В первой главе рассматривается преобразование Дарбу для оператора Шредингера, приводящее к цепочке (0.2). На этом наиболее простом примере подробно разбирается общая схема, применяемая далее к другим операторам. Разделы 1, 2, 4 включают в себя разложение преобразования Дарбу на элементарные, вывод принципа нелинейной суперпозиции, вронскианную технику. В 3-м разделе рассматриваются эволюционные уравнения, связанные с оператором Шредингера. Они связаны последовательностью дифференциальных подстановок типа преобразования Миуры, которые легко получить из замен переменных в цепочке (0.2). О возможности строить преобразования Миуры при помощи цепочечных замен см. напр. [65]. Раздел 5 содержит один новый способ построения точнорешаемых операторов Шредингера, обобщающий классический метод Крама [12] (Теорема 5.1).

Вторая глава посвящена разработке теории 4-го и 5-го уравнений Пенлеве на основе цепочки (0.2). Хотя большая часть результатов, касающихся этих уравнений, известна (в основном из работ Громака и Лукашевича, см. для ссылок [51]), мы воспроизводим их с целью продемонстрировать удобство цепочечного аппарата. Раздел 6 содержит краткое изложение подхода к P_4 , P_5 и их высшим аналогам из работы [45]. В разделах 7, 10 показано, как преобразования (0.1) приводят к преобразованиям Шлезингера для этих уравнений. В разделах 8, 9 изучаются рациональные решения P_4 . Для одного из двух классов рациональных решений с помощью результатов разделов 4, 5 удается выяснить, при каких значениях параметров эти решения регулярны на вещественной оси (Теорема 9.2).

В третьей главе рассматривается дискретное отображение B, возникающее из преобразований (0.1) после наложения условия периодичности (0.5). Цель первого раздела этой главы — показать, что оно интегрируемо в смысле работ [7, 43] (Теорема 11.1). В разделе 12 динамика исследуется более детально. Показано, что преобразование Абеля, линеаризующее систему Дубровина, линеаризует также и соответствие B, которое оказывается эквивалентным N-значному сдвигу на многообразии Якоби. В разделе 13 устанавливается связь рассматриваемого соответствия с задачей о перекройках многоугольника, которая впервые вызвала интерес автора к данной теме [41].

В четвертую главу включены по возможности разнообразные примеры интегрируемых цепочек, порожденных преобразованиями Дарбу для различных дифференциальных операторов, как скалярных, так и матричных. Как и для оператора Шредингера, для них выводятся принципы нелинейной суперпозиции, позволяющие строить точные решения ассоциированных уравнений в частных производных и, с другой стороны, дающие новые примеры интегрируемых отображений. Общая схема изложена в разделе 14. В разделе 15 более подробно разобран важный случай оператора Дирака, с которым связана нелинейная система Шредингера. В работах [19, 36, 56] изучались многополевые обобщения этой системы, а в работе [37] соответствующие им цепочки преобразований Бэклунда. В разделе 17 показано, что принцип нелинейной суперпозиции также допускает многополевое обобщение. Раздел 18 содержит примеры цепочек, отвечающих операторам второго порядка типа оператора Дирака. Среди ассоциированных систем — модели магнетика Гейзенберга и Ландау-Лифшица. Результаты этого раздела были получены совместно с Р.И. Ямиловым в [4].

В пятой главе приводятся цепочечные представления для уравнений P₂, P₃, P₆ и вырожденного случая P₅, пропущенного ранее. В разделе 19 описана модификация общей схемы, необходимость которой вызвана тем, что в случае матричных операторов приходится более явно учитывать калибровочные преобразования. Уравнение P₂ представлено при помощи преобразования Дарбу для скалярного дифференциального оператора 3-го порядка (раздел 20), а остальные — при помощи преобразований Дарбу для оператора Дирака (разделы 21, 22, 23). Использование принципа нелинейной суперпозиции позволяет вывести преобразования Шлезингера и исследовать их групповые свойства и для этих уравнений Пенлеве.

1 Одевающая цепочка

В первой главе рассматриваются преобразование Дарбу и одевающая цепочка для оператора Шредингера. На этом наиболее простом примере подробно разбирается общая схема, применяемая далее к другим операторам. Разделы 1, 2 включают в себя разложение преобразования Дарбу на элементарные и вывод принципа нелинейной суперпозиции. В 3-м разделе рассматриваются эволюционные уравнения, связанные с одевающей цепочкой и показывается, как ее автопреобразования позволяют строить многосолитонные решения mKdV. Раздел 4 содержит стандартную вронскианную технику, необходимую для дальнейшего. В 5-м разделе приводится один новый способ построения точнорешаемых операторов Шредингера, обобщающий классический метод Крама.

1 Преобразование Дарбу

Рассмотрим уравнение Шредингера с аналитическим потенциалом u(x)

$$\psi'' + (\lambda - u)\psi = 0 \tag{1.1}$$

или, в матричном виде,

$$\Psi' = U\Psi \tag{1.2}$$

где

$$\Psi = \begin{pmatrix} \psi \\ \psi' \end{pmatrix}, \quad U = \begin{pmatrix} 0 & 1 \\ u - \lambda & 0 \end{pmatrix}.$$

Потенциалы \bar{u}, u называются связанными преобразованием Дарбу, если существует аналитическая по x и полиномиальная по λ матрица

$$W = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

удовлетворяющая уравнению

$$W' = \overline{U}W - WU, \tag{1.3}$$

где $\overline{U} = U(\overline{u})$. Расписывая это уравнение поэлементно, получаем систему

$$\begin{aligned}
 a' &= c - (u - \lambda)b, & b' &= d - a, \\
 c' &= (\bar{u} - \lambda)a - (u - \lambda)d, & d' &= (\bar{u} - \lambda)b - c.
 \end{aligned}$$
(1.4)

При b = 0 легко получаем, что W = const I, где I единичная матрица. В этом случае преобразование Дарбу тривиально: $\overline{U} = U$.

Считая $b \neq 0$ и введя обозначения

 $\tau = \operatorname{tr} W = a + d, \quad \delta = \det W = ad - bc,$

находим, что система (1.4) эквивалентна системе

$$2bb'' - b'^{2} + 2(2\lambda - u - \bar{u})b^{2} = 4\delta - \tau^{2}, \qquad (1.5)$$

$$\tau' = (\bar{u} - u)b,\tag{1.6}$$

причем δ есть константа, а элементы a,d,cвыражаются через b,τ,δ по формулам

$$2a = \tau - b', \quad 2d = \tau + b', \quad c^2 = (\tau^2 - 4\delta - {b'}^2)/(4b). \tag{1.7}$$

Легко показать, что при любых аналитических потенциалах \bar{u}, u система (1.5), (1.6) имеет формальное решение в виде рядов Лорана по λ . Таким образом, если не накладывать условия полиномиальности, то любые 2 потенциала окажутся связанными некоторым преобразованием Дарбу и это понятие потеряет смысл.

Простейший нетривиальный случай преобразования Дарбу соответствует b = 1. Система (1.5), (1.6) принимает вид

$$4\lambda - 2(\bar{u} + u) = 4\delta - \tau^2, \quad \tau' = \bar{u} - u.$$

Положив $\tau = 2f, \ \delta = \lambda - \beta$ получаем отсюда

$$\bar{u} = u + 2f',\tag{1.8}$$

$$u = f^2 - f' + \beta.$$
 (1.9)

Последняя формула определяет так называемое преобразование Миуры. Чтобы применить преобразование Дарбу к заданному потенциалу u, следует найти f из уравнения (1.9), после чего потенциал \bar{u} строится по формуле (1.8). Легко убедиться, что интегрирование уравнения (1.9) эквивалентно решению уравнения (1.1) при $\lambda = \beta$. Поэтому на первый взгляд преобразование Дарбу не может быть особенно полезным при изучении уравнения (1.1). Существуют, тем не менее, достаточно широкие и весьма важные классы потенциалов, к построению и исследованию которых преобразование Дарбу применяется с большим успехом. Некоторые из них будут рассматриваться в последующих разделах.

Очевидно, композиция двух преобразований Дарбу (1.3) и $\overline{W}' = \overline{U}\overline{W} - \overline{W}\overline{U}$ есть преобразование Дарбу между потенциалами \overline{u}, u . Таким образом, можно строить сложные преобразования Дарбу, как композицию элементарных преобразований (1.8), (1.9). Это приводит к так называемой одевающей цепочке, то есть бесконечной системе ОДУ

$$f'_{j+1} + f'_j = f^2_{j+1} - f^2_j + \beta_{j+1} - \beta_j, \quad j \in \mathbb{Z}.$$
 (1.10)

Изучению ее свойств посвящена большая часть настоящей главы. Из формул (1.7) находим, что представление нулевой кривизны

$$W'_{j} = U_{j+1}W_{j} - W_{j}U_{j} \tag{1.11}$$

для этой цепочки задается матрицами

$$W_j = \begin{pmatrix} f_j & 1\\ f_j^2 + \beta_j - \lambda & f_j \end{pmatrix}.$$
 (1.12)

По каждому решению цепочки (1.10) строится последовательность потенциалов

$$u_j = f_j^2 - f_j' + \beta_j, \quad j \in \mathbb{Z}$$

$$(1.13)$$

в которой каждые два соседних члена связаны элементарным преобразованием Дарбу (1.8), (1.9). Потенциалы u_{j+N} и u_j связаны преобразованием Дарбу с матрицей $W = W_{j+N-1} \dots W_j$.

Имеет место обратное утверждение: оказывается, что любое преобразование Дарбу представимо в виде композиции элементарных. Прежде, чем доказывать это, сделаем следующее замечание. Пусть матрица W задает преобразование Дарбу (1.3). Тогда ее определитель не зависит от x, det $W = (\lambda - \beta_N) \dots (\lambda - \beta_0)$, где нули β_j могут быть и кратными. Если при некотором j имеем $W(\beta_j, x) \equiv 0$, то, в силу полиномиальности, W делится на $\lambda - \beta_j$ и ее можно сократить на этот скалярный множитель. Итак, не теряя общности можно считать, что

$$\operatorname{rank} W(\beta_i) = 1. \tag{1.14}$$

(Разумеется при некоторых $x = x_0$ не исключается и возможность полного вырождения $W(\beta_j, x_0) = 0$, но в силу аналитичности W такие точки образуют дискретное множество.) В дальнейшем мы всегда предполагаем условие (1.14) выполненным. Это избавляет нас от тривиальных последовательностей преобразований Дарбу типа $W(\beta, -f)W(\beta, f)$. Докажем следующую лемму.

Лемма 1.1. Пусть W задает нетривиальное преобразование Дарбу (1.3) и det $W(\beta_0) = 0$. Тогда

1) существует единственное разложение

$$W = \widetilde{W}W_0, \tag{1.15}$$

где матрица \widetilde{W} полиномиальна по λ , а W_0 — матрица вида (1.12). 2) При этом f_0 и $u_0 = u$ связаны формулой вида (1.13).

Доказательство. Покажем, что

$$b(\beta_0, x) \neq 0. \tag{1.16}$$

Действительно, в противном случае из равенства det $W(\beta_0) = 0$ следует $a(\beta_0, x) \equiv 0$ или $d(\beta_0, x) \equiv 0$, откуда при помощи формул (1.4) легко получаем, что все элементы W равны 0, что противоречит предположению (1.14). Рассмотрим одномерное пространство $K(x) = \ker W(\beta_0, x)$. В силу (1.16) оно не может быть натянуто на вектор $(0, 1)^{\top}$ и, следовательно, содержит вектор вида $(1, -f_0)^{\top}$. Определив отсюда f_0 и вместе с тем матрицу W_0 , рассмотрим матрицу $\widetilde{W} = W W_0^{-1}$. Имеем

$$\widetilde{W} = \begin{pmatrix} \widetilde{a} & \widetilde{b} \\ \widetilde{c} & \widetilde{d} \end{pmatrix} = \frac{1}{\beta_0 - \lambda} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -f_0 & 1 \\ f_0^2 + \beta_0 - \lambda & -f_0 \end{pmatrix} = \\ = \frac{1}{\beta_0 - \lambda} \begin{pmatrix} (\beta_0 - \lambda)b - f_0(a - bf_0) & a - bf_0 \\ (\beta_0 - \lambda)d - f_0(c - df_0) & c - df_0 \end{pmatrix}$$

В силу определения f_0 полиномы $a - bf_0$, $c - df_0$ делятся на $\lambda - \beta_0$, следовательно матрица \widetilde{W} полиномиальна. Однозначность разложения (1.15) очевидна из построения.

Перейдем к доказательству второй части утверждения. Из формулы (1.15) имеем

$$b = \tilde{a} + \tilde{b}f_0, \quad d = \tilde{c} + \tilde{d}f_0,$$

$$a = bf_0 + \tilde{b}(\beta_0 - \lambda), \quad \tilde{c} = df_0 + d(\beta_0 - \lambda).$$

Подставляя эти выражения в равенство $a' = c - (u - \lambda)b$ из системы (1.4), находим

$$(f_0' - f_0^2 + u - \lambda)b = (\lambda - \beta_0)(\widetilde{b}' - \widetilde{d} - \widetilde{b}f_0).$$

Полагая $\lambda = \beta_0$ и учитывая (1.16), получаем требуемую формулу. Теперь мы можем доказать сформулированное выше утверждение.

Теорема 1.2. Любое нетривиальное преобразование Дарбу (1.3) есть композиция элементарных преобразований (1.8), (1.9).

Доказательство. Рассмотрим разложение (1.15) и определим потенциал u_1 по формуле $u_1 = u_0 + 2f'_0$. Тогда потенциалы u_0 и u_1 связаны преобразованием Дарбу (1.8), (1.9), что равносильно матричному равенству $W'_0 = U_1W_0 - W_0U_0$. Отсюда и из равенства (1.3) следует, что \widetilde{W} также задает преобразование Дарбу: $\widetilde{W}' = \widetilde{U}\widetilde{W} - \widetilde{W}U_1$. При этом deg det $\widetilde{W} = \text{deg det } W - 1$. Таким образом, через несколько шагов мы придем к матрице \widehat{W} с определителем, не зависящим от λ . Исходя из формул (1.5), (1.6), легко показать, что при $\delta = \text{const}$ преобразование Дарбу тривиально, откуда получаем утверждение теоремы.

Замечание. Разложение $W = W_N \dots W_0$, получаемое по приведенной схеме, не единственно, так как зависит от способа нумерации нулей det W. Характер этой неоднозначности будет выяснен в следующем разделе.

2 Автопреобразования одевающей цепочки

Введем в рассмотрение преобразования $B_k, k \in \mathbb{Z}$, определяемые по формулам

$$B_{k}: \begin{cases} \widetilde{f}_{k} = f_{k} + \frac{\beta_{k} - \beta_{k-1}}{f_{k} + f_{k-1}}, & \widetilde{\beta}_{k} = \beta_{k-1}, \\ \widetilde{f}_{k-1} = f_{k-1} - \frac{\beta_{k} - \beta_{k-1}}{f_{k} + f_{k-1}}, & \widetilde{\beta}_{k-1} = \beta_{k}, \\ & \widetilde{f}_{j} = f_{j}, & \widetilde{\beta}_{j} = \beta_{j}, \quad j \neq k, k-1, \end{cases}$$
(2.1)

и действующие на бесконечном наборе переменных f_j и параметров $\beta_j, j \in \mathbb{Z}$. Эти преобразования обладают рядом замечательных свойств, в основе которых лежит следующее легко проверяемое утверждение.

Лемма 2.1. Формула (2.1) задает единственное отличное от тождественного решение системы уравнений

$$\widetilde{W}_k \widetilde{W}_{k-1} = W_k W_{k-1}, \quad \widetilde{W}_j = W_j, \quad j \neq k, k-1,$$
(2.2)

где W_j матрицы вида (1.12), $\widetilde{W}_j = W_j(\widetilde{f}_j, \widetilde{\beta}_j).$

Наиболее важным для теории уравнения Шредингера является следующее свойство преобразований B_k .

Теорема 2.2. Преобразования (2.1) действуют на множестве одевающих цепочек (1.10).

Доказательство. Утверждение можно легко проверить и непосредственно, но более содержательным является следующее рассуждение. Пусть переменные f_j удовлетворяют цепочке (1.10), тогда матрицы ..., W_{k+1} , $W = W_k W_{k-1}, W_{k-2}, \ldots$ задают некоторую последовательность преобразований Дарбу. Повторяя доказательство Теоремы 1.2, получаем, что матрицы \widetilde{W}_k , \widetilde{W}_{k-1} нового разложения $W = \widetilde{W}_k \widetilde{W}_{k-1}$ также задают преобразования Дарбу и, следовательно, приводят к цепочке вида (1.10).

Формулы (2.2) отражают коммутативность двух преобразований Дарбу (1.8), (1.9), что может быть выражено диаграммой

на которой нижнему обходу вершин отвечает исходная цепочка, а верхнему — преобразованная. По существу преобразования (2.1) эквивалентны так называемому принципу нелинейной суперпозиции преобразований Бэклунда для mKdV, который в более привычной форме будет выписан в следующем разделе.

Перейдем к изучению групповых свойств преобразований (2.1). Пользуясь единственностью разложения (1.15), легко доказать следующее утверждение.

Утверждение 2.3. Пусть матрица W задает преобразование Дарбу (1.3) и det $W = (\lambda - \beta_N) \dots (\lambda - \beta_1)$. Каждой перестановке $\sigma \in S_N$ соответствует единственное разложение матрицы W на матрицы вида (1.12), такое, что

$$W = W_N \dots W_1, \quad \det W_j = \lambda - \beta_{\sigma(j)}.$$

Отсюда сразу получаем

Следствие 2.4. Код группы B, порожденной преобразованиями $B_j, j \in \mathbb{Z}$, задается тождествами

$$B_j^2 = (B_j B_{j+1})^3 = (B_i B_j)^2 = 1, \quad i \neq j \pm 1.$$
 (2.3)

Иными словами, В есть группа Кокстера с графом

•••• •••• ••••• ••••

Доказательство. Так как преобразования B_j действуют на параметрах β_j как перестановки, то очевидно, что преобразования, действующие на β_j тождественно, порождены B_j^2 , $(B_j B_{j+1})^3$, $(B_i B_j)^2$, $i \neq j \pm 1$. Из Утверждения 2.3 следует, что эти преобразования тождественны и на переменных f.

Кроме того, из Утверждения 2.3 следует, что рассмотрение преобразований типа

$$T: \quad \widetilde{W}_k \dots \widetilde{W}_{k-p} = W_k \dots W_{k-p}, \quad \widetilde{W}_j = W_j, \quad j \neq k, \dots, k-p,$$

обобщающих (2.2), не дает ничего нового: все такие преобразования есть композиция преобразований (2.2). Действительно, сравнивая определители, видим, что T действует на β_j как некоторая перестановка. Рассматривая композицию T с преобразованием из группы B, соответствующим обратной перестановке, получаем в силу Утверждения 2.3 тождественное преобразование.

Замечание. При точном определении группы В могут встретиться некоторые затруднения, связанные с бесконечным числом образующих. Ограничиться только финитными преобразованиями нельзя, так как, например, преобразования вида

$$\dots B_{k-2N} B_{k-N} B_k B_{k+N} B_{k+2N} \dots, \quad N > 1$$
(2.4)

вполне корректно определены и будут нами в дальнейшем использоваться. Другой пример: преобразование

$$\dots B_{k-2}B_{k-1}B_k$$

определено корректно, но не имеет обратного.

На множестве цепочек (1.10) действует также ряд других преобразований, порождающих, вместе с B_j , некоторую группу G. Прежде всего, это масштабные преобразования

$$T_q: \quad \tilde{f}_j(x) = qf_j(qx), \quad \tilde{\beta}_j = q^2\beta_j, \tag{2.5}$$

образующие однопараметрическую группу. Далее, это сдвиг

$$S: \quad \tilde{f}_j = f_{j+1}, \quad \tilde{\beta}_j = \beta_{j+1}, \tag{2.6}$$

и отражения

$$R_k: \quad \tilde{f}_j = -f_{k-j}, \quad \tilde{\beta}_j = \beta_{k-j}, \quad k \in \mathbb{Z}.$$
(2.7)

Наконец, сюда надо добавить калибровочное преобразование, отвечающее за выбор начала координат на оси λ :

$$K_{\alpha}: \quad \widetilde{f}_j = f_j, \quad \widetilde{\beta}_j = \beta_j - \alpha$$
 (2.8)

(ср. со случаем оператора Дирака, гл. 5).

Легко проверяются следующие тождества:

$$R_{j}^{2} = 1, \quad R_{i}R_{j} = S^{i-j}, \quad B_{j+1} = S^{-1}B_{j}S, B_{i}R_{j} = R_{j}B_{j-i+1}, \quad T_{q}K_{\alpha} = K_{q^{2}\alpha}T_{q}.$$
(2.9)

Очевидно также, что преобразования T_q и K_{α} коммутируют с остальными. Подгруппа чисто дискретных преобразований, порожденная B_j, S, R_j , является группой Кокстера с тремя образующими B_1, R_0, R_1 и графом

$$\begin{array}{ccc} 6 & \infty \\ \bullet & B_1 & R_0 & R_1 \end{array}$$

Следует отметить, что многие важные примеры операторов Шредингера связаны с решениями одевающей цепочки, инвариантными относительно какого-либо элемента из группы G. Так, требование инвариантности относительно отражения R_0 приводит к граничному условию $f_0 = 0$ и многосолитонным потенциалам. Решения, инвариантные относительно сдвига S^N , характеризуют конечнозонные потенциалы [39, 45]. Комбинация сдвига S^N и калибровочного преобразования приводит к трансцендентам Пенлеве и их обобщениям [3, 41, 45], а комбинация S и растяжения (2.5) — к знаменитой функции Шабата [34].

При наложении на цепочку (1.10) какого-либо граничного условия группа преобразований, естественно, сужается. Очевидно, требование инвариантности цепочки относительно некоторого элемента $g \in G$ оставляет в качестве допустимых преобразования, коммутирующие с данным. Например, в важном случае $g = S^N$ группа B сужается до подгруппы, порожденной преобразованиями (2.4) и изоморфной группе Кокстера \widetilde{A}_{N-1} . Чтобы не усложнять обозначений, группы преобразований рассматриваемых далее редуцированных цепочек также обозначаются через G.

3 Преобразования Бэклунда для уравнений типа KdV. I

Другая форма записи преобразования Дарбу получается, если из соотношений (1.8), (1.9) исключить не u, а f. Введя новые переменные v_j по формулам

$$2v'_{j} = u_{j}, \quad v_{j+1} - v_{j} = f_{j}, \quad j \in \mathbb{Z},$$
(3.1)

получим цепочку

$$v'_{j+1} + v'_j = (v_{j+1} - v_j)^2 + \beta_j.$$
(3.2)

Она задает преобразования Бэклунда для потенциированного уравнения KdV

$$v_t = v_{xxx} - 6v_x^2 \tag{3.3}$$

найденные впервые Уолквистом и Эстабруком [38]. Преобразования (2.1) легко переписываются в новых переменных и принимают вид

$$B_k: \begin{cases} \widetilde{v}_k = v_k - \frac{\beta_k - \beta_{k-1}}{v_{k+1} - v_{k-1}}, & \widetilde{v}_j = v_j, \quad j \neq k, \\ \widetilde{\beta}_k = \beta_{k-1}, & \widetilde{\beta}_{k-1} = \beta_k, & \widetilde{\beta}_j = \beta_j, \quad j \neq k, k-1. \end{cases}$$
(3.4)

Переписав формулу для \tilde{v}_k в виде

$$v_{k+1} = v_{k-1} - \frac{\beta_k - \beta_{k-1}}{\tilde{v}_k - v_k}$$
(3.5)

узнаем в ней хорошо известную формулу нелинейной суперпозиции преобразований Бэклунда (см. [25, 38], а также [9, 15, 28, 33]). Она позволяет

Рис. 3.1: Уравнения, связанные с KdV

по потенциалу v_{k-1} и двум потенциалам v_k, \tilde{v}_k , связанным с ним преобразованием Бэклунда, чисто алгебраически строить результат двукратного применения преобразования Бэклунда — потенциал v_{k+1} .

Сама цепочка (1.10) задает преобразования Бэклунда между уравнениями mKdV

$$f_t = f_{xxx} - 6(f^2 + \beta)f_x, \tag{3.6}$$

различающимися параметрами $\beta = \beta_j$ и связанными с уравнением (3.3) при помощи преобразования Миуры (1.9) и потенциирования:

$$2v' = f^2 - f' + \beta.$$

Простая цепочечная замена (3.1), эквивалентная этому преобразованию, иллюстрирует общую схему из работ Ямилова [40, 65]. Легко выписать еще несколько цепочек, связанных с (1.10) и (3.2) аналогичным образом. Эти связи схематически изображены на рис. 3.1, где двойные стрелки соответствуют потенциированиям, пунктирные — цепочечным заменам, а простые — получающимся в результате их обращения дифференциальным подстановкам типа Миуры. Например, преобразования $v \to u, v \to f$ задаются формулой (3.1), а преобразование $f \to u$ формулой (1.9). Его обращение приводит к формуле

$$2(f_j^2 + \beta_j) = u_{j+1} + u_j.$$

В результате этих замен переписываются не только сами цепочки, но также соответствующие им эволюционные уравнения и формулы нелинейной суперпозиции. Они приведены ниже, причем для краткости в записи преобразований B_k выписаны только фактически преобразуемые переменные. Действие B_k на параметры β_j во всех случаях состоит в перестановке β_{k-1} и β_k , поэтому мы его также опускаем. Удобно ввести параметры

$$\alpha_j = \beta_j - \beta_{j-1},\tag{3.7}$$

для которых, очевидно, имеем

$$\widetilde{\alpha}_{k\pm 1} = \alpha_{k\pm 1} + \alpha_k, \quad \widetilde{\alpha}_k = -\alpha_k.$$

На переменную u получаем уравнение KdV

$$u_t = u_{xxx} - 6uu_x, \tag{3.8}$$

цепочка принимает вид

$$u'_{j+1} + u'_{j} = (u_{j+1} - u_{j})\sqrt{2(u_{j+1} + u_{j}) - 4\beta_{j}},$$
(3.9)

а преобразование B_k определяется формулой

$$\widetilde{u}_{k} = u_{k} + \frac{2\alpha_{k}(u_{k+1} - u_{k-1})}{\left(\sqrt{u_{k+1} + u_{k} - 2\beta_{k}} + \sqrt{u_{k} + u_{k-1} - 2\beta_{k-1}}\right)^{2}}.$$
(3.10)

Замены $v \to w, \, w \to v, \, w \to f$ задаются соответственно формулами

$$w_j = v_{j+1} + v_j, \quad 2v = w - \sqrt{w' - \beta}, \quad f^2 + \beta = w',$$

причем для переменных w_j имеем

$$w_{t} = w_{xxx} - \frac{3w_{xx}^{2}}{4(w_{x} - \beta)} - 3w_{x}^{2},$$

$$\sqrt{w_{j+1}^{\prime} - \beta_{j+1}} + \sqrt{w_{j}^{\prime} - \beta_{j}} = w_{j+1} - w_{j},$$

$$\widetilde{w}_{k} = w_{k} - \frac{\alpha_{k}}{w_{k} - w_{k-1}}, \quad \widetilde{w}_{k-1} = w_{k-1} - \frac{\alpha_{k}}{w_{k} - w_{k-1}}$$

Замены $w \to g,\, f \to g,\, g \to f$ задаются соответственно формулами

$$g_{j+1} = w_{j+1} - w_j, \quad g_{j+1} = f_{j+1} + f_j, \quad 2f = g + (g' - \alpha)/g.$$

На переменные g_j получаем

$$g_t = g_{xxx} - 3\frac{g_x g_{xx}}{g} + \frac{3g_x^3}{2g^2} - \frac{3}{2}\left(g^2 + \frac{\alpha^2}{g^2} + 2\beta + 2\beta_{-1}\right)g_x,$$
 (3.11)

$$(g_{j+1}g_j)' = g_{j+1}g_j(g_{j+1} - g_j) + \alpha_{j+1}g_j + \alpha_j g_{j+1}, \tag{3.12}$$

$$\widetilde{g}_{k\pm 1} = g_{k\pm 1} \pm \frac{\alpha_k}{g_k}.$$
(3.13)

Наконец, замены $g \to h, \, h \to g$ задаются формулами

$$h_j = g_{j+1}g_j, \quad 2g_j = (R_j - h'_j)/(h_j - \alpha_{j+1})$$

и на переменные h_j получаем

$$h_t = h_{xxx} - \frac{3h_x(h_{xx} + 2\dot{P})^2}{2(h_x^2 + 4P)} + 6(2h - \beta_1 + \beta - \beta_{-1})h_x, \qquad (3.14)$$

$$(R_{j+1} + h'_{j+1})(R_j + h'_j) = 4h_{j+1}(h_{j+1} + \alpha_{j+1})(h_j + \alpha_j), \qquad (3.15)$$
$$\tilde{h}_{k+1} = h_{k+1}\left(1 + \frac{\alpha_k}{m}\right), \qquad \tilde{h}_k = h_k + \alpha_k,$$

$$R_j^2 = h_j'^2 + 4P_j(h_j), \quad P_j(h_j) = h_j(h_j + \alpha_j)(h_j - \alpha_{j+1}).$$

Уравнение (3.11) после замены $g = \exp(\varphi)$ переходит в так называемое экспоненциальное уравнение Калоджеро–Дегаспериса

$$\varphi_t = \varphi_{xxx} - \frac{1}{2}\varphi_x^3 - \frac{3}{2}(e^{2\varphi} + \alpha^2 e^{-2\varphi} + 2\beta + 2\beta_{-1})\varphi_x, \qquad (3.17)$$

а уравнение (3.14) в результате замены

$$h = H(z), \quad \dot{H}^2 = 4P(H)$$

и переобозначения

$$\wp = F + (\alpha_1 + \alpha)^2 / F + 2(\alpha_1 - \alpha) / 3, \quad F = H - \alpha_1 \alpha / H - \alpha_1 + \alpha$$

переходит в эллиптическое уравнение Калоджеро-Дегаспериса

$$z_{t} = z_{xxx} - \frac{3z_{x}z_{xx}^{2}}{2(z_{x}^{2}+1)} - \frac{3}{2}\wp(z)z_{x}(z_{x}^{2}+1) - 2(\beta_{1}+\beta+\beta_{-1})z_{x}, \qquad (3.18)$$

$$\dot{\wp}^{2} = 4(\wp + \frac{4}{3}(\alpha_{1}-\alpha))(\wp + \frac{4}{3}(\alpha_{1}+2\alpha))(\wp - \frac{4}{3}(2\alpha_{1}+\alpha)).$$

Эти уравнения рассматривались в [8], см. также [9], стр. 58 русского перевода. Последовательность дифференциальных подстановок, связывающих уравнения (3.8), (3.6), (3.17), (3.18) приводилась в [60].

В заключение этого раздела покажем, как преобразование (2.1) позволяет строить точные решения уравнения mKdV. Полагая $f_0 = \beta_0 = 0$, легко находим решение-кинк

$$f_1 = -\gamma_1 \operatorname{th}(\gamma_1 x + \gamma_1^3 t + c_1), \quad \gamma_1^2 = -\beta_1.$$

Предположим, что результат k-кратного преобразования Бэклунда уже найден в виде

$$f_k = F_k(x, t; \beta_1, c_1, \dots, \beta_{k-1}, c_{k-1}, \beta_k, c_k).$$

Разрешив формулу для преобразования B_{k+1} относительно переменных f_{k+1}, \tilde{f}_{k+1} :

$$f_{k+1} = -f_k + \frac{\beta_{k+1} - \beta_k}{f_k - \tilde{f}_k}, \quad \tilde{f}_{k+1} = -\tilde{f}_k + \frac{\beta_{k+1} - \beta_k}{f_k - \tilde{f}_k}$$

находим, что

$$F_{k+1}(x,t;\beta_1,c_1,\ldots,\beta_k,c_k,\beta_{k+1},c_{k+1}) = -F_k + \frac{\beta_{k+1} - \beta_k}{F_k - \widetilde{F}_k}$$

где $\tilde{F}_k = F_k(x,t;\beta_1,c_1,\ldots,\beta_{k-1},c_{k-1},\beta_{k+1},c_{k+1})$. Используя вронскианную технику, развитую в следующем разделе, можно показать, что при выборе

$$0 > \beta_1 > \beta_2 > \dots > \beta_k > \dots$$
, $\operatorname{Im} c_{2j+1} = 0$, $\operatorname{Im} c_{2j} = \pi i/2$

все построенные таким образом решения будут гладкими на вещественной оси (ср. [63]).

где

4 Спектральные свойства одевающей цепочки

Значение преобразований Дарбу для спектральной теории операторов Шредингера очевидно из следующих его свойств.

Теорема 4.1. Пусть матрица W задает преобразование Дарбу (1.3) между потенциалами \bar{u} и и. Тогда

1) Если Ψ есть решение уравнения (1.2), то $\overline{\Psi} = W\Psi$ удовлетворяет уравнению (1.2) с потенциалом \overline{u} , то есть $\overline{\Psi}' = \overline{U}\overline{\Psi}$.

2) Если $\Psi = (\psi, \psi')^{\top} \in \ker W|_{\lambda=\beta_0}$, то Ψ есть решение уравнения (1.2) при $\lambda = \beta_0$.

Доказательство. 1) Первое утверждение очевидно. 2) Из (1.3) при $\lambda = \beta_0$ получаем $W'\Psi + WU\Psi = 0$, откуда $W(\Psi' - U\Psi) = 0$. В силу предположения (1.14) отсюда следует $\Psi' - U\Psi = \mu\Psi$. Однако из структуры матрицы U видно, что левая часть последнего равенства имеет вид $(0, *)^{\top}$, следовательно $\mu = 0$.

На приведенной теореме основано множество методов построения точно решаемых операторов Шредингера. Чтобы как-то описать это множество, воспользуемся тем, что, согласно Теореме 1.2, любое преобразование Дарбу эквивалентно отрезку одевающей цепочки. В этом разделе мы ограничимся рассмотрением половины цепочки, считая, что индекс j в формулах (1.10), (1.13) принимает только неотрицательные значения. Удобно выделить 3 основных метода, применяемых, как правило, в сочетании друг с другом.

1) Диагональный метод позволяет по известному решению f_j одевающей цепочки (1.10) для каждого потенциала u_j из последовательности (1.13) и каждого собственного числа $\lambda = \beta_i, i \geq j$, построить волновую функцию $\psi_{j,i}$, то есть решение уравнения

$$\psi_{j,i}'' + (\beta_i - u_j)\psi_{j,i} = 0.$$

В начале процесса нам известны функции, соответствующие диагонали i = j (см. рис. 4.1), так как, согласно свойству 2) Теоремы 4.1, достаточно положить

$$\psi_{j,j} = \exp\left(-\int_{x_0}^x f_j \, dx\right). \tag{4.1}$$

Свойство 1) позволяет найти остальные ψ -функции по формуле

$$\Psi_{j,i} = W_j^{-1}(\beta_i)\Psi_{j+1,i}, \quad i > j.$$
(4.2)

Часто вместо матричных операторов W_j^{-1} и W_j удобно рассматривать соответственно операторы рождения и уничтожения

$$A_j^+ = -D + f_j, \quad A_j = D + f_j.$$
 (4.3)

В терминах этих операторов преобразование Дарбу определяется, как переход от одного оператора Шредингера $L = -D^2 + u$ к другому по формулам

$$L_{j} = A_{j}^{+}A_{j} + \beta_{j}, \quad L_{j+1} = A_{j}A_{j}^{+} + \beta_{j}.$$
(4.4)

Рис. 4.1: На плоскости (j, i) черными кружками изображены ψ -функции, которые необходимо знать на начальном этапе диагонального (d), вертикального (v) и горизонтального (h) методов. Светлыми кружками обозначены ψ -функции, которые строятся в результате применения этих методов.

С использованием операторов рождения формула (4.2) примет вид

$$\psi_{j,i} = A_j^+(\psi_{j+1,i}), \quad i > j.$$
(4.5)

Данный метод позволяет, в сочетании с горизонтальным методом (см. ниже), для каждого потенциала найти столько волновых функций, сколько в цепочке различных параметров β_i .

2) Вертикальный метод является обратным к диагональному. Он позволяет построить решение одевающей цепочки по известным волновым функциям $\psi_{0,i}$ одного потенциала u_0 (см. рис. 4.1). Этот метод замечателен тем, что дает явную формулу, выражающую потенциалы (1.13) через известные $\psi_{0,i}$.

Обозначим через $\langle y_0, \ldots, y_n \rangle = \det \left((y_j^{(s)})_0^n \right)$ вронскиан произвольных гладких функций y_j . Имеет место следующая лемма.

Лемма 4.2. Пусть $y_0 \neq 0, A = D - y'_0/y_0$. Тогда

$$\langle y_0, \dots, y_n \rangle = y_0 \langle A(y_1), \dots, A(y_n) \rangle.$$
(4.6)

Доказательство. Рассматривая обе части формулы (4.6) как линейные дифференциальные операторы, действующие на y_n , находим, что ядра этих операторов совпадают, откуда следует, что они отличаются на скалярный множитель. Сравнение коэффициентов при $y_n^{(n)}$ приводит к равенству $\langle y_0, \ldots, y_{n-1} \rangle = y_0 \langle A(y_1), \ldots, A(y_{n-1}) \rangle$, что позволяет доказать утверждение по индукции. Переход от потенциала $u_j \kappa u_{j+1}$ осуществляется при помощи преобразования Дарбу с матрицей W_j вида (1.12), где, согласно свойству 2) Теоремы 4.1, следует выбрать

$$f_j = -\psi'_{j,j}/\psi_{j,j}.$$
 (4.7)

При этом, согласно свойству 1), $\psi_{j+1,i}$ определяются по формуле

$$\psi_{j+1,i} = \psi'_{j,i} + f_j \psi_{j,i} = A_j(\psi_{j,i}), \quad i > j.$$

$$(4.8)$$

(Чтобы получить $\psi_{j+1,j}$, следует применять A_j к ψ -функции, дополнительной к $\psi_{j,j}$, см. следующий метод.) Пользуясь Леммой 4.2, легко доказать формулы

$$\langle \psi_{0,0}, \dots, \psi_{0,j} \rangle = \psi_{0,0} \dots \psi_{j,j},$$

 $\langle \psi_{0,0}, \dots, \psi_{0,j}, \psi_{0,i} \rangle = \psi_{0,0} \dots \psi_{j,j} \psi_{j+1,i}, \quad i > j.$

Введем обозначения

$$\Delta_{j+1} = \langle \psi_{0,0}, \dots, \psi_{0,j} \rangle, \quad \Delta_0 = 1, \tag{4.9}$$

$$\Delta_{j+1}(y) = \langle \psi_{0,0}, \dots, \psi_{0,j}, y \rangle, \quad \Delta_0(y) = y, \tag{4.10}$$

где y произвольная функция. Для волновых функций потенциала u_j имеем явные формулы

$$\psi_{j,i} = \Delta_j(\psi_{0,i}) / \Delta_j, \quad i \ge j, \tag{4.11}$$

выражающие их через волновые функции потенциала u_0 . В частности, для функций f_j из (4.7) получаем

$$f_j = -D(\ln(\Delta_{j+1}/\Delta_j)). \tag{4.12}$$

Для потенциала u_j имеем, согласно (1.8),

$$u_j = u_0 + 2f'_0 + \dots + 2f'_{j-1},$$

следовательно

$$u_j = u_0 - 2D^2(\ln(\Delta_j)). \tag{4.13}$$

Формулы (4.7), (4.8) позволяют построить отрезок одевающей цепочки длиной, равной числу изначально известных функций $\psi_{0,i}$. Чтобы продолжить цепочку дальше, можно использовать следующий метод.

3) Горизонтальный метод похож на предыдущий, но отличается от него тем, что требует для своего осуществления всего лишь одну волновую функцию $\psi_{0,0}$ для потенциала u_0 . Цепочка, построенная по этому методу, не содержит параметров, так как все β_j равны β_0 .

Переход от потенциала u_j к u_{j+1} основан на попеременном применении свойств 1) и 2) Теоремы 4.1 и происходит по следующей схеме. Сначала по решению ψ_j находим, пользуясь свойством 2), $f_j = -\psi'_j/\psi_j$ и операторы A_j^+ , A_j . Сразу воспользоваться свойством 1) нельзя, так как $A_j(\psi_j) = 0$ $(W_j(\beta_0)\Psi_j = 0$ на матричном языке), поэтому необходимо найти второе линейно независимое решение φ уравнения (1.1) по формуле

$$\varphi = \psi \int_{x_0}^x \psi^{-2} \, dx. \tag{4.14}$$

Далее, применя
я A_j и снова пользуясь формулой (4.14), строим фундаментальную систему решений

$$\psi_{j+1} = \psi_j^{-1}, \quad \varphi_{j+1} = \psi_j^{-1} \int_{x_0}^x \psi_j^2 \, dx$$

для уравнения Шредингера с потенциалом $u_{j+1} = u_j + 2f'_j$. Найденные ψ функции можно изобразить на следующей диаграмме:

$$\psi_j^{-1} \int_{x_0}^x \psi_j^2 dx = \varphi_{j+1} \bullet \underbrace{A_j^+}_{A_j^+} \bullet \psi_j$$
$$\psi_j^{-1} = \psi_{j+1} \bullet \underbrace{A_j^+}_{A_j} \bullet \varphi_j = \psi_j \int_{x_0}^x \psi_j^{-2} dx$$

Заметим, что повторение описанной процедуры приводит к преобразованию Дарбу с матрицей $W_j^+ = W_j(-f_j)$ и возвращает нас к исходному потенциалу u_j . Поэтому для получения нетривиального результата на следующем шаге следует использовать линейную комбинацию $c\psi_{j+1} + \varphi_{j+1}$. При этом получаем

$$u_{j+2} = u_j + 2f'_j + 2f'_{j+1} = u_j - 2D\left(\psi_j^2\left(c + \int_{x_0}^x \psi_j^2 \, dx\right)^{-1}\right).$$

При помощи описанного метода в работе [2] были построены рациональные решения уравнения KdV. Однако для построения точно решаемых потенциалов он малопригоден, поскольку все происходит на одном и том же спектральном уровне $\lambda = \beta_0$. Тем не менее этот метод существенно усиливает предыдущие, позволяя продолжить процесс построения ψ -функций и соответствующих им потенциалов за границы треугольной области на рис. 4.1.

В заключение этого раздела рассмотрим вопрос о действии преобразований (2.1) на функции $\psi_{0,i}$. Из схемы построения одевающей цепочки вертикальным методом, то есть по формулам (4.12) видно, что результат не является единственным, так как зависит от нумерации волновых функций. Имеет место простое утверждение.

Утверждение 4.3. Перенумерация волновых функций $\psi_{0,k} \leftrightarrow \psi_{0,k-1}$ приводит в терминах f_j , построенных по формулам (4.12), к преобразованию (2.1).

Доказательство. Легко видеть, что при перестановке $\psi_{0,k}$ и $\psi_{0,k-1}$ выполняются равенства $\widetilde{\Delta}_j = \pm \Delta_j, j \neq k$, откуда $\widetilde{f}_j = f_j$ при $j \neq k, k-1$. Таким образом, при j < k-1 операторы A_j не меняются и, следовательно, ψ -функции, построенные по формуле (4.8) при $j \leq k-1$ преобразуются по правилу

$$\psi_{j,k-1} = \psi_{j,k}, \quad \psi_{j,k} = \psi_{j,k-1},$$

Обозначим для краткости $\psi_{k-1,k-1} = y, \psi_{k-1,k} = p, w = yp' - y'p$. Выбирая в качестве основного набора ψ -функций вместо $\psi_{0,i}$ функции $\psi_{k-1,i}$ получаем, согласно (4.12),

$$f_{k-1} = -y'/y, \quad f_k = y'/y - w'/w.$$

После преобразования имеем $\widetilde{y}=p,\,\widetilde{p}=y,\,\widetilde{w}=-w$ и

$$\widetilde{f}_{k-1} = -p'/p, \quad \widetilde{f}_k = p'/p - w'/w$$

Учитывая равенство $w' = (\beta_{k-1} - \beta_k)yp$, легко получаем отсюда формулы (2.1).

5 Удаление собственных значений

До сих пор все выкладки носили формально-алгебраический характер. Более тонких рассуждений требует выяснение условий, при которых потенциалы, построенные из данного при помощи преобразований Дарбу, обладают нужными аналитическими свойствами, а функции (4.11) являются собственными функциями некоторой краевой задачи. Рассмотрим, например, потенциал $u = u_0 \in C^{\infty}(a, b)$ на конечном отрезке в виде ямы с асимптотикой

$$u(x) \sim \alpha/(x-a)^2, \ x \to a, \quad u(x) \sim \beta/(x-b)^2, \ x \to b,$$
 (5.1)

где $\alpha,\beta>0,$ и дополним уравнение (1.1) граничными условиями

$$\psi(a) = \psi(b) = 0. \tag{5.2}$$

Пусть $\lambda_0 < \lambda_1 < \ldots$ собственные значения рассматриваемой краевой задачи, а φ_m собственная функция, отвечающая λ_m . В настоящем разделе, как и в работе Крама [12], в качестве исходных волновых функций используются только собственные функции. Положив $\psi_{0,j} = \varphi_{m_j}$ и пользуясь формулой (4.13), получим потенциал

$$\widetilde{u} = u - 2D^2(\ln\langle\varphi_{m_0}, \dots, \varphi_{m_{n-1}}\rangle), \qquad (5.3)$$

который, вообще говоря, может иметь особенность внутри (a, b). Возникает вопрос, как следует выбирать m_j , чтобы потенциал \tilde{u} также представлял собой потенциальную яму на (a, b), а функции (4.11) были его собственными. В [12, 14] показано, что если выбирать собственные функции подряд, начиная с нулевой, то есть $m_j = j$, то потенциал (5.3) будет регулярным. При этом функция $\tilde{\psi}_{n+s}$ построенная по формуле (4.10) будет его s-й собственной функцией, то есть спектр \tilde{u} получается из спектра u удалением собственных значений $\lambda_0, \ldots, \lambda_{n-1}$. Оказывается, однако, что такой выбор далеко не единствен. Наша цель в этом разделе — доказать следующую основную теорему.

Теорема 5.1. Пусть номера m_0, \ldots, m_{n-1} , расположенные в порядке возрастания, образуют несколько отрезков натурального ряда

$$0, \ldots, M'_0; M_1, \ldots, M'_1; \ldots; M_s, \ldots, M'_s, M'_j < M_{j+1} - 1,$$

(первого отрезка может и не быть). Для регулярности потенциала (5.3) необходимо и достаточно, чтобы все отрезки M_j, \ldots, M'_j , кроме отрезка $0, \ldots, M'_0$, состояли из четного числа членов. При этом спектр \tilde{u} совпадает со спектром и, в котором вычеркнуты собственные значения $\lambda_{m_0}, \ldots, \lambda_{m_{n-1}}$. По индукции легко доказывается, что все функции f_j , построенные по формуле (4.7), имеют асимптотику вида

$$f(x) \sim \gamma/(x-a), \ x \to a, \quad f(x) \sim \delta/(x-b), \ x \to b,$$
 (5.4)

потенциалы u_j асимптотику вида (5.1), а функции (4.11) удовлетворяют условию (5.2) и, кроме того, условию

$$\psi'(a) = \psi'(b) = 0. \tag{5.5}$$

Поэтому нужно выяснить лишь, при каких условиях потенциалы u_j будут регулярными в интервале (a, b). Так как собственная функция основного состояния φ_0 не имеет нулей между a и b, то очевидно, что выбор $\psi_{0,0} = \varphi_0$ приведет к регулярному потенциалу

$$u_1 = u_0 - 2D^2(\ln\varphi_0). \tag{5.6}$$

Как мы увидим дальше, спектр u_1 получается из спектра u вычеркиванием λ_0 , откуда сразу следует, что все потенциалы

$$u_n = u_0 - 2D^2(\ln\langle\varphi_0, \dots, \varphi_{n-1}\rangle),$$

введенные в работе [12], регулярны. Это наблюдение еще не исчерпывает все возможности, которые, как видно из следующей леммы, можно расширить, отказавшись от требования, чтобы регулярными были все промежуточные потенциалы (4.13).

Лемма 5.2. Функция $w = \varphi_m \varphi'_n - \varphi'_m \varphi_n$, m < n, сохраняет знак на (a, b) если и только если n = m + 1.

Доказательство. Имеем

$$w' = \delta \varphi_m \varphi_n, \quad w'' = \delta (\varphi_m \varphi'_n + \varphi'_m \varphi_n), \quad \delta = \lambda_m - \lambda_n.$$

Пусть $x_1 < \cdots < x_m$ нули φ_m , а $y_1 < \cdots < y_n$ нули φ_n в интервале (a, b). Очевидно

$$w'(x_i) = w'(y_j) = 0,$$

$$w''(x_i) = -\delta w(x_i),$$
 (5.7)

$$w''(y_j) = \delta w(y_j).$$
 (5.8)

Пусть сначала n > m + 1. Тогда найдутся 2 соседних нуля y_k, y_{k+1} функции φ_n , между которыми нет нулей φ_m , так что они одновременно будут соседними нулями w'. Так как нули w', очевидно, простые, то $w''(y_k)$ и $w''(y_{k+1})$ имеют разные знаки. Из (5.8) видим, что w обращается в ноль на (y_k, y_{k+1}) .

Пусть теперь n = m + 1. Тогда нули x_i и y_j функции w' распределяются следующим образом:

$$y_1 < x_1 < y_2 < \cdots < x_m < y_{m+1}.$$

Учитывая (5.7), (5.8), находим, что знак w во всех точках x_i, y_j один и тот же. Отсюда следует, что w не меняет знака на отрезке $[y_1, y_{m+1}]$, так как в противном случае w' имела бы кроме x_i и y_j еще и другие нули. При $x < y_1$ функция w' сохраняет знак, следовательно w монотонна и, так как w(a) = 0, то w не обращается в 0. Аналогично показывается, что w сохраняет знак и при $x > y_{m+1}$.

Теперь ясно, что выбор $\psi_{0,0} = \varphi_m, \, \psi_{0,1} = \varphi_{m+1}$ также приводит к регулярному потенциалу

$$u_2 = u_0 - 2D^2(\ln\langle\varphi_m, \varphi_{m+1}\rangle), \tag{5.9}$$

хотя промежуточный потенциал u_1 , вообще говоря, будет иметь особенность внутри интервала (a, b).

Лемма 5.3. Спектры потенциалов (5.6) и (5.9) совпадают со спектром потенциала u_0 , в котором вычеркнуты, соответственно, члены λ_0 и λ_m , λ_{m+1} .

Доказательство. Учитывая формулы (5.4), (5.5) и действуя на собственные функции потенциалов (5.6) или (5.9) оператором A_0^+ , (соответственно $A_0^+A_1^+$), убеждаемся, что новых собственных значений не добавляется. Аналогично, действуя операторами A_0 и A_1A_0 на собственные функции потенциала q, получаем, что при $\lambda \neq \lambda_0$, (соответственно $\lambda \neq \lambda_m, \lambda_{m+1}$) собственные значения сохраняются.

Покажем, что спектр потенциала (5.6) не содержит λ_0 . Действительно, согласно формуле (4.11) потенциал u_1 имеет собственную функцию $\psi_{1,1} = \langle \varphi_0, \varphi_1 \rangle / \varphi_0$, отвечающую собственному значению λ_1 . В силу Леммы 5.2 она не имеет нулей, следовательно λ_1 — наименьшее собственное значение u_1 .

Покажем теперь, что λ_m и λ_{m+1} не являются собственными значениями потенциала (5.9). Для этого рассмотрим потенциал u_2 , построенный при помощи функций φ_{m-1}, φ_m и потенциал u_4 , построенный при помощи собственных функций $\tilde{\varphi}_{2,m+1}, \tilde{\varphi}_{2,m+2}$ потенциала \tilde{u}_2 . Они регулярны, так как получаются в результате двукратного применения формулы (5.9). С другой стороны, u_4 можно построить и по собственным функциям $\varphi_{2,m-1}, \varphi_{2,m+2}$ потенциала u_2 . В силу Леммы 5.2 отсюда вытекает, что эти функции отвечают соседним собственным значениям u_2 , то есть между λ_{m-1} и λ_{m+2} собственных значений нет.

Теперь мы можем доказать основную теорему.

Доказательство. Достаточность) Очевидно, что если m_j удовлетворяют условию теоремы, то потенциал \tilde{u} можно построить за несколько шагов вида (5.6) или (5.9). Это обеспечивает его регулярность и доказывает утверждение о спектре.

Необходимость) Допустим, что m_j не удовлетворяют условию теоремы, но потенциал \tilde{u} регулярен. Пусть отрезок M_l, \ldots, M'_l самый правый в натуральном ряду, состоящий из нечетного числа членов. Будем строить новые регулярные потенциалы по формуле (5.6), начиная с \tilde{u} . Через несколько шагов все отрезки левее M_l, \ldots, M'_l сольются в один, и мы придем к потенциалу \bar{u} , построенному по функциям φ_m с номерами

 $0, \ldots, M'_{l-1}; M_l, \ldots, M'_l; M_{l+1}, \ldots, M'_{l+1}; \ldots$

Потенциал \hat{u} , построенный по этим же функциям, кроме $\varphi_{M'_l}$, удовлетворяет условию теоремы и, по доказанному, регулярен. Так как $\hat{\varphi}_{M'_l}$ не есть его основное состояние, то потенциал

$$\bar{u} = \hat{u} - 2D^2(\ln \widehat{\varphi}_{M_i'}),$$

не может быть регулярным. Полученное противоречие завершает доказательство. Так как введенные выше потенциалы имеют особенности на концах отрезка (a, b), то полнота системы их собственных функций нуждается в обосновании. Очевидно, для этого достаточно, чтобы полнота имела место для исходного потенциала u и потенциалов (5.6), (5.9), после чего утверждение получается по индукции. Индуктивный переход к потенциалу (5.6) обоснован в работе [12]; мы воспроизведем его, так как для потенциала (5.9) доказательство основано на той же идее, хотя технически немного сложнее.

Утверждение 5.4. Пусть система собственных функций φ_j потенциала и полна в $L^2(a, b)$, тогда собственные функции $\tilde{\varphi}_j$ потенциала (5.6) или (5.9) также образуют полную систему.

Доказательство. Пусть $f \in L^2(a, b)$, а g гладкая функция на (a, b), такая что $||f - g||^2 < \varepsilon$ и g(x) = 0 при $a < x < a + \delta$, $b - \delta < x < b$. Очевидно, достаточно показать, что g можно приблизить отрезком ряда $\sum_{0}^{\infty} C_s \tilde{\varphi}_s$ с произвольной точностью.

Случай потенциала (5.6). Пусть

$$h = -A_0^+ g = g' + \varphi_0' g / \varphi_0, \quad \varphi_0 h = (\varphi_0 g)'.$$

Очевидно, $\int_{a}^{b} \varphi_0 h \, d\xi = \varphi_0 g|_{a}^{b} = 0$, поэтому приближение h функциями φ_j

имеет вид $h=\sum\limits_1^N c_s \varphi_s +\eta, \, ||\eta||^2 < \varepsilon.$ Так как

$$(\varphi_i \varphi'_j - \varphi'_i \varphi_j)' = (\lambda_i - \lambda_j) \varphi_i \varphi_j,$$

то

$$\int_{a}^{x} \varphi_{0} \varphi_{s} \, d\xi = \frac{1}{\lambda_{0} - \lambda_{s}} (\varphi_{0} \varphi_{s}' - \varphi_{0}' \varphi_{s}) = \frac{1}{\lambda_{0} - \lambda_{s}} \varphi_{0} \widetilde{\varphi}_{s},$$

где $\widetilde{\varphi}_s = A_0 \varphi_s, \, s \neq 0,$ есть собственные функции потенциал
а $u_1.$ Следовательно

$$\varphi_0 g = \int_a^x \varphi_0 h \, d\xi = \sum_1^N c_s \int_a^x \varphi_0 \varphi_s \, d\xi + \int_a^x \varphi_0 \eta \, d\xi = \sum_1^N C_s \widetilde{\varphi}_s + \zeta,$$

где $C_s = c_s/(\lambda_0 - \lambda_s),$

$$\zeta = \frac{1}{\varphi_0} \int_a^x \varphi_0 \eta \, d\xi = -\frac{1}{\varphi_0} \int_x^b \varphi_0 \eta \, d\xi.$$
(5.10)

В силу соотношений (5.4) выполняются оценки

$$\int_{a}^{x} \varphi_{0}^{2} d\xi = o(\varphi_{0}^{2}), \ x \to a, \quad \int_{x}^{b} \varphi_{0}^{2} d\xi = o(\varphi_{0}^{2}), \ x \to b.$$
(5.11)

(Действительно, $2 \lim_{x \to a} \int_{a}^{x} \varphi_{0}^{2} d\xi / \varphi_{0}^{2} = \lim_{x \to a} \varphi_{0} / \varphi_{0}' = \lim_{x \to a} 1 / f_{0} = 0.$) Пользуясь неравенством Шварца, из (5.10) и (5.11) получаем

$$\zeta < M \int_{a}^{b} \eta^{2} d\xi < M\varepsilon \Rightarrow \int_{a}^{b} \zeta^{2} d\xi < \widetilde{M}\varepsilon,$$

и индуктивный переход в этом случае обоснован.

Случай потенциала (5.9). Рассмотрим оператор

$$A = A_{m+1}A_m = \left(D - \left(\ln\frac{w}{\varphi_m}\right)'\right) \left(D - (\ln\varphi_m)'\right) = \left(D - \left(\ln\frac{w}{\varphi_{m+1}}\right)'\right) \left(D - (\ln\varphi_{m+1})'\right),$$

где $w = \langle \varphi_m, \varphi_{m+1} \rangle$. Пусть $h = A^+(g)$. Имеем

x

$$\varphi_m h = \left(\frac{\varphi_m^2}{w} \left(\frac{w}{\varphi_m}g\right)'\right)', \quad \varphi_{m+1}h = \left(\frac{\varphi_{m+1}^2}{w} \left(\frac{w}{\varphi_{m+1}}g\right)'\right)',$$

откуда

$$P = \int_{a}^{x} \varphi_{m} h \, d\xi = \varphi_{m} g' + \left(\varphi_{m} \frac{w'}{w} - \varphi'_{m}\right) g,$$
$$Q = \int_{a}^{x} \varphi_{m+1} h \, d\xi = \varphi_{m+1} g' + \left(\varphi_{m+1} \frac{w'}{w} - \varphi'_{m+1}\right) g.$$

Из последних двух равенств находим

$$wg = \varphi_{m+1}P - \varphi_mQ. \tag{5.12}$$

Рассмотрим приближение h функциями φ_j :

$$h = \sum_{\substack{s=0\\s\neq m, m+1}}^{n} c_s \varphi_s + \eta, \quad ||\eta||^2 < \varepsilon.$$

Для Р получаем формулу

$$P = \sum c_s \int_a^x \varphi_m \varphi_s \, d\xi + \int_a^x \varphi_m \eta \, d\xi = \sum \frac{c_s}{\lambda_m - \lambda_s} (\varphi_m \varphi'_s - \varphi'_m \varphi_s) + \int_a^x \varphi_m \eta \, d\xi$$

и аналогично

$$Q = \sum \frac{c_s}{\lambda_{m+1} - \lambda_s} (\varphi_{m+1} \varphi'_s - \varphi'_{m+1} \varphi_s) + \int_a^x \varphi_{m+1} \eta \, d\xi.$$

Нетрудно убедиться, что собственные функци
и $\widetilde{\varphi}_s=A\varphi_s,\,s\neq m,m+1,$ потенциала (5.9) равны

$$\widetilde{\varphi}_s = \left((\lambda_m \varphi_m \varphi'_{m+1} - \lambda_{m+1} \varphi'_m \varphi_{m+1}) / w - \lambda_s \right) \varphi_s - \frac{w'}{w} \varphi'_s.$$

С учетом этой формулы, подстановка выражений для P и Q в формулу (5.12) дает

$$g = \sum_{\substack{s=0\\s\neq m,m+1}}^{N} C_s \widetilde{\varphi}_s + \zeta,$$

где $C_s = c_s/(\lambda_m - \lambda_s)(\lambda_{m+1} - \lambda_s),$

$$\zeta = \left(\varphi_{m+1} \int_{a}^{x} \varphi_m \eta \, d\xi - \varphi_m \int_{a}^{x} \varphi_{m+1} \eta \, d\xi\right) / w.$$

Нормируем функци
и φ_j так, что $\varphi_j=(x-a)^p+O((x-a)^{p+1}),\,x\to a$ (где
 pзависит от aв формуле (5.4)), тогд
а $w=O((x-a)^{2p+1}).$ Переписав формулу для ζ в виде

$$\zeta = \frac{1}{2w} \Big((\varphi_{m+1} - \varphi_m) \int_a^x (\varphi_{m+1} + \varphi_m) \eta \, d\xi - (\varphi_{m+1} + \varphi_m) \int_a^x (\varphi_{m+1} - \varphi_m) \eta \, d\xi \Big),$$

имеем при $x \to a$ оценку

$$\zeta^{2} < \frac{1}{2w^{2}} \Big((\varphi_{m+1} - \varphi_{m})^{2} \int_{a}^{x} (\varphi_{m+1} + \varphi_{m})^{2} d\xi + (\varphi_{m+1} + \varphi_{m})^{2} \int_{a}^{x} (\varphi_{m+1} - \varphi_{m})^{2} d\xi \Big) \int_{a}^{b} \eta^{2} d\xi = O(x - a)\varepsilon.$$

Аналогичная оценка выполняется при $x \to b$, следовательно

$$\zeta^2 < M\varepsilon, \quad \int_a^b \zeta^2 \, d\xi < \widetilde{M}\varepsilon,$$

и утверждение доказано.

Для примера выясним, что можно получить, начиная с бесконечной прямоугольной ямы, то есть потенциала $u_0 = 0$ при $x \in (a, b) = (0, 2\pi)$. Легко убедиться, что Лемма 5.2 верна и в этом случае, хотя формула (5.4) и не выполняется. Удаление основного состояния по формуле (5.6) приводит к простейшему из потенциалов Пешля-Теллера [62], с. 102

$$u_1 = 2/\sin^2 x.$$

Формула (5.9) приводит к потенциалу

$$u_2 = -2D^2(\ln(\sin(2m+1)x - (2m+1)\sin x)).$$

Оба эти потенциала имеют асимптотику (5.4), следовательно процесс построения потенциалов можно продолжать дальше. Так мы получаем семейство потенциальных ям вида

$$u = -2D^{2}(\ln(\sin(m_{0}+1)x, \sin(m_{1}+1)x, \dots, \sin(m_{n-1}+1)x)),$$

где m_j — целые неотрицательные числа, удовлетворяющие условию Теоремы 5.1. Спектр потенциала u состоит из последовательности $1, \ldots, m^2, \ldots$, из которой удалены члены $(m_j + 1)^2$.

Доказанные выше утверждения практически без изменений переносятся на случаи оси и полуоси, в предположении, что $u(x) \to +\infty, x \to \infty$. Рассмотрим второй классический пример — гармонический осциллятор с потенциалом $u_0 = \frac{1}{4}x^2 - \frac{1}{2}$ и собственными функциями $\varphi_m = \exp(-\frac{x^2}{4})H_m(\frac{x}{\sqrt{2}})$, где

$$H_m(x) = \exp(x^2)(-D)^m \exp(-x^2)$$
(5.13)

полиномы Эрмита. Новые потенциалы имеют вид

$$u = \frac{1}{4}x^2 + n - \frac{1}{2} - 2D^2 \Big(\ln \langle H_{m_0}(x/\sqrt{2}), \dots, H_{m_{n-1}}(x/\sqrt{2}) \rangle \Big), \qquad (5.14)$$

где числа m_j должны удовлетворять условию Теоремы 5.1. Спектр потенциала (5.14) состоит из последовательности 0, 1, 2, 3, ..., из которой вычеркнуты члены m_j . Как отмечено в [12], применение формулы (5.6) (то есть выбор $m_j = j$) приводит лишь к прибавлению константы и не дает ничего нового. Таким образом, все нетривиальные потенциалы получаются в данном случае при помощи формулы (5.9). Простейший пример — потенциал

$$u = \frac{1}{4}x^2 + \frac{3}{2} - 2D^2(\ln\langle H_1(x/\sqrt{2}), H_2(x/\sqrt{2})\rangle) =$$
$$= \frac{1}{4}x^2 + \frac{3}{2} + \frac{4}{x^2 + 1} - \frac{8}{(x^2 + 1)^2},$$

недавно подробно изучавшийся в работе [52].

Очевидное решение цепочки (1.10) $f_j = x/2$, $\beta_j = j$ отвечает выбору собственных функций гармонического осциллятора подряд: $\psi_{0,j} = \varphi_j$. Применяя преобразования (2.1), мы можем произвольно менять их порядок и, следовательно, находить потенциалы (5.14) чисто алгебраическим путем.

2 Уравнения Пенлеве **Р**₄ и **Р**₅

Эта глава посвящена разработке теории 4-го и 5-го уравнений Пенлеве на основе одевающей цепочки. Хотя полученные результаты, касающиеся этих уравнений, в основном уже известны из работ Громака и Лукашевича, мы воспроизводим их с целью продемонстрировать удобство цепочечного аппарата. В разделе 6 кратко излагается подход к P₄, P₅ и их высшим аналогам из работы [45]. В разделах 7, 10 показано, как автопреобразования цепочки приводят к преобразованиям Шлезингера для этих уравнений. В разделах 8, 9 изучаются рациональные решения P₄. При помощи результатов разделов 4, 5 удается выяснить, при каких значениях параметров эти решения регулярны на вещественной оси.

6 Спектральная теория 4-го и 5-го трансцендентов Пенлеве

В этом разделе воспроизводится подход Веселова и Шабата [45], позволивший установить новый любопытный класс точно решаемых операторов Шредингера $-D^2 + u$ со спектром вида

$$m\alpha$$
, $\beta_1 + m\alpha$, ..., $\beta_{N-1} + m\alpha$, $m = 0, 1, 2, \ldots$, $\alpha > 0$.

Как и для гармонического осциллятора ($N = 1, u = x^2$), в общем случае построение собственных функций осуществляется при помощи операторов рождения–уничтожения (4.3), но при $N \ge 3$ требует, вообще говоря, введения некоторой трансцендентной функции. На одевающую цепочку (1.10) накладывается требование инвариантности относительно комбинации $S^N K_{\alpha}$ сдвига и калибровочного преобразования, что приводит к условию периодического замыкания

$$f_{j+N} = f_j, \quad \beta_{j+N} = \beta_j + \alpha. \tag{6.1}$$

При этом цепочка (1.10) сводится к динамической системе

$$f'_{j} + f'_{j-1} = f_{j}^{2} - f_{j-1}^{2} + \alpha_{j}, \quad j \in \mathbb{Z}_{N}$$
(6.2)

где обозначено $\alpha_j = \beta_j - \beta_{j-1}$. При N = 3,4 эта система эквивалентна уравнениям Пенлеве Р₄ и Р₅ соответственно [41, 45]. С каждым ее решением связан набор операторов Шредингера $L_j = -D^2 + u_j$, где

$$u_j = f_j^2 - f_j', (6.3)$$

причем операторы A_{j-1}, A_j^+ переводят волновые функции оператора L_j в волновые функции операторов L_{j-1}, L_{j+1} соответственно. При помощи (4.4) легко показать, что оператор $\widehat{A}_j = A_{j+N-1} \dots A_j$ удовлетворяет уравнению

$$[\widehat{A}_j, L_j] = \alpha \widehat{A}_j \tag{6.4}$$

(ср. [16]). Используя в качестве затравочных волновые функции

$$\varphi_j = \exp\bigl(-\int f_j \, dx\bigr),\,$$

Рис. 6.1: Начало процесса построения ψ -функций операторов L_0, L_1, L_2 . На оси λ отмечены собственные значения L_0 .

и действуя на них операторами A, можно построить волновые функции для всего спектра. Очевидно, приведенная схема является примером применения диагонального метода из раздела 4, с тем лишь отличием, что, как видно из сравнения формул (1.13) и (6.3), потенциалы u_j отнормированы сдвигом на константу так, чтобы волновые функции φ_j соответствовали собственному значению $\lambda = 0$. С учетом этого различия и условия периодичности рис. 4.1 следует заменить на рис. 6.1, где для наглядности взято N = 3 и предполагается, что все $\alpha_j > 0$.

Поскольку сам потенциал u_j также выражается через f_j , его аналитические свойства а priori не известны. Поэтому для обоснования метода необходимо выяснить, при каких условиях построенный потенциал будет регулярным, а φ_j — его собственной функцией. В разделе 9 эта задача решается для весьма специального, но достаточно интересного класса рациональных решений P₄, приводящих к потенциалам вида (5.14).

Связь между системой (6.2) при N = 3,4 и уравнениями P_4 и P_5 устанавливается соответственно в разделах 7 и 10. Понятно, что не теряя общности можно положить

$$\sum f_j = \alpha x/2. \tag{6.5}$$

Кроме того, масштабное преобразование (2.5) позволяет превратить параметр $\alpha = \alpha_1 + \cdots + \alpha_N$ в произвольную отличную от 0 константу.

7 Групповые свойства P_4

Рассмотрим сначала случай N = 3. Удобно перейти от f_j к переменным

$$g_j = f_j + f_{j-1} = \alpha x/2 - f_{j+1}.$$
(7.1)

При этом система (6.2), (6.5) принимает вид

$$g'_{j} = g_{j}(g_{j+1} - g_{j-1}) + \alpha_{j}, \quad j \in \mathbb{Z}_{3},$$
(7.2)

$$g_0 + g_1 + g_2 = \alpha x, \quad \alpha > 0.$$
 (7.3)

Полагая

$$y(x) = -qg_0(qx), \quad q = \sqrt{2/\alpha}, \tag{7.4}$$

и исключая лишние переменные, находим, что y удовлетворяет \mathbf{P}_4

$$y'' = \frac{(y')^2}{2y} + \frac{3}{2}y^3 + 4xy^2 + 2(x^2 - a)y + \frac{b}{y}$$
(7.5)

где

$$a = \frac{\alpha_2 - \alpha_1}{\alpha}, \quad b = -2\frac{\alpha_0^2}{\alpha^2} \tag{7.6}$$

Перейдем теперь к изучению дискретной группы G, действующей на множестве систем вида (7.2), (7.3). Прежде всего, в нее входят преобразования B_j (3.13) (строго говоря, их комбинации (2.4)). Сдвиг (2.6) приводит к преобразованию

$$S: \quad \widetilde{g}_j = g_{j+1}, \quad \alpha_j = \alpha_{j+1}. \tag{7.7}$$

Отражения (2.7) меняют знак параметра α , поэтому, чтобы сохранить нормировку (7.3), приходится рассматривать их комбинацию с масштабным преобразованием. Преобразование $X_k = T_{-i}R_{2k-1}$ имеет вид

$$X_k: \begin{cases} \widetilde{g}_k(x) = ig_k(-ix), \quad \widetilde{g}_{k\pm 1}(x) = ig_{k\mp 1}(-ix), \\ \widetilde{\alpha}_k = \alpha_k, \quad \widetilde{\alpha}_{k\pm 1} = \alpha_{k\mp 1}. \end{cases}$$
(7.8)

Легко проверяется, что подгруппа G, порожденная X_j , конечна, а подгруппа, порожденная B_j , изоморфна бесконечной группе Кокстера \widetilde{A}_2 .

Ясно, что перечисленные преобразования можно переписать и в терминах уравнения (7.5). Например, S и B_1 дают соответственно дифференциальные подстановки

$$\widetilde{y} = -\frac{y' + y^2 + 2xy + 2\alpha_0/\alpha}{2y},$$

$$\widetilde{y} = y + \frac{4\alpha_1 y/\alpha}{y' + y^2 + 2xy + 2\alpha_0/\alpha}$$
(7.9)

из одного P_4 в другое. (При этом коэффициенты *a* и *b* пересчитываются согласно соотношениям (7.6).) Подстановка (7.9) впервые была найдена в работе [54].

Важно отметить, что соответствие между множеством уравнений P₄ и множеством систем (7.2), (7.3) не является взаимно-однозначным: данному уравнению P₄ соответствует, вообще говоря, 2 системы, различающиеся выбором знака в формуле $\alpha_0 = \pm \alpha \sqrt{-b/2}$. Эти 2 системы связаны преобразованием B₀, которое на уравнении (7.5) действует тождественно. Данное явление называется "склейкой параметров" [51] и встречается также при рассмотрении других уравнений Пенлеве. Благодаря этому наблюдению при построении решений P₄ можно ограничиться подстановкой (7.9) и заменой $\tilde{y}(x) = iy(-ix)$, эквивалентной преобразованию X₀. Несмотря на

Рис. 7.1: Плоскость параметров и барицентрические координаты центров и вершин ячеек $\Delta_{l,m,n}$

то, что систем (7.2), по сравнению с уравнениями (7.5), в 2 раза больше, удобнее работать именно с ними, благодаря более простому виду как их самих, так и их дискретных преобразований. В пользу этого выбора говорит также наличие у системы (7.2) высших аналогов — систем (6.2) при N > 3.

Рассмотрим действие G на α_j . Прямые $\alpha_j = 0$ высекают на плоскости $\sum \operatorname{Re} \alpha_j = \alpha$ фундаментальную область $\Delta_{1,1,1}$ подгруппы \widetilde{A}_2 , а их образы разбивают плоскость на треугольники $\Delta_{l,m,n}$ где $\frac{\alpha}{3}(l,m,n)$ — координаты центра треугольника, l + m + n = 3, $l \equiv m \equiv n \not\equiv 0 \pmod{3}$. Действие B_k есть отражение относительно прямой $\alpha_k = 0$, S — поворот на $2\pi/3$, X_k — отражение, переводящее прямые $\alpha_{k+1} = 0$, $\alpha_{k-1} = 0$ друг в друга. Очевидно, что все преобразования из G действуют на множестве треугольников $\Delta_{l,m,n}$. В качестве фундаментальной области всей группы G можно взять какой-либо из 6 треугольников, высекаемых медианами треугольника $\Delta_{1,1,1}$. Иными словами, зная решения системы (7.2), (7.3) в области

$$0 \leq \operatorname{Re} \alpha_0 \leq \operatorname{Re} \alpha_1 \leq \operatorname{Re} \alpha_2,$$

можно построить решения при любых α_i .

При $\alpha_0 = 0$ система (7.2), (7.3) обладает 1-параметрическим семейством решений, которые выражаются через функции Эрмита. Действительно, считая для удобства $\alpha = 2$ и полагая $g_0 = 0$, $g_2 = 2x - g_1$, находим, что $g_1 = y'/y$, где y удовлетворяет уравнению Эрмита

$$y'' - 2xy' - \alpha_1 y = 0.$$

Применяя преобразования из G, убеждаемся, что при значениях параметров, соответствующих прямым на рис. 7.1, система (7.2), (7.3) имеет частные решения, выражающиеся через функции Эрмита. В частности, узлам треугольной решетки соответствуют полиномы Эрмита и рациональные g_j . Оказывается, что, кроме того, рациональные решения существуют и для параметров, отвечающих центрам треугольных ячеек. Рациональные решения P₄ и условия, при которых они существуют, изучались в работах [5, 50, 51, 54]. В следующих двух разделах мы воспроизведем эти результаты в терминах системы (7.2), (7.3).

8 Рациональные решения P_4

При некоторых значениях параметров α_j система (7.2), (7.3) обладает рациональными решениями, например

$$g_j = \alpha x/3, \quad \alpha_j = \alpha/3, \quad j = 0, 1, 2,$$
 (8.1)

$$g_0 = \alpha x, \quad g_1 = g_2 = 0, \quad \alpha_0 = \alpha, \quad \alpha_1 = \alpha_2 = 0.$$
 (8.2)

Оказывается, что все рациональные решения получаются из этих двух под действием группы G. Для доказательства потребуются две легко проверяемые леммы, описывающие структуру решения в окрестности особых точек.

Лемма 8.1. Лорановское разложение решения системы (7.2), (7.3) в окрестности полюса имеет вид

$$g_l = -\alpha_l (x - x_0) + \dots, \quad g_{l \pm 1} = \pm (x - x_0)^{-1} + \frac{\alpha x_0}{2} + \dots, \quad (8.3)$$

где l = 0, 1 или 2.

Следствие 8.2. Любое рациональное решение системы (7.2), (7.3) и потенциалы u_i , связанные с ним по формулам (7.1), (6.3) имеют вид

$$g_j = P_j + \frac{Q'_{j-1}}{Q_{j-1}} - \frac{Q'_{j+1}}{Q_{j+1}},$$
(8.4)

$$u_j = R_j - 2D^2(\ln Q_j), \tag{8.5}$$

где P_j, Q_j, R_j некоторые полиномы, причем Q_j попарно взаимно просты и не имеют кратных нулей.

Если учесть, что уравнение P_4 не имеет конечных существенно особых точек, то очевидно также, что формулы (8.4), (8.5) верны для произвольного решения, с заменой полиномов на целые функции.

Лемма 8.3. При любых α_j система (7.2), (7.3) допускает ровно 4 формальных решения в окрестности бесконечности. Одно из них имеет вид

$$g_{j} = \alpha x/3 + (\alpha_{j+1} - \alpha_{j-1})/(\alpha x) + + (\alpha_{j}\alpha_{j+1} - 2\alpha_{j+1}\alpha_{j-1} + \alpha_{j-1}\alpha_{j} - 4\alpha_{j}^{2} + 2\alpha_{j+1}^{2} + 2\alpha_{j-1}^{2})/(\alpha x)^{3} + \dots$$
(8.6)

где j = 0, 1, 2, a три других имеют вид

$$\begin{cases} g_{l-1} = -\alpha_{l-1}/(\alpha x) + \alpha_{l-1}(2\alpha_{l-1} + \alpha_l - \alpha_{l+1})/(\alpha x)^3 + \dots \\ g_l = \alpha x + (\alpha_{l-1} - \alpha_{l+1})/(\alpha x) + \dots \\ g_{l+1} = \alpha_{l+1}/(\alpha x) + \alpha_{l+1}(2\alpha_{l+1} + \alpha_l - \alpha_{l-1})/(\alpha x)^3 + \dots \end{cases}$$
(8.7)

где l = 0, 1 или 2, причем в каждом из 4 случаев все коэффициенты определяются однозначно.

Пусть g_0, g_1, g_2 — рациональное решение системы (7.2), (7.3). Тогда g_j разложимы в окрестности бесконечности в ряд Лорана и следовательно совпадают с одним из разложений (8.6) или (8.7). Для получения ограничений на коэффициенты α_j , необходимых для существования рационального решения, воспользуемся формулами

$$\operatorname{res}_{\infty} g_j = \deg Q_{j+1} - \deg Q_{j-1}, \tag{8.8}$$
$$\deg Q_j = \frac{1}{2} \operatorname{res}_{\infty} \int u_j \, dx,$$

вытекающими из формул (8.4), (8.5). Пользуясь формулами (7.1), (6.3), последнюю формулу можно переписать в виде

$$\deg Q_j = -\operatorname{res}_{\infty} \int g_{j-1} g_{j+1} \, dx. \tag{8.9}$$

Теперь мы можем доказать теорему о существовании и единственности рациональных решений.

Теорема 8.4. Система (7.2), (7.3) имеет рациональное решение если и только если

$$\alpha_j = \frac{\alpha}{3}n_j, \quad n_j \in \mathbb{Z}, \quad n_0 + n_1 + n_2 = 3, \quad n_0 \equiv n_1 \equiv n_2 \pmod{3}$$
(8.10)

(т.е. $(\alpha_0, \alpha_1, \alpha_2)$ лежит либо в центре, либо на вершине одного из треугольников $\Delta_{l,m,n}$), причем это решение единственно.

Доказательство. 1) Достаточность. Действуя группой G на решения (8.1), (8.2) можно получить решения для всех таких α_j . Действительно, G транзитивно действует на множествах центров и вершин треугольников $\Delta_{l,m,n}$.

2) Необходимость. Пусть g_j рациональное решение. Из формулы (8.8) видим, что коэффициенты при x^{-1} в разложениях (8.6), (8.7) должны быть целыми. Отсюда легко показать, что во всех четырех случаях должно выполняться условие (8.10).

3) Единственность. Для центров треугольников, то есть точек вида $\alpha_j = \frac{\alpha}{3}n_j, n_0 \equiv n_1 \equiv n_2 \neq 0 \pmod{3}$, единственность очевидна, так как разложения вида (8.7) в силу (8.8) невозможны.

Рассмотрим точки $\alpha_j = \alpha n_j, n_j \in \mathbb{Z}$. Так как преобразования из G рациональны, доказательство сводится к случаю $\alpha_0 = \alpha, \alpha_1 = \alpha_2 = 0$. Здесь кроме решения (8.2), соответствующего разложению (8.7) при l = 0, имеется еще 3 формальных решения.

Разложение (8.7) при l = 1 дает

$$g_1 = \alpha x + \frac{1}{x} + \dots, \quad g_2 = 0.$$

Допустив, что оно представляет рациональное решение, получаем $Q_0 = 0$ и, пользуясь формулой (8.8), приходим к противоречию:

$$-1 = \operatorname{res} g_1 = \deg Q_2 \ge 0.$$

Аналогично, при l = 2 имеем

$$g_2 = \alpha x - \frac{1}{x} + \dots, \quad g_1 = 0,$$

откуда $Q_0 = 0$ и 1 = res $g_2 = -\deg Q_1 \le 0$ — противоречие.

Рассмотрим, наконец, разложение (8.6). Имеем

$$g_0 = \frac{\alpha}{3}x - \frac{4}{\alpha x^3} + \dots, \quad g_1 = \frac{\alpha}{3}x - \frac{1}{x} + \frac{2}{\alpha x^3} + \dots,$$

откуда

$$\deg Q_2 = -\operatorname{res}_{\infty} \int g_0 g_1 \, dx = -\frac{2}{3}.$$

Полученное противоречие завершает доказательство.

Замечание. Возникает вопрос, какие решения соответствуют формальным разложениям (8.6), (8.7) в общем случае. Допустим, что какой-то из рядов сходится в окрестности бесконечности. Тогда все особые точки g_j лежат в ограниченной области и, так как P_4 не имеет существенно особых точек, то их конечное число. Следовательно, мы получаем рациональное решение. Итак, значения α_j (8.10) — единственные случаи, когда ряды (8.6) или (8.7) сходятся.

Следствие 8.5. Уравнение P_4 имеет рациональное решение если и только если его параметры a и b удовлетворяют условию

$$b = -\frac{2}{9}(3a + 6m + s)^2, \quad a, m \in \mathbb{Z}, \quad s = 1, 3.$$

Вопрос о числе полюсов рациональных решений, очевидно, сводится к определению степеней полиномов Q_j . Сначала рассмотрим вершины треугольников. Имеет место

Теорема 8.6. Пусть g_j рациональное решение, отвечающее набору

$$\alpha_j = \alpha n_j, \quad n_0 + n_1 + n_2 = 1, \quad n_j \in \mathbb{Z}.$$

Определим номер 1 из условия

$$n_{l} = \min\{n_{j} : |n_{j}| = \max\{|n_{j}|\}\}.$$
(8.11)

Тогда полиномы P_j из разложения (8.4) есть

$$P_l = \alpha x, \quad P_{l\pm 1} = 0,$$
 (8.12)

а полиномы Q_j имеют степени

$$\deg Q_l = n_{l-1}n_{l+1}, \quad \deg Q_{l\pm 1} = n_{l-1}n_{l+1} - n_{l\mp 1}. \tag{8.13}$$

Доказательство. Вычисляя g_j по формуле (8.7) и подставляя в формулу (8.9), получаем (8.13). Формула (8.12) следует непосредственно из (8.7). Осталось определить, чему равно l, то есть какое из трех разложений (8.7) представляет истинное решение. Это легко сделать из условия $\deg Q_j \ge 0$, при этом получаем (8.11).

Для центров треугольников аналогично доказывается

Теорема 8.7. Пусть g_j рациональное решение, отвечающее набору

 $\alpha_j = \frac{\alpha}{3}n_j, \quad n_0 + n_1 + n_2 = 3, \quad n_0 \equiv n_1 \equiv n_2 \not\equiv 0 \pmod{3}.$

Тогда полиномы P_j из разложения (8.4) есть

$$P_j = \frac{\alpha}{3}x,\tag{8.14}$$

а полиномы Q_i имеют степени

$$\deg Q_j = \frac{1}{9}(n_{j-1}^2 + n_{j-1}n_{j+1} + n_{j+1}^2 - 3). \quad \blacksquare$$
(8.15)

Рассмотрим теперь отдельно рациональные решения соответствующие центрам треугольников $\Delta_{l,m,n}$.

9 Случай центров

В этом пункте мы для удобства полагаем $\alpha = 3$. Рассмотрим рациональные решения при

$$\alpha_j = n_j \in \mathbb{Z}, \quad n_0 + n_1 + n_2 = 3, \quad n_0 \equiv n_1 \equiv n_2 \not\equiv 0 \pmod{3}.$$
 (9.1)

Преобразования B_k позволяют в принципе построить все такие решения, стартуя с решения (8.1), но эти преобразования удобны, в основном, лишь для численного счета. Для теоретического же исследования удобнее переписать преобразования B_k в терминах представления (8.4). Согласно Следствию 8.2 и Теореме 8.7, g_j имеют вид

$$g_j = x + Q'_{j-1}/Q_{j-1} - Q'_{j+1}/Q_{j+1}$$

где Q_j попарно взаимно простые полиномы без кратных нулей. Мы нормируем их, положив коэффициент при старшем члене равным 1. Кроме того, из Леммы 8.1 следует, что если $Q_l(x_0) = 0$, то $g_l(x_0) = 0$, откуда видно, что g_j можно записать также в виде

$$g_j = \frac{Y_j Q_j}{Q_{j-1} Q_{j+1}},$$

где полином Y_j взаимно прост с Q_1, Q_2, Q_3 . Рассмотрим преобразование B_k . Так как $\tilde{g}_k = g_k$, то $\tilde{Q}_{k\pm 1} = Q_{k\pm 1}$, а \tilde{Q}_k определим из соотношений

$$\begin{split} \widetilde{g}_{k+1} &= g_{k+1} + \frac{\alpha_k}{g_k} \; \Rightarrow \; \frac{Q'_k}{\widetilde{Q}_k} = \frac{Q'_k}{Q_k} + \frac{n_k Q_{k-1} Q_{k+1}}{Y_k Q_k} \; \Rightarrow \\ &\Rightarrow \; (\widetilde{Q}'_k Q_k - \widetilde{Q}_k Q'_k) Y_k = n_k Q_{k-1} Q_{k+1} \widetilde{Q}_k. \end{split}$$
Так как полиномы Y_k и $Q_{k-1}Q_{k+1}$ взаимно просты, то $Q_{k-1}Q_{k+1}$ делит $\widetilde{Q}'_kQ_k - \widetilde{Q}_kQ'_k$. Пользуясь формулой (8.15), легко показать, что

$$\deg Q_k = \deg Q_k + nk, \quad \deg Q_{k-1} + \deg Q_{k+1} = 2 \deg Q_k + n_k - 1,$$

откуда получаем

$$\widetilde{Q}'_k Q_k - \widetilde{Q}_k Q'_k = n_k Q_{k-1} Q_{k+1}, \quad Y_k = \widetilde{Q}_k.$$

Итак, собирая все вместе, находим, что B_k действует на полиномах Q_j следующим образом:

$$\widetilde{Q}_{k\pm 1} = Q_{k\pm 1}, \quad \widetilde{Q}_k = (xQ_{k-1}Q_{k+1} + Q'_{k-1}Q_{k+1} - Q_{k-1}Q'_{k+1})/Q_k.$$
 (9.2)

Полиномиальность гарантирована построением.

Полученная формула гораздо более пригодна для практического вычисления рациональных решений, чем исходная формула (3.13). Приведем полиномы Q_j , получающиеся после нескольких первых шагов (в скобках указаны соответствующие коэффициенты α_j):

Из приведенной таблицы видно, что, вообще говоря, может быть несколько различных полиномов Q_j одной и той же степени. С другой стороны, из (8.15) следует, что $\deg Q_j \not\equiv 3 \pmod{4}$, то есть в ряду степеней есть пропуски. По индукции легко доказывается, что все полиномы Q_j четны либо нечетны и имеют целые коэффициенты.

Мы видим также, что при некоторых наборах параметров α_j существуют Q_j , не имеющие вещественных корней, так что соответствующие им потенциалы (8.5) регулярны; если же положительными оказываются сразу два полинома Q_{j-1} и Q_{j+1} , то регулярной на вещественной оси будет функция g_j и соответствующее ей решение P_4 . Результаты 4-го раздела позволяют легко выделить эти случаи.

Действительно, применяя преобразования B_j в определенной последовательности, мы, очевидно, можем построить любое из рациональных решений, отвечающих параметрам (9.1), исходя из решения одевающей цепочки $f_j = x/2, b_j = j, j \ge 0$. Согласно замечанию в конце раздела 5, все рассматриваемые потенциалы имеют вид (5.14). Если потенциал u_0 регулярен, то, согласно разделу 5, его спектр имеет вид

$$3m, n_1 + 3m, n_1 + n_2 + 3m, m = 0, 1, 2, ...$$

Теорема 5.1 накладывает на числа n_1 и n_2 довольно жесткие ограничения. Элементарная проверка показывает, что верна следующая теорема.

Теорема 9.1. Полином Q_0 , отвечающий параметрам (9.1), не имеет вещественных нулей (и следовательно потенциал (8.5) регулярен) если и только если n_1 и n_2 принимают одно из следующих значений:

$$n_1 = 3s \pm 1, \quad n_2 = \pm 1; \qquad n_1 = -3s \pm 1, \quad n_2 = 3s \mp 2;$$

 $n_1 = \pm 1, \quad n_2 = \mp 3s \pm 1,$

где $s \ge 0$ целое число.

На рис. 9.1 треугольники, центры которых удовлетворяют условию теоремы, помечены 0. Как видим, все они расположены вдоль 6 лучей, являющихся образами любого из них под действием преобразований B_1 и B_2 . Так как B_1 и B_2 компоненту Q_0 не меняют, то по существу имеется лишь одна серия регулярных потенциалов u_j . Их спектр имеет с точностью до сдвига вид

$$0, 3, 6, \ldots, 3s, 3s+1, 3s+2, \ldots$$

Рис. 9.1: Полином Q_j , соответствующий центру треугольника, содержащего число j, не имеет вещественных нулей.

Применяя преобразование S, находим, при каких значениях параметров не обращаются в ноль полиномы Q_1 и Q_2 (см. рис. 9.1). Это позволяет ответить на вопрос о регулярности g_i . **Теорема 9.2.** Компонента g₀ рационального решения, отвечающего параметрам (9.1), регулярна на вещественной оси если и только если

$$n_0 = 1$$
, $n_1 = 1 - 3s$, $n_2 = 1 + 3s$

либо

$$n_0 = -1, \quad n_1 = 2 - 3s, \quad n_2 = 2 + 3s,$$

где $s \ge 0$ целое число.

Иными словами, рациональное решение уравнения P_4 , отвечающее нецелым значениям b, не имеет вещественных полюсов, только если b = -2/9, $a \ge 0$.

10 Групповые свойства Р₅

Рассмотрим теперь систему (6.2), (6.5) при N = 4:

$$f_1' + f_4' = f_1^2 - f_4^2 + \alpha_1, \quad f_2' + f_1' = f_2^2 - f_1^2 + \alpha_2, f_3' + f_2' = f_3^2 - f_2^2 + \alpha_3, \quad f_4' + f_3' = f_4^2 - f_3^2 + \alpha_4,$$
(10.1)

$$f_1 + f_2 + f_3 + f_4 = \frac{\alpha}{2}x. \tag{10.2}$$

Так как левые части уравнений (10.1) линейно зависимы, то мы не можем привести систему к нормальному виду, но зато получаем дополнительную связь

$$2(f_4^2 - f_3^2 + f_2^2 - f_1^2) = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 = A.$$
(10.3)

Используя это соотношение и первый интеграл (10.2), можно понизить порядок системы до 2. Обозначим

$$g_2 = f_2 + f_1, \quad g_3 = f_3 + f_2, \quad p = f_2 - f_1,$$

тогда второе и третье уравнения системы запишутся, как

$$g'_2 = g_2 p + \alpha_2, \quad g'_3 = g_3(g_3 - g_2 - p) + \alpha_3,$$

а связь (10.3) примет вид

$$\alpha xp + (2g_2 - \alpha x)(2g_3 - \frac{\alpha}{2}x) = A.$$

Исключение p приводит в терминах переменных g_2 и $h=2g_3-\frac{\alpha}{2}x$ к системе

$$g_{2}' = \frac{g_{2}}{\alpha x} (A - h(2g_{2} - \alpha x)) + \alpha_{2},$$

$$h' = \left(h + \frac{\alpha x}{2}\right) \left(\frac{2g_{2}h - A}{\alpha x} - \frac{h}{2} + \frac{\alpha x}{4} - g_{2}\right) + 2\alpha_{3} - \frac{\alpha}{2}.$$

Замена

$$g_2(x) = \frac{\alpha x}{2(1 - y(x^2))}, \quad xh(x) = z(x^2)$$

приводит ее к виду

$$y' = \frac{\alpha_2 + \alpha_4}{\alpha x} (y - 1) - \frac{zy}{2x} + \frac{\alpha_2}{\alpha x} (y - 1)^2,$$

$$z' = \left(\frac{\alpha^2 x}{16} - \frac{z^2}{4x}\right) \frac{y + 1}{y - 1} + \frac{\alpha_2 + \alpha_4}{\alpha x} z + \frac{\alpha_3 - \alpha_1}{2}.$$

Исключая z, получаем после несложных вычислений, что yудовлетворяет 5-му уравнению Пенлеве

$$y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)(y')^2 - \frac{y'}{x} + \frac{(y-1)^2}{x^2}\left(ay + \frac{b}{y}\right) + c\frac{y}{x} + d\frac{y(y+1)}{y-1}$$

коэффициенты которого выражаются через коэффициенты системы (10.1), (10.2) по формулам

$$a = \frac{\alpha_2^2}{2\alpha^2}, \quad b = -\frac{\alpha_4^2}{2\alpha^2}, \quad c = \frac{\alpha_1 - \alpha_3}{4}, \quad d = -\frac{\alpha^2}{32}$$
 (10.4)

и подчиняются единственному ограничению $d \neq 0$. Оказывается, что случай d = 0 связан с преобразованиями Бэклунда для оператора Дирака; он будет рассмотрен отдельно в 22-м разделе.

Перейдем к изучению группы преобразований, действующих на уравнениях P_5 . Действие растяжений (2.5) очевидно, и мы не будем их рассматривать. Дискретная группа G, порожденная преобразованиями (2.1), (2.6), (2.7), является группой Кокстера с тремя образующими B_1, R_0, R_1 и графом

Аналогично случаю P_4 , преобразования B_j порождают бесконечную подгруппу конечного индекса, изоморфную группе Кокстера \widetilde{A}_3 . Выгоды от использования системы (10.1) вместо уравнения P_5 в данном случае еще более очевидны. Действительно, можно проверить, например, что преобразования B_1 и R_0 приводят соответственно к уже достаточно громоздким дифференциальным подстановкам

$$\begin{split} \widetilde{y} &= y + \frac{8\alpha_1 y(y-1)^2}{4\alpha x y' + \alpha^2 x y - 4(y-1)(\alpha_4 + (2\alpha_1 + \alpha_2)y)}, \\ \widetilde{y} &= 1 + \frac{2\alpha^2 x y}{4\alpha x y' - \alpha^2 x y - 4(y-1)(\alpha_4 + \alpha_2 y)}. \end{split}$$

Преобразования S^2 и R_1 приводят к точечному преобразованию

$$\widetilde{y} = \frac{1}{y}.$$

Преобразования Шлезингера для Р₅ впервые были найдены в работе [49].

3 Принцип нелинейной суперпозиции как интегрируемое дискретное отображение

В первой главе было показано, что наличие у цепочки нетривиальной дискретной группы симметрий позволяет строить точные решения для нее, а также ассоциированных с ней интегрируемых уравнений в частных производных, то есть инфинитезимальных элементов непрерывной группы симметрий цепочки. В этой главе мы покажем, что, в свою очередь, наличие непрерывной группы приводит к интегрируемости дискретного отображения, возникающего из дискретной группы. Показывается также, что при некоторых дополнительных ограничениях это отображение допускает красивую геометрическую интерпретацию в виде задачи о перекройках многоугольника.

11 Интегрируемость по Лиувиллю

Исследованию динамики дискретных отображений посвящено много работ, см. напр. [7, 29, 31, 32, 43, 44]. Обобщение понятия интегрируемости по Лиувиллю для дискретных отображений было независимо дано в работах [7, 43]. Вслед за этими работами будем называть соответствие (то есть, вообще говоря, многозначное отображение) $\Phi : M \to M$ симплектическим, если оно сохраняет симплектическую структуру на M. Первым интегралом, или инвариантом, соответствия называется функция на M, сохраняющаяся под действием Φ . Симплектическое соответствие Φ , имеющее $n = \frac{1}{2} \dim M$ функционально независимых интегралов в инволюции, называется интегрируемым. Дискретная версия теоремы Лиувилля утверждает, что если общая поверхность уровня инвариантов интегрируемого соответствия Φ компактна, то она представляет собой несвязное объединение n-мерных торов, а соответствие Φ определяет на них многозначный сдвиг.

В несколько более общей ситуации вместо симплектических соответствий рассматривают соответствия, сохраняющие пуассонову структуру, которая может быть и вырожденной. При этом для интегрируемости требуется наличие достаточного числа интегралов в инволюции, функционально независимых на каждой общей поверхности уровня функций Казимира.

Мы покажем, что формулы нелинейной суперпозиции (2.1), при наложении условия периодичности

$$f_{j+N} = f_j, \quad \beta_{j+N} = \beta_j, \quad j \in \mathbb{Z}$$

доставляют пример интегрируемого соответствия. На каждом шаге мы можем осуществить любое из преобразований B_1, \ldots, B_N , поэтому рассматриваемое соответствие B является N-значным. Иначе можно сказать, что преобразования B_j задают некоторое нелинейное представление B группы Вейля \tilde{A}_{N-1} , которая действует в пространстве \mathbb{C}^{2N} переменных f_1, \ldots, f_N , β_1, \ldots, β_N . Возникает проблема исследования дискретного потока, определяемого этим действием. Сразу заметим, что, поскольку на переменных β_j динамика тривиальна, то удобно от преобразований B_j перейти к их комбинациям, оставляющим все β_j на своих местах. Из Следствия 2.4 легко показать, что подгруппа T, действующая на β_j тождественно, порождена преобразованиями

$$T_j = (B_{j-N+1} \dots B_{j-1} B_j)^{N-1}$$

которые задают N-значное соответствие, действующее уже на \mathbb{C}^N . Индекс подгруппы T в B конечен, поэтому этот переход не меняет существенно динамики и заключается просто в отделении друг от друга различных ветвей отображения, отвечающих разным перестановкам β_j . Действительно, каждой перестановке β_j соответствует некоторое множество уровня первых интегралов системы

$$f'_{j+1} + f'_j = f^2_{j+1} - f^2_j + \beta_{j+1} - \beta_j, \quad j \in \mathbb{Z}_N$$
(11.1)

полученной из (1.10) в результате периодического замыкания. Под действием преобразований B_j вектор $\vec{f} = (f_1, \ldots, f_N)$ переходит с одного уровня на другой, а при действии T_j остается на том же самом уровне. Можно показать, что подгруппа T коммутативна:

$$T_i T_j = T_j T_i,$$

(то есть $T \simeq \mathbb{Z}^N$) и, как мы увидим дальше, каждое из N преобразований T_j является просто сдвигом за единичное время в силу подходящей линейной комбинации системы (11.1) и ее симметрий. Таким образом, исходное соответствие B представляет собой некоторую комбинацию группы перестановок N элементов и N-значного сдвига.

Как известно [45, 64], система (11.1) определяет *n*-зонные потенциалы оператора Шредингера, где

$$N = 2n + 1$$
 или $N = 2n + 2.$

Произведение $\widehat{W}_j = W_{j+N-1} \dots W_j$ матриц (1.12) удовлетворяет уравнению

$$\widehat{W}_{j,x} = [U_j, \widehat{W}_j], \qquad (11.2)$$

откуда следует, что $\tau = \operatorname{tr} \widehat{W}_j$ есть производящая функция для первых интегралов системы. Сохраняется также алгебраическая кривая

$$\Gamma: \quad \det(\zeta I - \widehat{W}_j) = 0 \tag{11.3}$$

рода n. Гамильтоновы свойства системы (11.1) слегка различны в зависимости от четности N. При нечетном N эта система бигамильтонова. Первая гамильтонова структура задается скобкой Пуассона

$$\{f_i, f_j\} = (-1)^{i+j+1}, \quad j > i$$

и гамильтонианом

$$H = \sum_{1}^{N} \left(\frac{1}{3}f_j^3 + \beta_j f_j\right).$$

Вторую гамильтонову структуру удобнее записать в терминах переменных $g_j = f_j + f_{j-1}$. Она задается скобкой

$$\{g_j, g_{j+1}\}_2 = g_j g_{j+1} + \beta_{j+1}, \quad \{g_i, g_j\}_2 = (-1)^{i+j+1} g_i g_j, \quad j > i+1$$

и гамильтонианом

$$H_2 = \sum_{1}^{N} g_j.$$

Заметим, что обе скобки вырождены, например для первой функция Казимира есть $f_1 + \cdots + f_N$.

При четном Nизвестна только одна гамильтонова структура. В терминах переменных g_j скобка Пуассона есть

$$\{g_j, g_{j+1}\} = 1, \quad \{g_i, g_j\} = 0, \quad i \neq j \pm 1,$$

а гамильтониан с точностью до числового множителя равен коэффициенту при λ^{n-1} в разложении τ . Функции Казимира порождены $a_1 = g_1 + g_3 + \cdots + g_{N-1}, a_2 = g_2 + g_4 + \cdots + g_N$, причем система интегрируема на симплектических листах, определяемых связью $a_1 = a_2 = a \neq 0$.

Независимо от четности N в работе [45] показано, что τ доставляет ровно n+1 функционально независимых первых интегралов в инволюции относительно указанных скобок, так что система (11.1) интегрируема по Лиувиллю.

Теорема 11.1. Соответствие Т интегрируемо в смысле дискретного варианта теоремы Лиувилля [7, 45].

Доказательство. В силу определения (2.2) преобразований B_j очевидно, что кривая Г сохраняется под действием соответствия B, то есть первые интегралы системы (11.1) служат одновременно и инвариантами этого соответствия. Непосредственно проверяется, что преобразования B_j относительно всех указанных скобок являются пуассоновыми отображениями. Тогда каждое из преобразований T_j является пуассоновым отображением системы (11.1) в себя и, следовательно, интегрируемо в указанном смысле.

Из вышесказанного следует способ использования преобразований B_j для качественного исследования системы (11.1). Действительно, ее фазовый портрет можно получить, просто итерируя одно из преобразований T_j . Поверхность уровня в компактном случае диффеоморфна *n*-мерному тору, причем точки заметают его регулярным образом (см. рис. 11.1a,b, где изображены двумерные проекции образов одного и того же начального вектора \vec{f} под действием итераций двух разных T_j). В целом картина напоминает равномерную обмотку на торе и наглядно иллюстрирует интегрируемость по Лиувиллю. Поверхность уровня может оказаться и некомпактной, но регулярный характер отображения прослеживается и в этом случае (см. рис. 11.1c).

Как было показано в главе 2, ослабленное условие периодичности (6.1) приводит к уравнениям Пенлеве. Соответствующее дискретное отображение естественно считать их разностным аналогом (другие подходы к дискретизации уравнений Пенлеве см. напр. в [20, 21]). Оно, разумеется, уже не является интегрируемым по Лиувиллю, но, возможно к нему применим какой-либо разностный вариант метода изомонодромной деформации. На рис. 11.2b изображено поведение соответствия при N = 3, то есть разностное P_4 . Для сравнения на рис. 11.2a приведена эволюция тех же начальных данных в интегрируемом случае (параметры α_j уменьшены на их среднее арифметическое).

Рис. 11.1: a,b. Лиувиллев тор с двумя разными обмотками с. Некомпактная поверхность уровня

Рис. 11.2: Разностное P₄

12 Преобразование Абеля

Известно, что явная линеаризация системы (11.1) и ее высших симметрий, то есть переход к переменным действие-угол, осуществляется на многообразии Якоби кривой Г. Из коммутирования преобразований T_j с динамикой по x и всем временам немедленно следует, что на многообразии Якоби им отвечают сдвиги на постоянные векторы, то есть соответствие T также линеаризуется. В этом разделе мы приводим некоторые формулы, позволяющие в принципе вычислять эти сдвиги.

Из формул (1.5) – (1.7) или непосредственно из (11.3) легко получаем, что матрица $\widehat{W}_j = W_{j+N-1} \dots W_j$ имеет следующую структуру:

$$\widehat{W}_{j} = \begin{pmatrix} \frac{1}{2}(\tau - b'_{j}) & b_{j} \\ -\frac{1}{4b_{j}}(4R^{2} + (b'_{j})^{2}) & \frac{1}{2}(\tau + b'_{j}) \end{pmatrix},$$

где

$$4R^2 = 4\delta - \tau^2, \quad \delta = \det \widehat{W}_j, \quad \tau = \operatorname{tr} \widehat{W}_j$$

есть некоторые постоянные полиномы от λ , а b_j есть полином с переменными коэффициентами, удовлетворяющий уравнению

$$2b_j b_j'' - b_j^2 - 4(u_j - \lambda)b_j^2 = 4R^2.$$
(12.1)

При этом $\deg R^2 = N, \deg b_j = n$ и старшие коэффициенты обоих полиномов единичные. Пусть

$$R^{2} = (\lambda - e_{1}) \dots (\lambda - e_{N}),$$

$$b_{j} = \lambda^{n} + \lambda^{n-1} b_{j,1} + \dots + b_{j,n} = (\lambda - \rho_{j,1}) \dots (\lambda - \rho_{j,n}).$$

Переход к любому из наборов переменных $\rho_{j,1}, \ldots, \rho_{j,n}$ есть просто некоторая замена переменных в системе (11.1). Действительно, если даны f_1, \ldots, f_N , то, перемножая в нужном порядке матрицы W_j , мы находим \widehat{W}_j и b_j . Наоборот, если дана матрица \widehat{W}_j , то, как в Теореме 1.2, мы последовательно

и однозначно (при фиксированном порядке β_j) находим $f_j, f_{j+1}, \ldots, f_{j+n-1}$. В частности, из равенства $(1, -f_j)^\top = \ker \widehat{W}_j (\lambda = \beta_j)$ имеем

$$f_j = \frac{1}{2b_j(\beta_j)} (\tau(\beta_j) - b'_j(\beta_j)).$$
(12.2)

Приведем также формулу для восстановления потенциала $u_{,}$ вытекающую из формулы (12.1):

$$u_j = \sum_{1}^{N} e_s - 2\sum_{1}^{n} \rho_{j,s}.$$
(12.3)

Пусть теперь *j* фиксировано. Полагая в равенстве (12.1) $\lambda = \rho_{j,s}$, получаем систему уравнений Дубровина [53]

$$\rho_{js}' = \frac{2iR(\rho_{j,s})}{\prod\limits_{r \neq s} (\rho_{j,s} - \rho_{j,r})}, \quad s = 1, \dots, n.$$
(12.4)

В силу вышесказанного она эквивалентна системе (11.1), хотя и имеет порядок в два раза меньше. Как известно, система (12.4) линеаризуется при помощи отображения Абеля из n-й симметрической степени римановой поверхности кривой Γ в ее многообразие Якоби

$$A: \Gamma^n / S_n \to Jac(\Gamma) = \mathbb{C}^n / \Lambda,$$

где Λ — решетка периодов в \mathbb{C}^n . Это отображение есть еще одна замена переменных, сопоставляющая неупорядоченному набору точек $\{\rho_{j,1}, \ldots, \rho_{j,n}\}$ на Γ набор фаз $\varphi_j = (\varphi_{j,1}, \ldots, \varphi_{j,n})$ по формулам

$$\varphi_{j,m} = \sum_{1}^{n} \int_{\rho_0}^{\rho_{j,s}} \frac{\rho^{n-m} \, d\rho}{R(\rho)}, \quad m = 1, \dots, n,$$
(12.5)

где ρ_0 есть некоторая фиксированная точка на Г. Нахождение обратного отображения составляет проблему обращения Якоби и осуществляется при помощи Θ -функций римановой поверхности Г. Вычислим динамику в переменных φ . Имеем

$$\varphi'_{j,m} = 2i \sum_{1}^{n} \frac{\rho_{j,s}^{n-m}}{\prod\limits_{r \neq s} (\rho_{j,s} - \rho_{j,r})} = 2i \sum_{1}^{n} \operatorname{res}_{\rho_{j,s}} \frac{\lambda^{n-m}}{b_j(\lambda)} =$$
$$= -2i \operatorname{res}_{\infty} \frac{\lambda^{n-m}}{b_j(\lambda)} = \begin{cases} 2i, & m = 1, \\ 0, & m = 2, \dots, n. \end{cases}$$

Легко проверить, что векторные поля, соответствующие системам

$$(\rho_{j,s})_{t_l} = \frac{2ib_j^l(\rho_{j,s})R(\rho_{j,s})}{\prod\limits_{r \neq s} (\rho_{j,s} - \rho_{j,r})}, \quad s, l = 1, \dots, n,$$
(12.6)

где $b_j^l(\lambda) = \lambda^{l-1} + \lambda^{l-2}b_{j,1} + \dots + b_{j,l-1}$ образуют *n*-мерную коммутативную алгебру Ли (причем $t_1 = x$, а остальные времена отвечают KdV и его

высшим симметриям). Действительно, замена (12.5) приводит их к виду, в котором это очевидно:

$$(\varphi_{j,m})_{t_l} = -2i \operatorname{res}_{\infty} \frac{b_j^l(\lambda)\lambda^{n-m}}{b_j(\lambda)} = 2i\delta_{m,l}, \quad m, l = 1, \dots, n.$$

Итак, в результате ряда сложных замен переменных мы пришли к набору систем с общим совместным решением

$$\varphi_{j,m} = 2it_m + c_{j,m}, \quad c_{j,m} = \text{const}, \quad m = 1, \dots, n.$$
 (12.7)

Выясним, теперь, что происходит при преобразовании Дарбу, то есть переходе от переменных с индексом j к переменным с индексом j + 1. Из формулы $W_j \widehat{W}_j = \widehat{W}_{j+1} W_j$ получаем

$$b_{j+1} = b_j + (b_j f_j + \frac{1}{2} b'_j)' / (\lambda - \beta_j), \qquad (12.8)$$

$$2f_j = (b'_{j+1} + b'_j)/(b_{j+1} - b_j).$$
(12.9)

Из (12.2) и (12.8) видим, что b_{j+1} , а следовательно и $\rho_{j+1,s}$ выражаются через $\rho_{j,s}$ и β_j . Осуществляя замену (12.5), видим, что фаза $\vec{\varphi}_{j+1}$ есть некоторая функция от $\vec{\varphi}_j$ и β_j . Здесь следует учесть, что преобразование Дарбу согласовано с иерархией KdV, в силу чего оно оставляет инвариантной не только систему (12.4), но также и системы (12.6). Тогда $\vec{\varphi}_{j+1}$ также имеет вид (12.7) и, следовательно, имеет место формула

$$\vec{\varphi}_{j+1} = \vec{\varphi}_j + \vec{\delta}(\beta_j), \qquad (12.10)$$

то есть $c_{j+1,m} - c_{j,m} = \delta_m(\beta_j)$. Очевидно, что при этом выполняется соотношение

$$\vec{\delta}(\beta_1) + \vec{\delta}(\beta_2) + \dots + \vec{\delta}(\beta_N) \equiv 0 \mod \Lambda.$$
 (12.11)

Итак, при наложении условия периодичности преобразование Дарбу является сдвигом на многообразии Якоби. В работе [39] этот результат был получен для цепочки с нулевыми параметрами β_j .

Теперь мы можем легко понять, что происходит с фазами при преобразовании B_k . Так как из всех b_j при этом преобразовании меняется только b_k , то очевидно, что и среди фаз $\vec{\varphi}_j$ изменится только $\vec{\varphi}_k$. Далее, так как β_k и β_{k-1} меняются местами, то имеет место формула

$$\widetilde{\vec{\varphi}_k} = \vec{\varphi}_{k-1} + \vec{\delta}(\beta_k).$$

Закон для преобразования фаз можно переписать и в таком виде:

$$B_k: \quad \vec{\widetilde{\varphi}_k} = \vec{\varphi}_{k+1} - \vec{\varphi}_k + \vec{\varphi}_{k-1}, \quad \vec{\widetilde{\varphi}_j} = \vec{\varphi}_j, \quad j \neq k$$

Отсюда легко находим, что действие преобразования T_k задается формулой

$$T_k: \quad \widetilde{\vec{\varphi}_j} = \vec{\varphi}_j + (N+1)\vec{\delta}(\beta_k). \tag{12.12}$$

По заданным начальным условиям f_j мы можем, в принципе, найти соответствующие начальные значения $\rho_{j,s}$ и, пользуясь формулой (12.5), вычислить величины $\vec{\delta}(\beta_k)$. После этого эволюция фаз при соответствии T легко

вычисляется по формуле (12.12). Решая проблему обращения Якоби, находим полиномы b_j и, по формулам (12.2), (12.3) — переменные f_j, u_j . Таким образом, соответствие T можно считать проинтегрированным, хотя явные формулы выписать довольно сложно.

В качестве примера доведем до конца простейший однозонный случай (n=1,N=3).Здесь

$$b_j = \lambda - \rho_j, \quad u_j = E - 2\rho_j, \quad 2f_j = (\rho'_{j+1} + \rho'_j)/(\rho_{j+1} - \rho_j),$$

где $E = e_1 + e_2 + e_3$, функци
и ρ_j удовлетворяют уравнению

$$-(\rho')^2 = 4(\rho - e_1)(\rho - e_2)(\rho - e_3)$$
(12.13)

и связаны формулами

$$\rho_{j+1} + \rho_j = E - \beta_j - \frac{1}{4} \left(\frac{\rho'_{j+1} + \rho'_j}{\rho_{j+1} - \rho_j} \right)^2.$$
(12.14)

Из уравнения (12.13) очевидно, что

$$\rho_j = \frac{1}{3}E - \wp(x + c_j),$$

где \wp есть функция Вейерштрасса. При этом можно считать, что заданные начальные значения $u_i = u_{i,0}$ соответствуют значению x = 0, так что

$$2\wp(c_j) = u_{j,0} - \frac{1}{3}E,$$

откуда находим константы c_j . Соотношение (12.14) переходит в известную формулу сложения для \wp -функций, из которой мы получаем уравнение

$$\wp(\delta_j) = \frac{1}{3}E - \beta_j$$

для разности фаз $\delta_j = \delta(\beta_j) = c_{j+1} - c_j$. Окончательный ответ в терминах переменных u_j задается формулой

$$T_1^l T_2^m T_3^n(u_j) = \frac{1}{3}E + 2\wp(c_j + 4l\delta_1 + 4m\delta_2 + 4n\delta_3),$$

где константы c_j и δ_j выражаются через начальные условия и параметры задачи при помощи эллиптических интегралов.

13 Перекройки многоугольника

Пусть на комплексной плоскости заданы $N \geq 3$ точек p_1, \ldots, p_N , занумерованных по модулю N. На каждом шаге можно отразить любую из них, например p_k , относительно серединного перпендикуляра к отрезку, соединяющему ее соседей p_{k-1}, p_{k+1} . Наглядно говоря, от многоугольника $p_1 \ldots p_N$ отрезается один угол, переворачивается и приклеивается на место. Таким образом, определено некоторое N-значное отображение (соответствие) $R : \mathbb{C}^N \to \mathbb{C}^N$. Возникает задача исследования динамики вершин под действием таких перекроек. В качестве примера рассмотрим несколько тривиальных случаев, при малых N дающих полное описание динамики. 1) Если длины сторон совпадают, то вершины остаются неподвижными.

2) Вершины, лежащие на одной окружности или прямой (например, при N = 3, остаются лежать на ней. Если перекройки осуществлять циклически, то через N - 1 шаг мы приходим к тому же многоугольнику, повернутому на некоторый постоянный угол.

3) Аналогично разбирается случай, когда число вершин четно и четные вершины лежат на одной, а нечетные на другой из двух концентрических окружностей или параллельных прямых (например, N = 4).

При $N \geq 5$ динамика приобретает более сложный характер. Вычислительный эксперимент показывает, что под действием группы перекроек вершины заметают 1 или 2 кольца с общим центром в некоторой точке E. Если перекройки осуществляются циклически, заметание происходит регулярным образом, на манер обмотки тора (см. рис. 13.1, где показана эволюция 4, 5 и 6-угольника). В исключительных случаях движение происходит по замкнутым кривым. При $N \approx 100$ в зволюции возмущенного в нескольких вершинах правильного N-угольника можно наблюдать отчетливо выраженные солитонные эффекты, то есть возмущения распространяются и проходят друг через друга с сохранением формы.

Отражение R_k вершины p_k задается формулой

$$R_k(p_k) = p'_k = p_k + \frac{l_k^2 - l_{k-1}^2}{\bar{p}_{k+1} - \bar{p}_{k-1}}, \quad R_k(p_j) = p_j, \quad j \neq k.$$
(13.1)

где $l_j^2 = (p_{j+1} - p_j)(\bar{p}_{j+1} - \bar{p}_j)$ есть квадрат длины стороны $p_{j+1}p_j$. Назовем инвариантом функцию от вершин p_j , не меняющуюся при пере-

Назовем инвариантом функцию от вершин p_j , не меняющуюся при перекройках. Ряд инвариантов очевиден. Так как при каждом отражении длины сторон многоугольника переставляются, то произвольная симметрическая функция от l_j^2 является инвариантом. Если N четно, то сохраняется также сумма углов при четных вершинах. Инвариантны также величины

$$4iS = \sum_{1}^{N} (\bar{p}_{j}p_{j+1} - p_{j}\bar{p}_{j+1}),$$

$$4iSE = \sum_{1}^{N} p_{j}p_{j+1}(\bar{p}_{j} - \bar{p}_{j+1}),$$

$$U = \sum_{1}^{N} (2l_{j}^{2} + \bar{p}_{j}p_{j+1} + p_{j}\bar{p}_{j+1})(\bar{p}_{j}p_{j+1} - p_{j}\bar{p}_{j+1})$$

Инвариант S является площадью многоугольника, а инвариант E допускает следующую геометрическую интерпретацию. Рассмотрим произвольную триангуляцию многоугольника $p_1 \dots p_N$ на N-2 треугольника и поместим в центры описанных около них окружностей массы, равные с учетом знака площадям соответствующих треугольников. Точка E есть центр масс полученной системы. Определение не зависит от триангуляции.

Неожиданным обстоятельством является существование тесной связи между соответствием R и теорией одевающей цепочки в форме (3.2). Сопоставляя формулы (13.1) и (3.4), видим, что они связаны соотношениями

$$v_{2j} = p_{2j}, \quad v_{2j+1} = \bar{p}_{2j+1}, \quad \beta_j = -l_j^2.$$
 (13.2)

	11 1	1

Рис. 13.1:

Заметим, что из-за присутствия в этой формуле комплексного сопряжения в случае нечетного N следует удваивать число переменных v_j , полагая $v_{j+N} = \bar{v}_j$. Таким образом, перекройкам многоугольника соответствуют отображения (3.4) при наложении условия периодичности с четным N и дополнительными условиями $\beta_j = -l_j^2$. Новые инварианты отображения (13.1) получаются при рассмотрении следа матрицы \widehat{W}_N , в которой $f_j = v_{j+1} - v_j$ и β_j заменены согласно формуле (13.2). Следует отметить, что инварианты S, E, J не могут быть получены таким образом. Повидимому, число функционально независимых инвариантов соответствия R равно 2N - 2.

4 Примеры цепочек и их автопреобразований

В настоящую главу включены по возможности разнообразные примеры интегрируемых цепочек, порожденных преобразованиями Дарбу для различных дифференциальных операторов, как скалярных, так и матричных. Как и для оператора Шредингера, для них выводятся принципы нелинейной суперпозиции, позволяющие строить точные решения ассоциированных уравнений в частных производных и, с другой стороны, дающие новые примеры интегрируемых отображений. Общая схема изложена в разделе 14. В 15-м разделе более подробно разобран важный случай оператора Дирака, с которым связана нелинейная система Шредингера (NLS), а в разделе 16 — его скалярная редукция, вновь приводящая к уравнениям типа KdV. В работах [36, 37] изучались многополевые обобщения NLS, связанные с йордановыми парами, и соответствующие им цепочки преобразований Бэклунда. В разделе 17 показано, что принцип нелинейной суперпозиции также допускает многополевое обобщение. В 18-м разделе рассмотрены примеры цепочек, отвечающих операторам второго порядка типа оператора Дирака. Среди ассоциированных систем — модели магнетика Гейзенберга и Ландау-Лифшица. Результаты этого раздела были получены совместно с Р.И. Ямиловым в [4].

Другое применение аппарата цепочек заключается в построении точнорешаемых спектральных задач для исходного дифференциального оператора. Здесь, действуя как в главе 2, мы снова приходим к уравнениям Пенлеве и их высшим аналогам, причем дискретная группа цепочки переходит в дискретную группу уравнения. Так как эти результаты могут иметь для теории уравнений Пенлеве самостоятельный интерес, то они излагаются отдельно в следующей главе.

14 Общая схема

Рассмотрим цепочку, обладающую представлением нулевой кривизны

$$W_{j,x} = U_{j+1}W_j - W_jU_j, \quad j \in \mathbb{Z}.$$
 (14.1)

Для определенности мы будем считать, что матрицы имеют размер 2 × 2, причем $U_j = U(\lambda, u_j, v_j), W_j = W(\lambda, u_j, v_{j+1}, \beta_j)$, где u_j, v_j — полевые переменные, λ — спектральный параметр, β_j — параметры цепочки. Утверждения этого раздела могут быть легко обобщены и для матриц другого вида.

Определим преобразование B_k соотношениями

$$B_k: \quad \widetilde{W}_k \widetilde{W}_{k-1} = W_k W_{k-1}, \quad \widetilde{W}_j = W_j, \quad j \neq k, k-1$$
(14.2)

где $\widetilde{W}_j = W(\lambda, \widetilde{u}_j, \widetilde{v}_{j+1}, \beta_j)$. Эти соотношения представляют собой систему алгебраических уравнений относительно $\widetilde{u}_{k-1}, \widetilde{v}_k, \widetilde{u}_k, \widetilde{v}_{k+1}, \beta_{k-1}, \beta_k$. Как правило, эта система является весьма переопределенной, но она во всяком случае совместна, так как у нее всегда есть тождественное решение. В некоторых случаях это решение единственно, однако класс цепочек, допускающих и другие решения, является достаточно богатым. В дальнейшем под преобразованием (14.2) всегда понимается нетривиальное преобразование. Если оно нашлось, то обосновать его применение к цепочке (14.1) можно при помощи следующей теоремы. Пусть *А* есть матрица, зависящая от λ и переменных q_1, \ldots, q_n . Через $J(A; q_1, \ldots, q_n)$ обозначим матрицу Якоби коэффициентов разложения Лорана по λ ее элементов по отношению к q_1, \ldots, q_n .

Теорема 14.1. Пусть матрицы W_i таковы, что

rank $J(W_j; u_j, v_{j+1}) = 2$, rank $J(W_j W_{j-1}; u_j, v_{j+1}, u_{j-1}, v_j) = 4$.

Тогда преобразование (14.2) переводит цепочку (14.1) в себя с точностью до изменения параметров.

Доказательство. Из определяющих цепочку формул (14.1) следуют соотношения

$$W_{j,x} = U_{j+1}W_j - W_jU_j, \quad j \neq k, k-1, (W_k W_{k-1})_x = U_{k+1}W_k W_{k-1} - W_k W_{k-1}U_{k-1}.$$
(14.3)

Из них, в силу условия теоремы, однозначно определяется динамика по x всех u_j, v_j , то есть формулы (14.1) и (14.3) эквивалентны. Преобразование (14.2) состоит в замене всех переменных u_j, v_j, β_j на $\tilde{u}_j, \tilde{v}_j, \beta_j$. Следовательно оно не меняет вид соотношений (14.3), а с ними и цепочку (14.1).

В рассматриваемых нами примерах имеем tr $U_j = 0$, откуда следует, что det $W_j = \delta(\lambda, \beta_j)$ не зависит от x. Это позволяет получить закон преобразования параметров β_j из равенства det $W_k W_{k-1} = \det \widetilde{W}_k \widetilde{W}_{k-1}$. В простейшей ситуации преобразование (14.2) приводит к перестановке параметров β_k и β_{k-1} . Это делает естественным выделение следующего условия на матрицы W_j , более жесткого, чем условие Теоремы 14.1.

Условие А. Для любого целого $p \ge 0$: если

$$\overline{W}_k \dots \overline{W}_{k-p} = W_k \dots W_{k-p} \tag{14.4}$$

то $\beta_k = \beta_{\sigma(k)}, \ldots, \beta_{k-p} = \beta_{\sigma(k-p)},$ где σ некоторая перестановка. Если σ тождественна, то $\widetilde{W}_k = W_k, \ldots, \widetilde{W}_{k-p} = W_{k-p}.$

Выполняется следующая теорема.

Теорема 14.2. Пусть цепочка (14.1) удовлетворяет условию А. Тогда 1) преобразования (14.2) переводят ее в себя;

2) выполняются тождества

$$B_j^2 = (B_j B_{j+1})^3 = (B_i B_j)^2 = 1, \quad i \neq j \pm 1,$$
(14.5)

задающие код группы B, порожденной преобразованиями B_j ; 3) любое преобразование, определенное соотношением (14.4) (предполагается, что $\widetilde{W}_j = W_j, \ j \neq k, \dots, k-p$) принадлежит B.

Доказательство. 1) При фиксированных β_k, β_{k-1} уравнение (14.2) разрешимо однозначно, следовательно условия Теоремы 14.1 выполнены.

2) Каждое из преобразований B_j^2 , $(B_j B_{j+1})^3$, $(B_j B_i)^2$, удовлетворяет какомунибудь из соотношений (14.4) и действует на множестве параметров β_j тождественно. В силу условия A, оно тождественно также на переменных u_j, v_j .

3) Любое преобразование (14.4) задает на множестве параметров β_j некоторую перестановку. Композиция этого преобразования с элементом группы B, приводящая к тождественной перестановке, также удовлетворяет одному из соотношений (14.4) и следовательно тождественна.

Замечание. Если матрицы W_j обладают свойством A и допускают нетривиальные преобразования (14.2), то, согласно теореме 14.2, попытка обобщить их путем переразложения большего числа сомножителей не даст ничего нового: все преобразования будут являться их композицией. Тем не менее существуют примеры, когда преобразования (14.2) тождественны, и тогда для получения преобразований B_j приходится переразлагать произведение 3 матриц. Такой пример приведен в следующем разделе.

Пусть цепочка (14.1) допускает симметрию вида

$$W_{j,t} = V_{j+1}W_j - W_jV_j, (14.6)$$

где $V_j = V(\lambda, \beta_j, u_j, v_j, u_{j,x}, v_{j,x}, \dots)$. В этом случае цепочка (14.1) определяет последовательность *x*-частей преобразования Бэклунда для системы уравнений в частных производных

$$U_t = V_x + [V, U]. (14.7)$$

Если условия Теорем 14.1 или 14.2 выполнены, то преобразования (14.2) действуют также и на цепочке (14.6). Таким образом, размножая при помощи преобразований (14.2) совместные решения (14.1), (14.6), можно одновременно строить решения ассоциированнной системы (14.7). То же относится и к ее высшим симметриям.

Как и в случае оператора Шредингера, преобразования (14.2) доставляют примеры интегрируемых соответствий. Наложим условие периодического замыкания

$$u_{j+N} = u_j, \quad v_{j+N} = v_j, \quad \beta_{j+N} = \beta_j, \quad j \in \mathbb{Z}$$

$$(14.8)$$

и рассмотрим *N*-значное соответствие *B*, определяемое преобразованиями B_1, \ldots, B_N . Очевидно, что след матрицы $\widehat{W}_j = W_{j+N-1} \ldots W_j$, является производящей функцией для инвариантов соответствия *B*. Кроме того, \widehat{W}_j удовлетворяет уравнениям

$$\widehat{W}_{j,x} = [U_j, \widehat{W}_j], \quad \widehat{W}_{j,t} = [V_j, \widehat{W}_j]$$

из которых вытекает, что tr \widehat{W}_j есть производящая функция для первых интегралов системы (14.1), (14.8) и ее симметрий. Наличие коммутирующих непрерывных потоков и является механизмом, обеспечивающим интегрируемость соответствия *B*. В каждом конкретном случае остается установить гамильтонову структуру, показать, что отображения (14.8) являются пуассоновыми, а запас первых интегралов достаточно богат, после чего мы можем воспользоваться дискретной версией теоремы Лиувилля [7, 43].

15 Оператор Дирака

Проиллюстрируем схему из раздела 14 на примере оператора Дирака. Он отвечает матрице

$$U = \begin{pmatrix} -\lambda & -v \\ u & \lambda \end{pmatrix} \tag{15.1}$$

с которой связано целое семейство интегрируемых уравнений, допускающих представление (14.7) — иерархия имени Захарова-Шабата-Абловица-Каупа-Ньюэла-Сигура (см. для ссылок [15]). Уравнения из этой иерархии имеют вид

$$\begin{pmatrix} u \\ v \end{pmatrix}_{t_n} = \begin{pmatrix} D + 2uD^{-1}v & 2uD^{-1}u \\ -2vD^{-1}v & -D - 2vD^{-1}u \end{pmatrix}^n \begin{pmatrix} u \\ -v \end{pmatrix}.$$
(15.2)

В частности, при $t=t_2$ получаем нелинейную систему Шредингера

$$\begin{cases} u_t = u_{xx} + 2u^2 v, \\ -v_t = v_{xx} + 2v^2 u, \end{cases}$$
(15.3)

а при $t = t_3$ систему

$$\begin{cases} u_t = u_{xxx} + 6vuu_x, \\ v_t = v_{xxx} + 6uvv_x, \end{cases}$$
(15.4)

В отличие от иерархии KdV эта иерархия допускает преобразования Бэклунда трех различных типов. Первый из них получается при выборе матрицы W вида

$$W_j = \begin{pmatrix} 0 & -\exp(-q_j) \\ \exp(q_j) & 2\lambda - q_{j,x} \end{pmatrix},$$
(15.5)

и приводит к цепочке Тоды

$$q_{j,xx} = \exp(q_{j+1} - q_j) - \exp(q_j - q_{j-1}), \qquad (15.6)$$

где $u_j = \exp(q_j), v_{j+1} = \exp(-q_j)$. Второй тип преобразований Бэклунда, соответствующий матрице

$$W_{j} = \begin{pmatrix} 1 & -v_{j+1} \\ u_{j} & 2\lambda - \beta_{j} - u_{j}v_{j+1} \end{pmatrix},$$
(15.7)

приводит к цепочке

$$\begin{cases} u_{j,x} = u_{j+1} + \beta_j u_j + u_j^2 v_{j+1}, \\ -v_{j,x} = v_{j-1} + \beta_{j-1} v_j + v_j^2 u_{j-1}. \end{cases}$$
(15.8)

Третий тип преобразования Бэклунда соответствует матрице

$$W_j = \begin{pmatrix} -2\lambda - \delta_j + R_j & -v_{j+1} - v_j \\ u_{j+1} + u_j & 2\lambda + \delta_j + R_j \end{pmatrix},$$
(15.9)

где $R_j^2 = \gamma_j^2 - (u_{j+1} + u_j)(v_{j+1} + v_j),$ и приводит к цепочке

$$\begin{cases} (u_{j+1}+u_j)_x = (u_{j+1}-u_j)R_j - \delta_j(u_{j+1}+u_j), \\ (v_{j+1}+v_j)_x = (v_{j+1}-v_j)R_j + \delta_j(v_{j+1}+v_j). \end{cases}$$
(15.10)

Разберем перечисленные случаи по отдельности.

1) Легко убедиться, что в первом случае система (14.2) имеет лишь тождественное решение и, таким образом, наша схема не приводит к автопреобразованиям для цепочки Тоды. Тем не менее эти преобразования существуют, см. напр. [11].

2) Во втором случае формула (14.2) дает преобразование

$$B_{k}: \begin{cases} \widetilde{u}_{k} = u_{k} + (\beta_{k-1} - \beta_{k}) \frac{u_{k-1}}{1 - u_{k-1}v_{k+1}}, \\ \widetilde{v}_{k} = v_{k} + (\beta_{k} - \beta_{k-1}) \frac{v_{k+1}}{1 - u_{k-1}v_{k+1}}, \\ \widetilde{\beta}_{k} = \beta_{k-1}, \quad \widetilde{\beta}_{k-1} = \beta_{k}. \end{cases}$$
(15.11)

Теорема 15.1. Преобразования (15.11) действуют на множестве цепочек (15.8) и удовлетворяют тождествам (14.5).

Доказательство. Достаточно проверить выполнение условия А). Первая часть этого условия очевидна, так как det $W_j = 2\lambda - \beta_j$. При $2\lambda = \beta_{k-p}$ находим, что ker $W_k \dots W_{k-p}$ натянуто на вектор $(v_{k-p+1}, 1)^{\top}$, откуда, в силу (14.4), следует $\tilde{v}_{k-p+1} = v_{k-p+1}$. Далее, легко показать, что

$$W_k \dots W_{k-p+1} = \begin{pmatrix} * & * \\ \alpha & (2\lambda)^p + \dots \end{pmatrix},$$

где $\deg \alpha < p,$ а звездочка обозначает несущественные для нас элементы. Тогда

$$W_k \dots W_{k-p+1} W_{k-p} = \begin{pmatrix} * & * \\ (2\lambda)^p u_{k-p} + \dots & * \end{pmatrix},$$

откуда следует $\widetilde{u}_{k-p} = u_{k-p}$. Итак, $\widetilde{W}_{k-p} = W_{k-p}$, и доказательство сводится к случаю произведения меньшего числа матриц.

Рассмотрим соответствие B, порождаемое преобразованиями (15.11) при периодическом замыкании (14.8). Как и в случае преобразований (2.1), удобно от преобразований B_i перейти к их комбинациям

$$T_j = (B_{j-N+1} \dots B_{j-1} B_j)^{N-1}$$

оставляющим
 β_j на своих местах и порождающим коммутативную подгруп
ну.

Теорема 15.2. Система (15.8), (14.8) и соответствие, порожденное преобразованиями T_i интегрируемы по Лиувиллю.

Доказательство. При периодическом замыкании цепочка (15.8) является гамильтоновой системой со скобкой Пуассона

$$\{u_i, v_j\} = \delta_{i,j-1}, \quad \{u_i, u_j\} = \{v_i, v_j\} = 0$$
(15.12)

и гамильтонианом $H = \sum_{1}^{N} h_{j}$, где

$$h_j = u_j v_j + \beta_j u_j v_{j+1} + \frac{1}{2} u_j^2 v_{j+1}^2.$$
(15.13)

Легко проверить, что $H = \frac{1}{2}I_1^2 - I_2 + \text{const}$, где

$$\operatorname{tr} \widehat{W}_j(\lambda) = (2\lambda)^N + (2\lambda)^{N-1} I_1 + \dots + 2\lambda I_{N-1} + I_N.$$

Инволютивность I_j проще всего доказывается при помощи r-матричного подхода (см. напр. [61]). Непосредственно проверяется, что скобка Пуассона (15.12) задается формулой

$$\{W_i(\lambda) \bigotimes W_j(\mu)\} = [r, W_i(\lambda) \otimes W_j(\mu)]\delta_{i,j},$$

где

$$r = \frac{1}{2(\lambda - \mu)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(Отметим, что эта же *r*-матрица возникает и в гамильтоновой теории нелинейной системы Шредингера и цепочки Тоды [61].) Отсюда легко вывести формулу

$$\{\widehat{W}_j(\lambda)\otimes\widehat{W}_j(\mu)\}=[r,\widehat{W}_j(\lambda)\otimes\widehat{W}_j(\mu)]$$

из которой следует $\{\operatorname{tr} \widehat{W}_j(\lambda), \operatorname{tr} \widehat{W}_j(\mu)\} = 0.$

Докажем, что I_j функционально независимы. Для этого положим $v_j = -1$ и покажем, что $\det(\partial I_i/\partial u_j) \neq 0$. Действительно, из структуры W_j очевидно, что $I_i = \sigma_i + p_i$, где σ_j элементарные симметрические функции от u_j , а p_j полиномы младшей степени. Тогда $\det(\partial I_i/\partial u_j) = \det(\partial \sigma_i/\partial u_j) + P$, где первое слагаемое имеет большую степень.

Завершает доказательство непосредственная проверка того, что преобразования (15.11), а вместе с ними и T_j являются пуассоновыми отображениями.

Вычислительный эксперимент показывает, однако, что поверхность уровня первых интегралов некомпактна. Кроме того, оказывается, что образы вектора (\vec{u}, \vec{v}) при итерациях стремятся к некоторому выделенному направлению. Причину этого легко понять. Кроме первых интегралов, система (15.8), (14.8) допускает еще понижение порядка на 1 за счет введения переменных

$$p_j = u_{j+1}/u_j, \quad q_j = u_j v_{j+1}.$$
 (15.14)

В новых переменных цепочка имеет вид

$$\begin{cases} p_{j,x} = p_j(p_{j+1} + q_{j+1} + \beta_{j+1} - p_j - q_j - \beta_j), \\ q_{j,x} = p_jq_j - p_{j-1}q_{j-1}. \end{cases}$$
(15.15)

При нулевых параметрах β_j эта цепочка известна как релятивистская цепочка Тоды и рассматривалась в [6]. Если функции p, q уже найдены, то решение в переменных u, v находится простым интегрированием:

$$u_{j,x}/u_j = p_j + q_j + \beta_j, \quad -v_{j,x}/v_j = q_{j-1} + p_{j-2}q_{j-2}/q_{j-1} + \beta_{j-1}.$$

При N = 2 легко убедиться, что p, q есть эллиптические функции, откуда видим, что функции u, v в случае общего положения экспоненциально растут или убывают, что вполне согласуется с численным экспериментом. Оказывается, что система (15.3) и преобразования (15.11) также могут быть переписаны в новых переменных. Фактически замена (15.14) эквивалетна преобразованию Бэклунда

$$uv = pq - q_x, \quad u_x/u = p + q + \beta$$

между системой (15.3) и системой

$$p_t = p_{xx} + (p^2 + 2pq + 2\beta p)_x, \quad q_t = -q_{xx} + (q^2 + 2pq + 2\beta q)_x.$$
 (15.16)

Эта система рассматривалась в [57]. Она, в отличие от системы Шредингера, явно содержит параметр β_i (ср. с уравнениями (3.6) и (3.8)). Преоб-

Рис. 15.1: Поверхность уровня первых интегралов в компактном и некомпактном случаях

разования B_k принимают вид

$$\widetilde{p}_{k-1} = p_{k-1} \left(1 - \frac{\alpha}{p_{k-1} - q_k} \right), \qquad \widetilde{p}_k = p_k \left(1 + \frac{\alpha}{p_{k-1} - q_k - \alpha} \right),
\widetilde{q}_{k-1} = q_{k-1} + \frac{\alpha q_k}{p_{k-1} - q_k}, \qquad \widetilde{q}_k = q_k \left(1 - \frac{\alpha}{p_{k-1} - q_k} \right), \quad (15.17)
\widetilde{\beta}_{k-1} = \beta_k, \qquad \widetilde{\beta}_k = \beta_{k-1},$$

где $\alpha = \beta_k - \beta_{k-1}$. Рассмотрим порождаемое ими дискретное соответствие. Переписывая скобку (15.12) в переменных (15.14), убеждаемся, что пери-

Переписывая скооку (15.12) в переменных (15.14), убеждаемся, что периодически замкнутая цепочка (15.15) есть гамильтонова система, со скобкой Пуассона

$$\{p_j, q_j\} = -p_j, \quad \{p_j, q_{j+1}\} = p_j$$

(остальные скобки равны 0) и гамильтонианом

$$H = \sum_{1}^{N} (\frac{1}{2}q_{j}^{2} + \beta_{j}q_{j} + p_{j}q_{j}).$$

Отметим, что новая пуассонова структура вырождена, с функцией Казимира $J = p_1 \dots p_N$. Можно показать, что tr \widehat{W}_j также может быть переписан в терминах p, q. Отсюда следует, что рассматриваемая система интегрируема по Лиувиллю. Преобразования B_j (15.17) являются пуассоновыми и сохраняют J, поэтому Теорема 15.2 верна и для них.

На приведенных графиках изображены проекции образов вектора $(p_1, q_1, \ldots, p_N, q_N)$ при N = 3 под действием итераций преобразования T_j на плоскость (p_1, q_1) . Поверхность уровня и теперь может оказаться некомпактной, но асимптотического стремления к бесконечности уже нет (см. рис. 15.1b). В компактном случае поверхность уровня диффеоморфна N - 1-мерному тору, причем точки заметают его регулярным образом (рис. 15.1a).

Отметим, что кроме приведенных выше представлений нулевой кривизны в терминах переменных u и v, цепочка (15.15) и система (15.16) допускают также самостоятельные представления, которые задаются матрицами

$$\begin{split} U &= \begin{pmatrix} s-\lambda & -q \\ p & \lambda-s \end{pmatrix}, \quad V = 2(\lambda+s)U + \begin{pmatrix} (p-q)/2 & q \\ p & (q-p)/2 \end{pmatrix}_x, \\ W_j &= p_j^{-\frac{1}{2}} \begin{pmatrix} p_j & -q_{j+1} \\ p_j & 2\lambda - \beta_{j+1} - q_{j+1} \end{pmatrix}, \end{split}$$

где $2s = p+q+\beta$. Легко убедиться, что уравнение (14.2) с такими матрицами W_j имеет лишь тождественное решение и не приводит к какому-либо преобразованию. Оказывается, чтобы получить формулы (15.17), мы должны переразложить произведение трех матриц: преобразование B_k определяется формулой

$$B: \quad \widetilde{W}_k \widetilde{W}_{k-1} \widetilde{W}_{k-2} = W_k W_{k-1} W_{k-2}, \quad \widetilde{W}_j = W_j, \quad j \neq k, k-1, k-2.$$

Таким образом, иногда общая схема из раздела 2 нуждается в модификациях.

3) Перейдем к цепочке (15.10). Определитель соответствующей матрицы W_i (15.9) имеет два корня:

$$\det W_j = -(2\lambda + \delta_j + \gamma_j)(2\lambda + \delta_j - \gamma_j).$$

Это приводит к тому, что дискретная группа этой цепочки гораздо богаче, чем во всех рассмотренных ранее примерах. Нетрудно убедиться, что переразложение (14.2) приводит к преобразованию вида

$$\begin{cases} \widetilde{u}_{k} = u_{k} + \frac{1}{\Delta} \Big((\widetilde{\delta}_{k} - \widetilde{\delta}_{k-1}) (\widetilde{\delta}_{k} - \delta_{k}) (u_{k+1} + 2u_{k} + u_{k-1}) + \\ + (\widetilde{\gamma}_{k}^{2} - \widetilde{\gamma}_{k-1}^{2} - \gamma_{k}^{2} + \gamma_{k-1}^{2}) (u_{k+1} - u_{k-1})/2 - \\ - 2(\widetilde{\delta}_{k} - \delta_{k}) (R_{k} (u_{k} + u_{k-1}) + R_{k-1} (u_{k+1} + u_{k})), \\ \widetilde{v}_{k} = v_{k} + \frac{1}{\Delta} \Big((\widetilde{\delta}_{k} - \widetilde{\delta}_{k-1}) (\widetilde{\delta}_{k} - \delta_{k}) (v_{k+1} + 2v_{k} + v_{k-1}) + \\ + (\widetilde{\gamma}_{k}^{2} - \widetilde{\gamma}_{k-1}^{2} - \gamma_{k}^{2} + \gamma_{k-1}^{2}) (v_{k+1} - v_{k-1})/2 + \\ + 2(\widetilde{\delta}_{k} - \delta_{k}) (R_{k} (v_{k} + v_{k-1}) + R_{k-1} (v_{k+1} + v_{k})), \end{cases}$$
(15.18)

где

$$\Delta = (R_k + R_{k-1})^2 + (u_{k+1} - u_{k-1})(v_{k+1} - v_{k-1}) - (\widetilde{\delta}_k - \widetilde{\delta}_{k-1})^2$$

(остальные u_j, v_j не меняются). При этом каждая из 24 перестановок сомножителей в произведении

$$\det \widetilde{W}_k \widetilde{W}_{k-1} = \det W_k W_{k-1} =$$
$$= (2\lambda + \delta_k + \gamma_k)(2\lambda + \delta_k - \gamma_k)(2\lambda + \delta_{k-1} + \gamma_{k-1})(2\lambda + \delta_{k-1} - \gamma_{k-1})$$

приводит к новому набору параметров цепочки $\tilde{\gamma}_k, \tilde{\gamma}_{k-1}, \tilde{\delta}_k, \tilde{\delta}_{k-1}$. Однако вследствие инвариантности формулы (15.18) и цепочки (15.10) относительно перемены знаков γ_j из этих 24 преобразований лишь 6 существенно различны. Одно из них тождественно, четыре других получаются, когда det W_k и det W_{k-1} обмениваются одной парой корней:

$$\begin{split} &\widetilde{\delta}_k + \varepsilon \widetilde{\gamma}_k = \delta_{k-1} + \sigma \gamma_{k-1}, \quad \widetilde{\delta}_{k-1} + \sigma \widetilde{\gamma}_{k-1} = \delta_k + \varepsilon \gamma_k, \\ &\widetilde{\delta}_k - \varepsilon \widetilde{\gamma}_k = \delta_k - \varepsilon \gamma_k, \quad \widetilde{\delta}_{k-1} - \sigma \widetilde{\gamma}_{k-1} = \delta_{k-1} - \sigma \gamma_{k-1}, \end{split}$$

где $\varepsilon, \sigma = \pm$, то есть

$$\begin{split} \widetilde{\delta}_k &= (\delta_k + \delta_{k-1} - \varepsilon \gamma_k + \sigma \gamma_{k-1})/2, \quad \widetilde{\delta}_{k-1} &= (\delta_k + \delta_{k-1} + \varepsilon \gamma_k - \sigma \gamma_{k-1})/2, \\ \widetilde{\gamma}_k &= \varepsilon (\delta_{k-1} - \delta_k + \varepsilon \gamma_k + \sigma \gamma_{k-1})/2, \\ tig_{k-1} &= \sigma (\delta_k - \delta_{k-1} + \varepsilon \gamma_k + \sigma \gamma_{k-1})/2. \end{split}$$

Если же det W_k и det W_{k-1} полностью меняются местами, то закон преобразоования коэффициентов имеет вид

$$\widetilde{\delta}_k = \delta_{k-1}, \quad \widetilde{\delta}_{k-1} = \delta_k, \quad \widetilde{\gamma}_k = \gamma_{k-1}, \quad \widetilde{\gamma}_{k-1} = \gamma_k.$$

Остальные преобразования не дают ничего нового. Например, в последней формуле можно положить также $\tilde{\gamma}_k = -\gamma_{k-1}$, $\tilde{\gamma}_{k-1} = -\gamma_k$, но это не приводит к новому преобразованию, поскольку как формула (15.18), так и сама цепочка (15.10) не меняются при перемене знаков γ_j .

Доказательство для преобразований (15.18) аналогов теорем 15.1 и 15.2 и анализ дискретной группы цепочки (15.10) не представляет принципиальных трудностей.

В заключение отметим, что, как и в случае иерархии KdV, замены в цепочках (15.6), (15.8), (15.10) порождают преобразования, связывающие уравнения иерархии (15.2) с другими интегрируемыми уравнениями (например, замена (15.14), приводящая к системе (15.16)). Полный их обзор занял бы слишком много места, и мы ограничимся рассмотрением системы (15.4), цепочки (15.10) и преобразований (15.18), на которые наложена одна из скалярных редукций

$$\delta = 0, \quad v = -1$$
 или $\delta = 0, \quad v = -u.$

В первом случае система (15.4) переходит в уравнение KdV и мы получаем семейство уравнений и цепочек из раздела 3. Вторая редукция рассматривается в следующем разделе.

16 Преобразования Бэклунда для уравнений типа KdV. II

Положим

$$u = -v = f, \quad \gamma^2 = 4\alpha,$$

тогда система (15.4) перейдет в уравнение mKdV

$$f_t = f_{xxx} - 6f^2 f_x, (16.1)$$

цепочка (15.10) в цепочку

$$(f_{j+1} + f_j)_x = (f_{j+1} - f_j)\sqrt{(f_{j+1} + f_j)^2 + 4\alpha_j}$$
(16.2)

и преобразования (15.18) в преобразования

$$B_{k}: \begin{cases} \tilde{f}_{k} = f_{k} - \frac{4}{\Delta}(\alpha_{k} - \alpha_{k-1})(f_{k+1} - f_{k-1}), & \tilde{f}_{j} = f_{j}, \ j \neq k, \\ \tilde{\alpha}_{k} = \alpha_{k-1}, & \tilde{\alpha}_{k-1} = \alpha_{k}, & \tilde{\alpha}_{j} = \alpha_{j}, \quad j \neq k, k-1, \end{cases}$$
(16.3)

где

$$\Delta = \left(\sqrt{(f_{k+1} + f_k)^2 + 4\alpha_k} + \sqrt{(f_k + f_{k-1})^2 + 4\alpha_{k-1}}\right)^2 - (f_{k+1} - f_{k-1})^2.$$

Таким образом, мы видим, что уравнение mKdV допускает два различных преобразования Бэклунда — цепочки (16.2) и (1.10). (То, что уравнение

Рис. 16.1: Уравнения, связанные с mKdV

mKdV (3.6), в отличие от (16.1), содержит параметр β , не существенно, так как он убирается преобразованием Галилея.) Как и цепочка (1.10), цепочка (16.2) допускает ряд замен, приводящих к дифференциальным подстанов-кам из (16.1) в другие интегрируемые уравнения. Они схематически изображены на рис. 16.1. Обозначения — как в разделе 3.

Первая строка на этой диаграмме состоит из двух потенциирований

$$f = q', \quad e^{2q} = s'.$$

Уравнение (16.3), цепочка (16.2) и преобразование B_k (16.3), переписанные в переменных q_j принимают соответственно вид

$$q_t = q_{xxx} - 2q_x^3, (16.4)$$

$$q'_{j+1} + q'_j = \exp(q_{j+1} - q_j) - \alpha_j \exp(q_j - q_{j+1}), \tag{16.5}$$

$$\widetilde{q}_{k} = q_{k} + \ln\left(\frac{e^{q_{k+1}-q_{k-1}} + \alpha_{k}}{e^{q_{k+1}-q_{k-1}} + \alpha_{k-1}}\right);$$
(16.6)

в переменных s_j — вид

$$s_t = s_{xxx} - \frac{3s_{xx}^2}{2s_x},$$

$$s'_{j+1}s'_j = (s_{j+1} - \alpha_j s_j)^2,$$

$$\widetilde{s}_k = \frac{s_{k+1}s_k + (\alpha_k - \alpha_{k-1})s_{k+1}s_{k-1} - \alpha_k^2 s_k s_{k-1}}{s_{k+1} - (\alpha_k - \alpha_{k-1})s_k - \alpha_{k-1}^2 s_{k-1}}$$

(При этом параметры цепочек α_j меняются, как в формуле (16.3). Для краткости мы не выписываем те переменные, на которые B_k действует тождественно.)

Отметим, что если $\alpha_j \neq 0,$ то цепочка (16.5), приведенная сдвигом $q_j \rightarrow q_j + c_j$ к виду

$$q'_{j+1} + q'_j = \gamma_j \operatorname{sh}(q_{j+1} - q_j),$$

задает преобразование Бэклунда для уравнения sh-Gordon [24]

$$q_{xy} = \operatorname{sh} 2q,$$

которое, как известно, является симметрией (16.4). (В качестве второй половины преобразования Бэклунда обычно принимают цепочку $(q_{j+1}-q_j)_y =$

 $2 \operatorname{sh}(q_{j+1}+q_j)/\gamma_j$.) При этом формула (16.6) после несложных преобразований приводит к известному принципу нелинейной суперпозиции [24]

th
$$\frac{1}{2}(q_{k+1} - q_{k-1}) = \frac{\gamma_k + \gamma_{k-1}}{\gamma_k - \gamma_{k-1}}$$
th $\frac{1}{2}(q_k - \widetilde{q}_k).$

Замены $s \to r, q \to r, r \to q$ задаются соответственно формулами

$$2r_j = \ln(s_{j+1} - \alpha_j s_j), \quad 2r_j = q_{j+1} + q_j, \quad 2q = 2r - \ln(r' + \sqrt{r'^2 + \alpha}).$$

При этом на переменные r_j получаем

$$\begin{split} r_t &= r_{xxx} - \frac{3r_x r_{xx}^2}{2(r_x^2 + \alpha)} - 2r_x^3, \\ \left(r'_{j+1} + \sqrt{r'_{j+1}^2 + \alpha_{j+1}}\right) \left(r'_j + \sqrt{r'_j^2 + \alpha_j}\right) &= \exp(2r_{j+1} - 2r_j), \\ \widetilde{r}_k &= r_k + L, \quad \widetilde{r}_{k-1} = r_{k-1} + L, \quad 2L = \ln\left(\frac{e^{r_k - r_{k-1}} + \alpha_k}{e^{r_k - r_{k-1}} + \alpha_{k-1}}\right). \end{split}$$

Замены $r \to g,\,q \to g,\,f \to g,\,g \to f$ задаются формулами

$$g - \alpha/g = 2r', \quad g_j = \exp(q_{j+1} - q_j),$$

 $g - \alpha/g = f_{j+1} + f_j, \quad 2f = g - (g' + \alpha)/g.$

На переменные g_j получаем

$$g_t = g_{xxx} - 3\frac{g_x g_{xx}}{g} + \frac{3g_x^3}{2g^2} - \frac{3}{2}\left(g - \frac{\alpha}{g}\right)^2 g_x,$$
(16.7)

$$(g_{j+1}g_j)' = g_{j+1}g_j(g_{j+1} - g_j) - \alpha_{j+1}g_j + \alpha_j g_{j+1},$$
(16.8)
$$\tilde{g}_k = g_k G, \quad \tilde{g}_{k-1} = g_{k-1}/G, \quad G = \frac{g_k g_{k-1} + \alpha_{k-1}}{g_k g_{k-1} + \alpha_k}.$$

Наконец, замены $r \to h, \, g \to h, \, h \to g$ имеют вид

$$h_{j+1} = \exp(2(r_{j+1} - r_j)), \quad h_{j+1} = g_{j+1}g_j, \quad 2g = (R + h')/(h + \alpha_{-1})$$

и на переменные h_j получаем

$$h_t = h_{xxx} - \frac{3h_x(h_{xx} + 2\dot{P})^2}{2(h_x^2 + 4P)} + 6(2h + \alpha + \alpha_{-1})h_x,$$
(16.9)

$$(R_{j+1} + h'_{j+1})(R_j + h'_j) = 4h_{j+1}(h_{j+1} + \alpha_j)(h_j + \alpha_{j-1}), \qquad (16.10)$$
$$\widetilde{h}_{k\pm 1} = h_{k\pm 1} \left(\frac{h_k + \alpha_k}{h_k + \alpha_{k-1}}\right)^{\pm 1},$$

где

$$R_j^2 = {h'}_j^2 + 4P_j(h_j), \quad P_j(h_j) = h_j(h_j + \alpha_j)(h_j + \alpha_{j-1}).$$

Отметим, что уравнение (16.7) совпадает, с точностью до преобразования Галилея, с уравнением (3.11), а соответствующие цепочки отличаются только знаком при одном из линейных членов. Если рассмотреть только одну пару соседних членов в этих цепочках, то легко убедиться, что фактически это одно и тоже преобразование Бэклунда. Тем не менее, структура этих двух цепочек совершенно различна, что видно уже из сравнения формул нелинейной суперпозиции. То же самое можно сказать про уравнения (16.9) и (3.14). Таким образом, экспоненциальное и эллиптическое уравнения Калоджеро имеют по две похожие цепочки, одна из которых унаследована от KdV, а другая от mKdV.

Оказывается, что, кроме того, уравнение (16.7) имеет и свое собственное преобразование Бэклунда. Соответствующая цепочка в переменных $\varphi = \ln g$ приводилась в [65]. Ее, и ее автопреобразования можно вывести по схеме из раздела 14, приняв за основу представление нулевой кривизны (14.7) для уравнения (16.7), где

$$U = \frac{1}{2} \begin{pmatrix} 0 & g - \frac{\alpha\lambda}{g} \\ g - \frac{\alpha}{\lambda g} & 0 \end{pmatrix},$$
$$V = U_{xx} - \left(\frac{3g_x^2}{2g^2} + \frac{1}{2}\left(g - \frac{\alpha}{g}\right)^2 + \frac{\alpha}{\lambda}(\lambda - 1)^2\right)U - \alpha\left(\lambda - \frac{1}{\lambda}\right)\frac{g_x}{2g} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Вид матрицы W_j легко находится непосредственно из (14.1):

$$W_j = (g_{j+1}g_j)^{-1/2} \begin{pmatrix} Y_j & g_{j+1}g_j - \alpha\lambda \\ g_{j+1}g_j - \frac{\alpha}{\lambda} & Y_j \end{pmatrix},$$
$$Y_j = \sqrt{g_{j+1}^2g_j^2 + 2\varepsilon_jg_{j+1}g_j + \alpha^2}.$$

При этом мы получаем цепочку

$$(g_{j+1}g_j)' = Y_j(g_{j+1} - g_j).$$
(16.11)

Подчеркнем, что здесь, в отличие от цепочки (16.8), параметр α фиксирован, но зато появился новый параметр ε_j . Формула (14.2) в данном случае приводит к преобразованию

$$B_k: \begin{cases} \widetilde{g}_k = g_k - \frac{2(\varepsilon_k - \varepsilon_{k-1})g_k^2(g_{k+1} - g_{k-1})}{(Y_k + Y_{k-1})^2 - g_k^2(g_{k+1} - g_{k-1})^2}, \quad \widetilde{g}_j = g_j, \quad j \neq k, \\ \widetilde{\varepsilon}_k = \varepsilon_{k-1}, \quad \widetilde{\varepsilon}_{k-1} = \varepsilon_k, \quad \widetilde{\varepsilon}_j = \varepsilon_j, \quad j \neq k, k-1 \end{cases}$$

$$(16.12)$$

(ср. с (3.9) и (16.3)). Как и ранее, формулы (16.7), (16.11), (16.12) удается переписать еще в нескольких переменных. Так мы приходим к диаграмме, изображенной на рис. 16.2. Горизонтальная стрелка соответствует потенциированию g = p', переводящему уравнение (16.7) в уравнение

$$p_t = p_{xxx} - \frac{3(p_{xx}^2 - \alpha^2)}{2p_x} - \frac{1}{2}p_x^3 + 3\alpha p_x,$$

цепочку (16.8) в цепочку

$$2p'_{j+1}p'_j = \exp(p_{j+1} - p_j) + (\varepsilon_j^2 - \alpha^2)\exp(p_j - p_{j+1}) - 2\varepsilon_j$$

и преобразование (16.11) в преобразование

$$\widetilde{p}_{k} = p_{k} + \ln\left(\frac{e^{p_{k+1}} + (\alpha^{2} - \varepsilon_{k}^{2})e^{p_{k-1}} + (\varepsilon_{k} - \varepsilon_{k-1})e^{p_{k+1} - p_{k} + p_{k-1}}}{e^{p_{k+1}} + (\alpha^{2} - \varepsilon_{k-1}^{2})e^{p_{k-1}} - (\varepsilon_{k} - \varepsilon_{k-1})e^{p_{k}}}\right).$$

Рис. 16.2: Уравнения, связанные с экспоненциальным уравнением Калод-жеро

Замены $p \to h, g \to h, h \to g$ имеют соответственно вид

$$g_{j+1}g_j = h_j + (\varepsilon_j^2 - \alpha^2)/(4h_j) - \varepsilon_j, \quad 2g = (R - h_x)/h$$

и на переменную h мы получаем

$$h_t = h_{xxx} - \frac{3h_x(h_{xx} + 2\dot{P})^2}{2(h_x^2 + 4P)} + 3(4h + \alpha - \varepsilon)h_x, \qquad (16.13)$$

$$(R_{j+1} + h'_{j+1})(R_j + h'_j) = h_j(2h_{j+1} - \varepsilon_{j+1} - \alpha)(2h_j - \varepsilon_{j+1} + \alpha), \quad (16.14)$$
$$\widetilde{h}_k = h_k H, \quad \widetilde{h}_{k-1} = h_{k-1}/H,$$

где

$$R_{j}^{2} = {h'}_{j}^{2} + 4P_{j}(h_{j}), \quad P_{j}(h_{j}) = h_{j}(h_{j} - \frac{1}{2}(\varepsilon_{j} + \alpha))(h_{j} - \frac{1}{2}(\varepsilon_{j} - \alpha)),$$
$$H = \frac{4h_{k}h_{k-1} - 2(\varepsilon_{k} - \varepsilon_{k-1})h_{k-1} - \varepsilon_{k-1}^{2} + \alpha^{2}}{4h_{k}h_{k-1} + 2(\varepsilon_{k} - \varepsilon_{k-1})h_{k} - \varepsilon_{k}^{2} + \alpha^{2}}.$$

Как и в случае цепочек (3.12), (16.8), сравнение цепочек (3.15), (16.10) и (16.14) показывает, что они эквивалентны последовательностям из фактически одних и тех же преобразований Бэклунда для уравнения (16.13), только по разному сцепленых.

17 О многополевых нелинейных системах Шредингера

Известно, что система (15.2) допускает целый ряд интегрируемых многополевых обобщений вида

$$u_t = u_{xx} + 2\{uvu\}, \quad -v_t = v_{xx} + 2\{vuv\}, \quad (17.1)$$

где u,vвекторы, возможно разной размерности,
а { } обозначает некоторое трилинейное произведение, то есть

$$\{uvu\}^{i} = \sum_{j,k,l} a^{i}_{jkl} u^{j} v^{k} u^{l}, \quad \{vuv\}^{i} = \sum_{j,k,l} b^{i}_{jkl} v^{j} u^{k} v^{l}.$$

Первый пример появился в работе [56], а в [19] была установлена связь интегрируемых систем этого типа с эрмитовыми симметрическими пространствами. В работе [36] для систем вида (17.1) был найден чисто алгебраический критерий интегрируемости. Оказалось, что если система (17.1) неприводима (то есть не может быть приведена к блочно-треугольному виду линейной заменой переменных), то необходимым и достаточным для существования высших симметрий и законов сохранения является следующее условие: операция { } удовлетворяет тождествам, определяющим некоторую алгебраическую структуру, называемую йордановой парой (см. определение ниже). Оказалось также, что это же условие необходимо и достаточно для наличия цепочки преобразований Бэклунда вида

$$\begin{cases} u_{j,x} = u_{j+1} + \beta_j u_j + \{u_j v_{j+1} u_j\}, \\ -v_{j,x} = v_{j-1} + \beta_{j-1} v_j + \{v_j u_{j-1} v_j\} \end{cases}$$
(17.2)

обобщающей цепочку (15.8) (см. [37], где рассматривалась цепочка (17.2) с нулевыми параметрами β_j). В этом разделе нас интересует вопрос о существовании аналогов преобразований (15.11) для этих цепочек. Рассмотрим сначала два характерных примера, для которых мы можем предъявить представление нулевой кривизны и построить автопреобразования согласно общей схеме.

1) Пусть u и v обозначают матрицы размера $m \times n$, а операция { } задается формулой

$$\{uvp\} = (uv^{\top}p + pv^{\top}u)/2.$$

Тогда система (17.1) принимает вид

$$u_t = u_{xx} + 2uv^\top u, \quad -v_t = v_{xx} + 2vu^\top v$$

и имеет представление нулевой кривизны (14.7) с матрицами размер
а $(m+n)\times(m+n)$

$$U = \begin{pmatrix} -m\lambda I_n & -v^\top \\ u & n\lambda I_m \end{pmatrix}, \quad V = (m+n)\lambda U + \begin{pmatrix} -v^\top u & v_x^\top \\ u_x & uv^\top \end{pmatrix},$$

где I_n есть *n*-мерная единичная матрица. В частности, при n = 1, m = 2получаем систему Манакова [56]

$$u_t = u_{xx} + 2\langle u, v \rangle u, \quad -v_t = v_{xx} + 2\langle u, v \rangle v$$

где $\langle\,,\rangle$ обозначает стандартное скалярное произведение. Цепочка преобразований Бэклунда задается матрицей

$$W_j = \begin{pmatrix} I_n & -v_{j+1}^\top \\ u_j & (m+n)\lambda I_m - \beta_j I_m - u_j v_{j+1}^\top \end{pmatrix}.$$

Сами цепочки в этом разделе мы не будем выписывать, так как все они имеют вид (17.2) и легко восстанавливаются по исходной системе. Формула (14.2) приводит к преобразованию

$$B_k: \begin{cases} \widetilde{u}_k = u_k + (\beta_{k-1} - \beta_k)u_{k-1}(I_n - v_{k+1}^\top u_{k-1})^{-1}, \\ \widetilde{v}_k = v_k + (\beta_k - \beta_{k-1})v_{k+1}(I_n - u_{k-1}^\top v_{k+1})^{-1}, \\ \widetilde{\beta}_{k-1} = \beta_k, \quad \widetilde{\beta}_k = \beta_{k-1}. \end{cases}$$

В частности, для системы Манакова имеем

$$\widetilde{u}_k = u_k + \frac{\beta_{k-1} - \beta_k}{1 - \langle u_{k-1}, v_{k+1} \rangle} u_{k-1}, \quad \widetilde{v}_k = v_k + \frac{\beta_k - \beta_{k-1}}{1 - \langle u_{k-1}, v_{k+1} \rangle} v_{k+1}.$$

При m = n = 1 все формулы переходят в соответствующие формулы для нелинейной системы Шредингера.

2) Пусть теперь и и v обозначают n-мерные векторы-столбцы,

$$\{uvp\} = \langle u, v \rangle p + \langle v, p \rangle u - \langle p, u \rangle v.$$

Соответствующая система (17.1) принимает вид

$$u_t = u_{xx} + 4\langle u, v \rangle u - 2\langle u, u \rangle v, \quad -v_t = v_{xx} + 4\langle u, v \rangle v - 2\langle v, v \rangle u.$$

Она рассматривалась в работе [59] и имеет представление (14.7) с матрицами размера $(n+2)\times(n+2)$

$$U = \begin{pmatrix} -\lambda & -2v^{\top} & 0\\ u & 0 & 2v\\ 0 & -u^{\top} & \lambda \end{pmatrix}, \quad V = \lambda U + \begin{pmatrix} -2v^{\top}u & 2v_x^{\top} & 0\\ u_x & 2uv^{\top} - 2vu^{\top} & -2v_x\\ 0 & -u_x^{\top} & 2u^{\top}v \end{pmatrix}.$$

Цепочка (17.2) задается матрицей

$$W_{j} = \begin{pmatrix} 1 & -2v_{j+1}^{\top} & -2v_{j+1}^{\top}v_{j+1} \\ u_{j} & (\lambda - \beta_{j})I_{n} - 2u_{j}v_{j+1}^{\top} & 2(\lambda - \beta_{j} - u_{j}v_{j+1}^{\top})v_{j+1} \\ -\frac{1}{2}u_{j}^{\top}u_{j} & u_{j}^{\top}(u_{j}v_{j+1}^{\top} - \lambda + \beta_{j}) & (\lambda - \beta_{j})^{2} - 2(\lambda - \beta_{j})u_{j}^{\top}v_{j+1} + \\ +u_{j}^{\top}u_{j}v_{j+1}^{\top}v_{j+1} & \end{pmatrix},$$

а преобразования (14.2) имеют вид

$$B_k: \begin{cases} \widetilde{u}_k = u_k + \frac{(\beta_{k-1} - \beta_k)(u_{k-1} - \langle u_{k-1}, u_{k-1} \rangle v_{k+1})}{1 - 2\langle v_{k+1}, u_{k-1} \rangle + \langle v_{k+1}, v_{k+1} \rangle \langle u_{k-1}, u_{k-1} \rangle}, \\ \widetilde{u}_k = v_k + \frac{(\beta_k - \beta_{k-1})(v_{k+1} - \langle v_{k+1}, v_{k+1} \rangle u_{k-1})}{1 - 2\langle v_{k+1}, u_{k-1} \rangle + \langle v_{k+1}, v_{k+1} \rangle \langle u_{k-1}, u_{k-1} \rangle}, \\ \widetilde{\beta}_{k-1} = \beta_k, \quad \widetilde{\beta}_k = \beta_{k-1}. \end{cases}$$

При n = 1 все формулы также переходят в соответствующие формулы для нелинейной системы Шредингера.

Приведем теперь некоторые сведения о йордановых парах (см. также [27, 36]). Йордановой парой называется прямая сумма $J = J^+ \oplus J^-$ векторных пространств над некоторым полем \mathbb{F} (в нашем случае \mathbb{R} или \mathbb{C}), наделенная трилинейной операцией

$$\{ \}: \quad J^{\pm} \times J^{\mp} \times J^{\pm} \to J^{\pm}$$

удовлетворяющей тождествам

$$\{abc\} = \{cba\},\tag{17.3}$$

$$\{ab\{cde\}\} - \{cd\{abe\}\} = \{\{abc\}de\} - \{c\{bad\}e\}.$$
(17.4)

Для удобства мы до конца этого раздела примем, что $u,p\in J^+,$ а $v,q\in J^-.$ Для любых p,q рассмотрим оператор

$$L(p,q): J \to J, \quad L(p,q)(u+v) = \{pqu\} - \{qpv\},$$
 (17.5)

а также операторы $L^{\pm}(p,q) = \pm L(p,q)|_{J^{\pm}},$

$$L^{\pm}(p,q): J^{\pm} \to J^{\pm}, \quad L^{+}(p,q)(u) = \{pqu\}, \quad L^{-}(p,q)(v) = \{qpv\}.$$

Тождество (17.4) означает, что $L(u, v) \in Der(J)$ и, кроме того, эквивалентно следующему коммутационному правилу:

$$[L(u,v), L(p,q)] = L(\{uvp\}, q) - L(p, \{vuq\}).$$
(17.6)

Дифференцирование (17.5) называется внутренним, и из (17.6) мы видим, что все внутренние дифференцирования образуют некоторую подалгебру Ли Inder $(J) \subseteq \text{Der}(J)$. Примером внешнего дифференцирования служит отображение

$$\sigma: J \to J, \quad \sigma(u+v) = u - v.$$

Далее нам понадобятся некоторые свойства решения линейной алгебраической системы

$$u + \{pvp\} = \alpha p, \quad v + \{quq\} = -\alpha q,$$
 (17.7)

где u, v неизвестные, а p, q и $\alpha \in \mathbb{F}$ заданы. Подставляя одно уравнение системы в другое, получаем уравнение

$$(1 - S(p,q))(u+v) = \alpha(\sigma + L(p,q))(p+q),$$

где оператор S(p,q) определен формулой

$$S(p,q)(u+v) = \{p\{quq\}p\} + \{q\{pvp\}q\}.$$

При помощи тождества (17.5) легко показать, что

$$S(p,q) = 2L^2(p,q) - L(\{pqp\},q)\sigma.$$

Лемма 17.1. Пусть операторы

$$1 - S(p,q), \quad \sigma - L(p,q), \quad 1 - 2L(p,q)\sigma + S(p,q)$$
(17.8)

невырождены. Тогда система (17.7) имеет единственное решение и, v, которое задается формулой

$$u = \alpha (1 - L^+(p,q))^{-1}(p), \quad v = -\alpha (1 - L^-(p,q))^{-1}(q)$$
(17.9)

и для которого оператор

$$M = L(u,q) + L(p,v)$$
(17.10)

равен нулю.

Доказательство. Существование и единственность решения следуют из обратимости первого из операторов (17.8). Положим $\bar{u} = M(p), \bar{v} = -M(q)$. Имеем

$$\begin{split} \bar{u} &= \{uqp\} + \{pvp\} = \{(\alpha p - \{pvp\})qp\} - \{p(\alpha q + \{quq\})p\} = \\ &= -\{p(\{vpq\} + \{quq\})p\} = -\{p\bar{v}p\}, \end{split}$$

и аналогично $\bar{v} = -\{q\bar{u}q\}$. Таким образом, \bar{u}, \bar{v} служат решениями однородной системы (17.7) и, следовательно равны нулю, то есть

$$\{uqp\} + \{pvp\} = 0, \quad \{quq\} + \{vpq\} = 0. \tag{17.11}$$

В силу этих соотношений система (17.7) переписывается в виде

$$u - \{pqu\} = \alpha p, \quad v - \{qpv\} = -\alpha q$$

что эквивалентно одному уравнению $(\sigma - L(p,q))(u+v) = \alpha(p+q)$. В силу невырожденности второго из операторов (17.8) решение этой системы существует, единственно и задается формулой (17.9).

Докажем, что оператор M нулевой. Пусть $\bar{u} = M(y), y \in J^+$. Имеем

$$\begin{split} S(p,q)(\bar{u}) &= \{p\{q\{uqy\}q\}p\} + \{p\{q\{pvy\}q\}p\} = \\ &= \{p\{\{qyq\}yq\}p\} + \{p(2\{qy\{qpv\}\} - \{vp\{qyq\}\})p\} = \\ &= 2\{p\{qy(v+\alpha q)\}p\} - \{p\{(v+\alpha q)yq\}p\} + \{(u-\alpha p)\{qyq\}p\} = \\ &= \{p\{qyv\}p\} + \{p\{qyq\}u\} = \\ &= 2\{pv\{pqy\}\} - \{\{pvp\}qy\} - \{yq\{pqu\}\} + \\ &+ \{pq\{yqu\}\} + \{\{yqp\}qy\}. \end{split}$$

В силу (17.11) второй и третий члены в последнем выражении сокращаются. Продолжая цепочку равенств, имеем

$$\begin{split} S(p,q)(\bar{u}) &= 2\{\{pvp\}qy\} - 2\{p\{vpq\}y\} + 2\{pq\{pvy\}\} + \\ &+ 2\{pq\{yqu\}\} - \{p\{quq\}y\} + \{\{pqu\}qy\} = \\ &= 2L(p,q)(\bar{u}) + \{(\alpha p - u)qy\} - \{p\{v + \alpha q\}y\} = \\ &= 2L(p,q)(u) - \bar{u}. \end{split}$$

Аналогично, можно показать, что

$$(S(p,q) + 2L(p,q) + 1)M(z) = 0, \quad z \in J^{-}$$

Используя невырожденность третьего из операторов (17.8), получаем отсюда требуемое утверждение.

* * *

Вернемся теперь к системе (17.1), в предположении, что $\{\}$ есть умножение в йордановой паре. Уравнение (17.1) допускает представление нулевой кривизны в терминах структурной алгебры Ли йордановой пары J, то есть прямой суммы

$$\operatorname{strl}(J) = J \oplus \operatorname{Der}(J)$$

с коммутатором

$$[u + v + d, p + q + \delta] = (d(p) - \delta(u)) + (d(q) - \delta(v)) + L(u, q) - L(p, v) + [d, \delta]$$

Действительно, легко проверяется, что соотношение (14.7) в котором

 $U = u - 2v + \lambda\sigma, \quad V = u_x + 2v_x + 2L(u, v) + \lambda U$

эквивалентно уравнению (17.1). В противоположность этому, для цепочки (17.2) такое инвариантное представление автору неизвестно, хотя, как мы видели в приведенных примерах, для конкретных йордановых пар удается найти матричные представления вида (14.1). По этой причине применить схему из раздела 14 в общем случае не удается. Тем не менее, автопреобразование цепочки (17.2) удается найти, просто сделав предположение, что оно имеет ту же структуру, что и в скалярном случае. Разумеется, для разобранных примеров новое преобразование совпадает с ранее найденными.

Теорема 17.2. Цепочка (17.2) со скобкой, удовлетворяющей тождествам (17.3), (17.4), допускает следующее автопреобразование:

$$\begin{cases} \widetilde{u}_{k} = u_{k} + (\beta_{k-1} - \beta_{k})(1 - L^{+}(u_{k-1}, v_{k+1}))^{-1}u_{k-1}, \\ \widetilde{v}_{k} = v_{k} + (\beta_{k} - \beta_{k-1})(1 - L^{-}(u_{k-1}, v_{k+1}))^{-1}v_{k+1}, \\ \widetilde{u}_{j} = u_{j}, \quad \widetilde{v}_{j} = v_{j}, \quad j \neq k, \\ \widetilde{\beta}_{k-1} = \beta_{k}, \quad \widetilde{\beta}_{k} = \beta_{k-1}, \quad \widetilde{\beta}_{j} = \beta_{j}, \quad j \neq k-1, k. \end{cases}$$
(17.12)

Доказательство. Будем искать преобразование цепочки той же структуры, что и (15.11), то есть не меняющее u_j, v_j при $j \neq k$ и переставляющие местами параметры β_k и β_{k-1} . Для такого преобразования должны выполняться соотношения

$$u_{k-1,x} = u_k + \beta_{k-1}u_{k-1} + \{u_{k-1}v_ku_{k-1}\} = \tilde{u}_k + \beta_k u_{k-1} + \{u_{k-1}\tilde{v}_ku_{k-1}\}, -v_{k+1,x} = v_k + \beta_k v_{k+1} + \{v_{k+1}u_kv_{k+1}\} = \tilde{v}_k + \beta_{k-1}v_{k+1} + \{v_{k+1}\tilde{u}_kv_{k+1}\},$$

из которых получаем для нахождения $\widetilde{u}_k, \widetilde{v}_k$ систему

$$\begin{cases} \widetilde{u}_k - u_k + \{u_{k-1}(\widetilde{v}_k - v_k)u_{k-1}\} = (\beta_{k-1} - \beta_k)u_{k-1}, \\ \widetilde{v}_k - v_k + \{v_{k+1}(\widetilde{u}_k - u_k)v_{k+1}\} = (\beta_k - \beta_{k-1})v_{k+1}, \end{cases}$$
(17.13)

Это система вида (17.7), где $p = u_{k-1}$, $q = v_{k+1}$ и т.д.. Согласно Лемме 17.1 ее решение задается формулой (17.12). При этом предположение относительно обратимости операторов (17.8) справедливо, по крайней мере когда u_{k-1} , v_{k+1} лежат в окрестности нуля. Для завершения доказательства осталось проверить, что соотношения (17.13) совместны с остальными уравнениями цепочки (17.2). Дифференцируя, например, первое из уравнений (17.13) в силу цепочки, получаем после сокращений соотношение

$$\{(\widetilde{u}_k - u_k)v_{k+1}(\widetilde{u}_k + u_k)\} + \{u_{k-1}(\widetilde{v}_k - v_k)(\widetilde{u}_k + u_k)\} = 0,$$

которое верно, так как в силу Леммы 17.1 оператор $L(\widetilde{u}_k - u_k, v_{k+1}) + L(u_{k-1}, \widetilde{v}_k - v_k)$ нулевой.

18 Модель Ландау-Лифшица и другие примеры

Результаты, полученные для цепочки (15.6), могут быть перенесены и на цепочки, рассматриваемые в этом разделе. Все они имеют гамильтонову структуру

$$\begin{pmatrix} u_j \\ v_{j+1} \end{pmatrix}_x = \Delta_j \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \delta h_j / \delta u_j \\ \delta h_j / \delta v_{j+1} \end{pmatrix}$$
(18.1)

где $\delta h_j / \delta u_j = \sum_k \partial h_k / \partial u_j$, $\delta h_j / \delta v_{j+1} = \sum_k \partial h_k / \partial v_{j+1}$. Заметим, что структурную функцию $\Delta_j = \Delta(u_j, v_{j+1})$ точечной заменой всегда можно превратить в 1, но это может привести к усложнению вида рассматриваемых цепочек. Для цепочки (15.6) $\Delta_j = 1$, h_j имеет вид (11).

Для каждой цепочки приводится ассоциированная система в частных производных и преобразования (14.2). Приводятся также матрицы, задающие представления (14.1) и (14.7).

Пример 1. Система

$$u_t = u_{xx} + (2uv + \beta)u_x, \quad v_t = -v_{xx} + (2uv + \beta)v_x,$$

при $\beta=0$ рассматривалась в работе [10]. Представление нулевой кривизны (14.7) задается матрицами

$$U = \begin{pmatrix} r & \lambda u \\ \lambda v & -r \end{pmatrix}, \quad V = (2r + \beta)U + \begin{pmatrix} (vu_x - uv_x)/2 & \lambda u_x \\ -\lambda v_x & (uv_x - vu_x)/2 \end{pmatrix},$$

где $r=(uv-\lambda^2)/2,$ а матрицаWравна

$$W_j = (u_j v_{j+1} + \beta_j)^{-1/2} \begin{pmatrix} u_j v_{j+1} + \beta_j - \lambda^2 & \lambda u_j \\ \lambda v_{j+1} & \beta_j \end{pmatrix}.$$

Цепочка (14.1) имеет вид

$$u_{j,x} = (u_j v_{j+1} + \beta_j)(u_{j+1} - u_j), \quad v_{j,x} = (v_j u_{j-1} + \beta_{j-1})(v_j - v_{j-1}),$$

и может быть записана в гамильтоновом виде (18.1), где

$$\Delta_j = u_j v_{j+1} + \beta_j, \quad h_j = (u_{j+1} - u_j) v_{j+1}.$$

Преобразования (14.2) имеют вид

$$B_k: \begin{cases} \widetilde{u}_k = u_k + (\beta_k - \beta_{k-1}) \frac{u_{k-1} - u_k}{\beta_k + u_{k-1}v_{k+1}}, \\ \widetilde{v}_k = v_k + (\beta_{k-1} - \beta_k) \frac{v_{k+1} - v_k}{\beta_{k-1} + u_{k-1}v_{k+1}}, \\ \widetilde{\beta}_{k-1} = \beta_k, \quad \widetilde{\beta}_k = \beta_{k-1}. \end{cases}$$

Пример 2. Система

$$u_t = u_{xx} + 2(u+v)u_x, \quad v_t = -v_{xx} + 2(u+v)v_x$$

эквивалентна системе Каупа [23]. Матрицы U,V и Wесть

$$U = \begin{pmatrix} (u-v)/2 & (u+\lambda)(v+\lambda) \\ 1 & (v-u)/2 \end{pmatrix},$$

$$V = (u+v-2\lambda)U + \begin{pmatrix} (u_x+v_x)/2 & \lambda(u_x-v_x)+vu_x-uv_x \\ 0 & -(u_x+v_x)/2 \end{pmatrix},$$

$$W_j = (u_j+v_{j+1})^{-1/2} \begin{pmatrix} u_j-\lambda & u_jv_{j+1}+(\lambda-\beta_j)(u_j+v_{j+1})+\lambda^2 \\ 1 & v_{j+1}-\lambda \end{pmatrix}.$$

Цепочка (14.1) имеет вид

$$u_{j,x} = (u_j + v_{j+1})(u_{j+1} - u_j + \beta_j), \quad v_{j,x} = (v_j + u_{j-1})(v_j - v_{j-1} - \beta_{j-1}),$$

а ее гамильтонова структура (18.1) определяется функциями

$$\Delta_j = u_j + v_{j+1}, \quad h_j = (u_{j+1} - u_j)v_{j+1} + \beta_j(u_j + v_{j+1}).$$

Преобразования цепочки задаются формулой

$$B_k: \begin{cases} \tilde{u}_k = u_k + (\beta_{k-1} - \beta_k) \frac{u_k + v_{k+1}}{u_{k-1} + v_{k+1} - \beta_{k-1}}, \\ \tilde{v}_k = v_k + (\beta_k - \beta_{k-1}) \frac{v_k + u_{k-1}}{u_{k-1} + v_{k+1} - \beta_k}, \\ \tilde{\beta}_{k-1} = \beta_k, \quad \tilde{\beta}_k = \beta_{k-1}. \end{cases}$$

Оставшиеся примеры посвящены системам вида

$$\begin{cases} u_t = u_{xx} - \frac{2}{u+v}(u_x^2 + P(u)) + \frac{1}{2}P'(u), \\ -v_t = v_{xx} - \frac{2}{u+v}(v_x^2 + P(-v)) - \frac{1}{2}P'(-v) \end{cases}$$
(18.2)

где *Р* полином не выше 4 степени. Хорошо известно (см. например [57]), что модель Ландау-Лифшица

$$S_{\tau} = S \times S_{xx} + S \times JS, \quad S \in \mathbb{R}^3, \quad \langle S, S \rangle = 1, \quad J = \operatorname{diag}(J_1, J_2, J_3),$$

приводится к этому виду при помощи стереографической проекции

$$S_1 = \frac{1+uv}{u+v}, \quad S_2 = -i\frac{1-uv}{u+v}, \quad S_3 = \frac{u-v}{u+v}$$

и замены $t = i\tau$, причем $P(u) = \varepsilon u^4 + \delta u^2 + \varepsilon$, $2\delta = J_1 + J_2 - 2J_3$, $4\varepsilon = J_2 - J_1$. При P = 0 получаем случай магнетика Гейзенберга, при $\varepsilon = 0$ или $\delta = \pm 2\varepsilon$ легкоосное вырождение модели Ландау-Лифшица.

При дробно-линейных заменах

$$\widetilde{u} = \frac{au+b}{cu+d}, \quad \widetilde{v} = \frac{-av+b}{cv-d}$$

вид системы (18.2) не меняется, а полином P меняется также, как в уравнении $u_x^2 = P(u)$. Легко убедиться, что это позволяет свести изучение системы к рассмотрению 3 случаев: $P(u) = \varepsilon$, $P(u) = \delta u^2$, $P(u) = u^3 + au + b$, причем в последнем случае корни P(u) могут быть и кратными.

Система (18.2) допускает цепочку преобразований Бэклунда, которая может быть записана в гамильтоновом виде (18.1), где

$$\Delta_j = r_j, \quad h_j = \ln(u_j + v_j) - \frac{1}{2}\ln r_j.$$

Функция r_j будет ниже уточняться для каждого случая. Коэффициенты $\varepsilon, \delta, a, b$ многочлена P(u) не зависят от номера j.

Пример 3. Рассмотрим сначала случай $P(u) = \varepsilon$. Представления (14.1), (14.7) задаются матрицами

$$U = \frac{\lambda}{u+v} \begin{pmatrix} (u-v)/2 & uv - \varepsilon \lambda^{-2} \\ 1 & (v-u)/2 \end{pmatrix},$$

$$V = -\lambda U + \frac{\lambda}{(u+v)^2} \begin{pmatrix} (uv)_x & v^2 u_x - u^2 v_x + \frac{\varepsilon}{\lambda^2} (u_x - v_x) - \frac{2\varepsilon}{\lambda} (u+v) \\ v_x - u_x & -(uv)_x \end{pmatrix},$$

$$W_j = r_j^{-1/2} \begin{pmatrix} \lambda v_{j+1} - \beta_j (u_j + v_{j+1}) & -\lambda u_j v_{j+1} + \varepsilon/\lambda - \varepsilon/\beta_j \\ -\lambda & \lambda u_j - \beta_j (u_j + v_{j+1}) \end{pmatrix},$$

где $r_j = -\beta_j (u_j + v_{j+1})^2 - \varepsilon/\beta_j.$ Преобразования (14.2) определяются формулой

$$B_k: \begin{cases} \widetilde{u}_k = u_k + (\beta_k - \beta_{k-1}) \frac{(u_k + v_{k+1})(u_{k-1} - u_k) - \varepsilon/\beta_k \beta_{k-1}}{\beta_k (u_k + v_{k+1}) + \beta_{k-1} (u_{k-1} - u_k)}, \\ \widetilde{v}_k = v_k + (\beta_{k-1} - \beta_k) \frac{(v_k + u_{k-1})(v_{k+1} - v_k) - \varepsilon/\beta_k \beta_{k-1}}{\beta_{k-1} (v_k + u_{k-1}) + \beta_k (v_{k+1} - v_k)}, \\ \widetilde{\beta}_{k-1} = \beta_k, \quad \widetilde{\beta}_k = \beta_{k-1}. \end{cases}$$

При $\varepsilon=0$ все формулы сохраняют смысл и соответствуют модели магнетика Гейзенберга.

Пример 4. Системе (18.2) при $P(u) = \delta u^2$ соответствует легкоосное вырождение модели Ландау-Лифшица. Представления нулевой кривизны задаются матрицами

$$U = \frac{1}{u+v} \begin{pmatrix} \lambda(u-v)/2 & uv \\ \lambda^2 + \delta & \lambda(v-u)/2 \end{pmatrix},$$

$$V = -\lambda U + \frac{1}{(u+v)^2} \begin{pmatrix} \lambda(uv)_x + \frac{\delta}{2}(v^2 - u^2) & v^2u_x - u^2v_x \\ (\lambda^2 + \delta)(v_x - u_x) & -\lambda(uv)_x - \frac{\delta}{2}(v^2 - u^2) \end{pmatrix},$$

$$W_j = r_j^{-1/2} \begin{pmatrix} (\lambda - \beta_j)v_{j+1} + \gamma_j u_j & -u_j v_{j+1} \\ -\lambda^2 - \delta & \lambda u_j - \beta_j u_j + \gamma_j v_{j+1} \end{pmatrix},$$

где $r_j = \gamma_j u_j^2 - 2\beta_j u_j v_{j+1} + \gamma_j v_{j+1}^2, \ \gamma_j^2 - \beta_j^2 = \delta$. Преобразования цепочки имеют вид

$$B_k: \begin{cases} \widetilde{u}_k = \frac{(\beta_{k-1} - \beta_k)u_{k-1}v_{k+1} + u_k(\gamma_k u_{k-1} + \gamma_{k-1}v_{k+1})}{(\beta_{k-1} - \beta_k)u_k + \gamma_{k-1}u_{k-1} + \gamma_k v_{k+1}}, \\ \widetilde{v}_k = \frac{(\beta_k - \beta_{k-1})u_{k-1}v_{k+1} + v_k(\gamma_k u_{k-1} + \gamma_k v_{k+1})}{(\beta_k - \beta_{k-1})v_k + \gamma_{k-1}u_{k-1} + \gamma_k v_{k+1}}, \\ \widetilde{\beta}_{k-1} = \beta_k, \quad \widetilde{\beta}_k = \beta_{k-1}, \quad \widetilde{\gamma}_{k-1} = \gamma_k, \quad \widetilde{\gamma}_k = \gamma_{k-1}. \end{cases}$$

При $\delta=0$ и выбор
е $\gamma_j=-\beta_j$ мы вновь получаем случай магнетика Гейзенберга.

Пример 5. В случае общего положения полином P дробно-линейными преобразованиями приводится к виду $P(u) = u^3 + au + b$. Матрицы, задающие представление (14.7) для системы (18.2) в этом случае имеют вид

$$U = \frac{1}{u+v} \begin{pmatrix} \mu & uv - \lambda(u-v)/2 - \lambda^2 - a \\ (u-v)/2 - \lambda & -\mu \end{pmatrix},$$
$$V = \frac{1}{(u+v)^2} \begin{pmatrix} h & e \\ f & -h \end{pmatrix},$$

где

$$e = (v^{2} - \lambda v + \lambda^{2} + a)u_{x} - (u^{2} + \lambda u + \lambda^{2} + a)v_{x} + \mu(u + v)(u - v + \lambda),$$

$$f = (v + \lambda)u_{x} + (u - \lambda)v_{x} + \mu(u + v),$$

$$h = \mu(v_{x} - u_{x}) + (u + v)(uv + \lambda(u - v) + 2\lambda^{2} + a)/2.$$

Матрица W_j имеет вид

$$W_j = r_j^{-1/2} \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

$$\begin{split} A &= (\mu + \beta_j)s_j + (\lambda - \gamma_j)(\lambda + \gamma_j - v_{j+1}), \\ B &= (\mu + \beta_j)(\lambda + u_j - v_{j+1}) - (\lambda - \gamma_j)(\lambda + 2\gamma_j)s_j - 2\beta_j(\lambda - \gamma_j), \\ C &= \mu + \beta_j - (\lambda - \gamma_j)s_j, \\ D &= -(\mu + \beta_j)s_j - (\lambda - \gamma_j)(\lambda + \gamma_j + u_j), \\ r_j &= 2\beta_j(s_j^2 + u_j - v_{j+1} + \gamma_j), \\ s_j &= (u_jv_{j+1} + \gamma_j(u_j - v_{j+1}) + a + 2\gamma_j^2)/2\beta_j, \end{split}$$

параметры μ
и λ,β_j и γ_j связаны соотношениями

$$\mu^2 + P(\lambda) = 0, \quad \beta_j^2 + P(\gamma_j) = 0.$$

Преобразование B_k задается формулой

$$\widetilde{u}_k = \frac{Ku_k - L}{Mu_k + N}, \quad \widetilde{v}_k = \frac{Kv_k + L}{-Mv_k + N},$$

где

$$\begin{split} K - N &= 2c_2u_{k-1}v_{k+1} - (ac_1 + c_3)(u_{k-1} - v_{k+1}) - 2ac_2 - 4bc_1, \\ K + N &= (u_{k-1} + v_{k+1})[\gamma_k\gamma_{k-1}(ac_0 + 3c_2) + 4bc_1 + 3ac_2 + c_4]/(\gamma_{k-1} - \gamma_k), \\ L &= c_3u_{k-1}v_{k+1} + (ac_2 + 2bc_1)(u_{k-1} - v_{k+1}) + 4bc_2 - a^2c_1, \\ M &= c_1u_{k-1}v_{k+1} + c_2(u_{k-1} - v_{k+1}) - c_3, \end{split}$$

и через c_s обозначены величины $c_s=\beta_k\gamma_{k-1}^{s-1}+\beta_{k-1}\gamma_k^{s-1}.$

где

5 Трансформационные свойства уравнений Пенлеве

Во второй главе было показано, что 4-е и 5-е уравнения Пенлеве обладают представлениями в виде периодически замкнутой цепочки преобразований Дарбу для оператора Шредингера. Здесь приводятся аналогичные представления для уравнений P₂, P₃, P₆ и вырожденного случая P₅, пропущенного ранее. Уравнение P₂ представлено при помощи преобразования Дарбу для скалярного дифференциального оператора 3-го порядка, а остальные при помощи различных преобразований Дарбу для оператора Дирака. Использование принципа нелинейной суперпозиции позволяет вывести преобразования Шлезингера для уравнений Пенлеве и исследовать их групповые свойства.

19 Калибровочные преобразования

Целью данной главы является представление уравнений Пенлеве при помощи цепочек преобразований Дарбу для какой-либо вспомогательной линейной задачи

$$\Psi' = U\Psi,\tag{19.1}$$

подобно тому, как это было сделано ранее для уравнения Шредингера. Напомним, что уравнения P_4 и P_5 возникали при наложении на одевающую цепочку (1.10) условия инвариантности относительно преобразования $S^N K_{\alpha}$ из ее дискретной группы. Здесь S есть циклическая перестановка, а K_{α} — калибровочное преобразование, сдвигающее спектральный параметр в уравнении Шредингера:

$$\widetilde{u} = u - \alpha, \quad \widetilde{\lambda} = \lambda - \alpha.$$

Этот прием приводит к успеху и в случае других цепочек, но общая схема несколько усложняется из-за того, что, вообще говоря, калибровочное преобразование может иметь более сложный вид. В общем случае оно задается формулой

$$\widetilde{U} = A'A^{-1} + AUA^{-1}, (19.2)$$

и если для оператора Шредингера матрица A единичная, так что калибровочное преобразование сводится к простому переобозначению, то, например, в случае оператора Дирака, соответствующего матрице (15.1), она имеет вид

$$A = \operatorname{diag}(e^{\alpha x}, e^{-\alpha x}),$$

и приводит к преобразованию

$$\widetilde{u} = ue^{-2\alpha x}, \quad \widetilde{v} = ve^{2\alpha x}, \quad \widetilde{\lambda} = \lambda - \alpha.$$

Поэтому приходится рассматривать комбинацию преобразования Дарбу и калибровочного. Расмотрим уравнение

$$\Psi_{i+1}(x,\lambda - \alpha_{i+1}) = A_{i+1}(x)W_i(x,\lambda)\Psi_i(x,\lambda),$$

где α_j некоторые параметры, тогда условие совместности с (19.1) есть

$$(A_{j+1}W_j)' = U_{j+1}(\lambda - \alpha_{j+1})A_{j+1}W_j - A_{j+1}W_jU_j(\lambda).$$
(19.3)
После наложения периодического условия система (19.3) становится конечномерной, как и в отсутствии калибровочных преобразований, но при $\alpha = \alpha_1 + \cdots + \alpha_N \neq 0$ она определяет некоторый новый класс потенциалов. Матрица

$$\widehat{W}_{j}(\lambda) = A_{j+N}W_{j+N-1}(\lambda - \alpha_{j+N-1} - \dots - \alpha_{j+1})\dots A_{j+1}W_{j}(\lambda)$$

удовлетворяет соотношению

$$\widehat{W}_{j}'(\lambda) = U_{j}(\lambda - \alpha)\widehat{W}_{j}(\lambda) - \widehat{W}_{j}(\lambda)U_{j}(\lambda)$$

которое можно рассматривать, как матричную версию (6.4) и дискретный аналог уравнения метода изомонодромной деформации

$$V' = U_{\lambda} + [U, V].$$

(Мы не будем рассматривать здесь связей с этим методом, а также гамильтонову теорию уравнеий Пенлеве. Несомненно, она может быть развита на основе гамильтоновых структур соответствующих цепочек, см. [45].)

Определение принципа нелинейной суперпозиции по существу не меняется. Преобразование B_k задается формулой

$$A_{k+1}W_k(\lambda - \beta_k)A_kW_{k-1}(\lambda - \beta_{k-1})A_{k-1} = \widetilde{A}_{k+1}\widetilde{W}_k(\lambda - \beta_k)\widetilde{A}_k\widetilde{W}_{k-1}(\lambda - \beta_{k-1})\widetilde{A}_{k-1} \quad (19.4)$$

где $\beta_k - \beta_{k-1} = \alpha_k$.

20 Второе уравнение Пенлеве

Рассмотрим линейное уравнение $L\Psi = \lambda \Psi$ где $L = D^3 - uD - v$. По аналогии с преобразованием Дарбу (4.4) для оператора Шредингера определим преобразование

$$L_j = (D^2 - f_j D - g_j)(D + f_j), \quad L_{j+1} = (D + f_j)(D^2 - f_j D - g_j) - \alpha_{j+1}.$$

Исключение u_i и v_j приводит к цепочке преобразований Бэклунда

$$\begin{cases} 2f'_{j+1} + f'_j = f^2_{j+1} - f^2_j + g_{j+1} - g_j \\ f''_{j+1} - f'_{j+1}f_{j+1} + g'_j = f_{j+1}g_{j+1} - f_jg_j - \alpha_{j+1}. \end{cases}$$
(20.1)

Она имеет представление (19.3) с матрицами $A_j = 1$,

$$U_j = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \lambda + v_j & u_j & 0 \end{pmatrix}, \quad W_j = \begin{pmatrix} f_j & 1 & 0 \\ f'_j & f_j & 1 \\ \lambda + f_j f'_j + f_j g_j & f^2_j + g_j & f_j \end{pmatrix}.$$

Переразложение (19.4) дает формулу нелинейной суперпозиции

$$B_{k}: \begin{cases} \tilde{f}_{k} = f_{k} + Q, \quad \tilde{f}_{k-1} = f_{k-1} - Q \\ \tilde{g}_{k} = g_{k} - (f_{k} + f_{k-1})Q, \\ \tilde{g}_{k-1} = g_{k-1} - Q' + (f_{k} + f_{k-1})Q, \\ \tilde{\alpha}_{k} = -\alpha_{k}, \quad \tilde{\alpha}_{k\pm 1} = \alpha_{k\pm 1} + \alpha_{k}, \end{cases}$$
(20.2)

где обозначено $Q = \alpha_k/(f_{k-1}f_k + f_k^2 - g_{k-1} - f_k').$ Рассмотрим цепочку (20.1), замкнутую с периодом 2. Мы имеем переопределенную систему

$$\begin{cases}
f_1' = -f_2' = f_1^2 - f_2^2 + g_1 - g_2 \\
f_1'' - f_1 f_1' + g_2' = f_1 g_1 - f_2 g_2 - \alpha_1, \\
f_2'' - f_2 f_2' + g_1' = f_2 g_2 - f_1 g_1 - \alpha_2,
\end{cases}$$
(20.3)

обладающую двумя первыми интегралами

$$f_1 + f_2 = C_1, \quad (f_1^2 + f_2^2)/2 - g_1 - g_2 = (\alpha_1 + \alpha_2)x + C_2.$$

Для удобства положим $f_2 = -f_1$. (Как можно проверить, общий случай сводится к этому.) Тогда система (20.3) упрощается до системы

$$f_1' = g_1 - g_2, \quad g_1' = 2f_1g_1 - \alpha_1, \quad g_2' = -2f_1g_2 - \alpha_2.$$

Линейное преобразование переменных приводит последнюю к виду

$$\begin{cases}
2f' = g_{+} - g_{-}, \\
g'_{+} = 2fg_{+} + \alpha_{+}, \\
g'_{-} = -2fg_{-} + \alpha_{-},
\end{cases}$$
(20.4)

с нормировкой

$$g_+ + g_- - 2f^2 = x, \quad \alpha_+ + \alpha_- = 1.$$
 (20.5)

Система (20.4), (20.5) и задает искомое представление Р₂. Действительно, $f'' = f(g_+ + g_-) + (\alpha_+ - \alpha_-)/2$ и в силу (20.5) получаем, что fудовлетворяет P₂:

$$f'' = 2f^3 + xf + a, \quad a = (\alpha_+ - \alpha_-)/2.$$
 (20.6)

Заметим, что переменные g_+, g_- удовлетворяют уравнению P-типа

$$g_{\pm}'' = \frac{(g_{\pm}')^2}{2g_{\pm}} + 2g_{\pm}^2 - xg_{\pm} - \frac{\alpha_{\pm}^2}{2g_{\pm}}$$

(уравнение XXXIV в списке Айнса [42]). Система (20.4), (20.5) дает известные дифференциальные подстановки, связывающие его с Р₂:

$$\pm f = \frac{g'_{\pm} - \alpha_{\pm}}{2g_{\pm}}, \quad g_{\pm} = f^2 \pm f' + x/2.$$

Формула нелинейной суперпозиции (20.2) для k = 1, 2, переписанная в терминах системы (20.4), (20.5), принимает вид

$$B_{\pm}: \begin{cases} \tilde{f} = f \pm \frac{\alpha_{\pm}}{g_{\pm}}, \quad \tilde{g}_{\pm} = g_{\pm}, \quad \tilde{g}_{\mp} = g_{\mp} \pm \frac{4\alpha_{\pm}f}{g_{\pm}} + \frac{2\alpha_{\pm}^2}{g_{\pm}^2}, \\ \tilde{\alpha}_{\pm} = -\alpha_{\pm}, \quad \alpha_{\mp} = \alpha_{\mp} + 2\alpha_{\pm}. \end{cases}$$
(20.7)

Отметим изменение в формуле для α_i , появляющееся при замыкании с периодом 2. Новая формула следует из того же правила перестановки корней $\beta_k = \beta_{k-1}, \ \beta_{k-1} = \beta_k$ в произведении детерминантов det W_j .

В терминах уравнения (20.6) преобразования B_{\pm} имеют вид

$$\widetilde{f} = f \pm \frac{2a \pm 1}{2f' \pm 2f^2 \pm x}, \quad \widetilde{a} = \pm 1 - a.$$

Эта формула впервые была установлена в работе [55]. Преобразования B_{\pm} порождают группу, изоморфную аффинной группе Вейля \widetilde{A}_1 . Кроме того, система (20.4), (20.5) допускает также преобразования

$$R: \quad \tilde{f}(x) = \varepsilon f(\varepsilon x), \quad \tilde{g}_{\pm}(x) = \varepsilon^2 g_{\pm}(\varepsilon x), \quad \tilde{\alpha}_{\pm} = \alpha_{\pm}, \quad \varepsilon^3 = 1,$$
$$S: \quad \tilde{f} = -f, \quad \tilde{g}_{\pm} = g_{\mp}, \quad \tilde{\alpha}_{\pm} = \alpha_{\mp}.$$

Очевидны тождества

$$R^3 = S^2 = B_{\pm}^2 = 1, \quad B_+ = SB_-S, \quad RS = SR, \quad RB_{\pm} = B_{\pm}R.$$

Следует признать, что цепочка (20.1) дает достаточно неуклюжее представление для P_2 . Возможно, существуют и более простые цепочки, приводящие к той же цели. Заметим, что одно и то же уравнение Пенлеве может возникнуть из разных цепочек. Например, если мы возьмем вместо $L = D^3 - uD - v$ оператор 4-го порядка, то при замыкании с периодом 2 мы снова получим P_2 . Аналогично, уравнение P_4 , полученное ранее из цепочки для оператора Шредингера, возникает также и при рассмотрении цепочки (20.1); в обоих случаях период равен 3.

21 Вырождение третьего уравнения Пенлеве

Обратимся теперь к изучению оператора Дирака

$$U_j = \begin{pmatrix} -\lambda & -v_j \\ u_j & \lambda \end{pmatrix}$$
(21.1)

Как мы видели в главе 4, для этого оператора существуют три существенно различных преобразования Бэклунда, в зависимости от степени по λ полинома det W_j . Оставшаяся часть этой главы посвящена изучению этих трех случаев. Матрица калибровочного преобразования во всех случаях равна

$$A_j = \begin{pmatrix} \varepsilon_j & 0\\ 0 & \varepsilon_j^{-1} \end{pmatrix},$$

где $\varepsilon_j'=\alpha_j\varepsilon_j.$ Рассмотрим сначала случай $\det W_j={\rm const}$. Матрица W_j есть

$$W_j = \begin{pmatrix} 0 & -\exp(-q_j) \\ \exp(q_j) & 2\lambda - q'_j \end{pmatrix}, \qquad (21.2)$$

где $u_j = \exp(q_j), v_j = \varepsilon_j^2 \exp(-q_{j-1})$. Уравнение (19.3) приводит к следующему обобщению цепочки Тоды:

$$q_j'' = \varepsilon_{j+1}^2 \exp(q_{j+1} - q_j) - \varepsilon_j^2 \exp(q_j - q_{j-1}).$$
(21.3)

После периодического замыкания $A_{j+2}=A_j, \, W_{j+2}=W_j$ функция $f=q_2-q_1$ удовлетворяет уравнению

$$f'' = 2\varepsilon_1^2 \exp(-f) - 2\varepsilon_2^2 \exp(f).$$

Пусть $\alpha_1 + \alpha_2 = \alpha \neq 0$. Подстановка

$$y(\varepsilon_1\varepsilon_2) = \varepsilon_2\varepsilon_1^{-1}\exp(f(x))$$

приводит к уравнению

$$y'' = \frac{(y')^2}{y} - \frac{y'}{x} - \frac{2}{\alpha^2 x}(y^2 - 1),$$

являющемуся частным случаем Р₃.

Переразложение (19.4) для данных матриц A_i, W_j приводит лишь к тождественному преобразованию. Таким образом, в данном случае наш метод не позволяет найти преобразование Шлезингера.

$\mathbf{22}$ Третье и вырожденное пятое уравнения Пенлеве

Второму типу преобразования Бэклунда для оператора Дирака отвечает матрица

$$W_j = \begin{pmatrix} 1 & -g_{j+1} \\ f_j & 2\lambda - f_j g_{j+1} \end{pmatrix}, \qquad (22.1)$$

где $f_j = u_j, v_j = \varepsilon_j^2 g_j$. В этом случае уравнение (19.3) приводит к цепочке

$$\begin{cases} f'_{j} = \varepsilon_{j+1}^{2} f_{j+1} + f_{j}^{2} g_{j+1}, \\ -g'_{j} = \varepsilon_{j-1}^{2} g_{j-1} + g_{j}^{2} f_{j-1}, \\ \varepsilon'_{j} = \alpha_{j} \varepsilon_{j} \end{cases}$$
(22.2)

а формула (19.4) к преобразованию

$$B_{k}: \begin{cases} \widetilde{f}_{k} = \varepsilon_{k}^{2}(f_{k} - 2\alpha_{k}f_{k-1}/H), & \widetilde{f}_{k-1} = \varepsilon_{k}^{-2}f_{k-1}, \\ \widetilde{g}_{k} = \varepsilon_{k}^{2}(g_{k} + 2\alpha_{k}g_{k+1}/H), & \widetilde{g}_{k+1} = \varepsilon_{k}^{-2}g_{k+1}, \\ \widetilde{\alpha}_{k} = -\alpha_{k}, & \widetilde{\alpha}_{k\pm 1} = \alpha_{k\pm 1} + \alpha_{k}, \\ \widetilde{\varepsilon}_{k} = \varepsilon_{k}^{-1}, & \widetilde{\varepsilon}_{k\pm 1} = \varepsilon_{k\pm 1}\varepsilon_{k}, \end{cases}$$

$$(22.3)$$

где $H = \varepsilon_k^2 - f_{k-1}g_{k+1}$. Рассмотрим цепочку (22.2), замкнутую с периодом 2, и нормированную условием $\alpha_1 + \alpha_2 = 1$. Полученная система ОДУ

$$\begin{aligned}
f_1' &= \varepsilon_2^2 f_2 + f_1^2 g_2, \quad -g_1' &= \varepsilon_2^2 g_2 + g_1^2 f_2, \\
f_2' &= \varepsilon_1^2 f_1 + f_2^2 g_1, \quad -g_2' &= \varepsilon_1^2 g_1 + g_2^2 f_1,
\end{aligned}$$
(22.4)

допускает понижение порядка двумя различными способами. Обозначим

$$s = f_1 g_2 + f_2 g_1, \quad r = f_1 g_2 - f_2 g_1, \quad Y = -\varepsilon_2^{-2} f_1 g_1, \quad Z = \varepsilon_1 f_1 / \varepsilon_2 f_2.$$
 (22.5)

Тогда s есть первый интеграл системы (22.4), а Y, r и Z, r удовлетворяют соответственно системам

$$Y' = r(Y+1) - 2\alpha_2 Y, \quad r' = 2\varepsilon_1^2 \varepsilon_2^2 Y + (r^2 - s^2)/2Y$$

И

$$Z' = \varepsilon_1 \varepsilon_2 (1 - Z^2) + (\alpha_1 - \alpha_2 + r)Z, \quad r' = \varepsilon_1 \varepsilon_2 ((r - s)Z + (r + s)/Z).$$

Замены

$$Y(x) = 1/(y(\varepsilon_1^2 \varepsilon_2^2) - 1), \quad r(x) = \varphi(\varepsilon_1^2 \varepsilon_2^2),$$

$$Z(x) = z(\varepsilon_1 \varepsilon_2), \quad r(x) = \psi(\varepsilon_1 \varepsilon_2),$$
(22.6)

переводят эти системы в

$$y' = \frac{y-1}{2x}(2\alpha_2 - y\varphi), \quad \varphi' = \frac{1}{y-1} + \frac{y-1}{4x}(\varphi^2 - s^2),$$

И

$$z' = 1 - z^2 + \frac{z}{x}(\alpha_1 - \alpha_2 + \psi), \quad \psi' = (\psi - s)z + \frac{1}{z}(\psi + s)$$

соответственно.

Исключение φ из первой системы приводит к вырожденному случаю Р₅

$$y'' = \left(\frac{1}{2y} + \frac{1}{y+1}\right)(y')^2 - \frac{y'}{x} + \frac{(y-1)^2}{x^2}\left(ay + \frac{b}{y}\right) - \frac{y}{2x}$$
(22.7)

где

$$a = s^2/8, \quad b = -\alpha_2^2/2,$$

а исключение ψ из второй системы приводит к P_3

$$z'' = \frac{(z')^2}{z} - \frac{z'}{x} + \frac{1}{x}(Az^2 + B) + z^3 - \frac{1}{z}$$
(22.8)

где

$$A = -s - 2\alpha_1, \quad B = s + 2\alpha_2$$

Заметим, что при помощи растяжения можно заменить коэффициенты при последнем члене уравнения (22.7) и двух последних членах в уравнении (22.8) на произвольные ненулевые константы.

Итак, мы показали, что цепочка (22.2) дает представление сразу для двух уравнений Пенлеве. Это приводит к существованию скрытой связи между этими двумя уравнениями. Используя формулы (22.5), (22.6), можно легко получить дифференциальную подстановку из P₃ в P₅

$$y(x^{2}) = 1 + \frac{2x}{x(z'(x) - 1 + z^{2}(x)) + (\alpha_{2} - \alpha_{1} - s)z(x)}$$

и наоборот из Р₅ в Р₃

~

$$z(x) = \frac{2xy(x^2)}{(2\alpha_2 - sy(x^2))(y(x^2) - 1) - 2x^2y'(x^2)}$$

Впервые эта связь между P_3 и P_5 была обнаружена Громаком в [47]. Он нашел также и преобразования Шлезингера для этих уравнений. Перейдем к их выводу из дискретных симметрий системы (22.4).

Для полноты заметим, что система (22.4) допускает группу, порожденную непрерывными преобразованиями

$$P_{\mu,\nu}: \begin{cases} \tilde{f}_1 = \mu f_1, & \tilde{f}_2 = \nu f_2, & \tilde{g}_1 = g_1/\nu, & \tilde{g}_2 = g_2/\mu, \\ \tilde{\alpha}_j = \alpha_j, & \tilde{\varepsilon}_1 = \sqrt{\nu/\mu}\varepsilon_1, & \tilde{\varepsilon}_2 = \sqrt{\mu/\nu}\varepsilon_2, \end{cases}$$
$$Q_{x_0}: \begin{cases} \tilde{f}_j(x) = f_j(x+x_0), & \tilde{g}_j(x) = g_j(x+x_0), \\ \tilde{\alpha}_j = \alpha_j, & \tilde{\varepsilon}_j = \exp(\alpha_j x_0)\varepsilon_j. \end{cases}$$

Дискретная же группа порождена преобразованиями (22.3), которые после наложения условия периодичности принимают вид

$$B_k: \begin{cases} f_k = \varepsilon_k^2 (f_k - 2\alpha_k f_{k+1}/H), & f_{k+1} = \varepsilon_k^{-2} f_{k+1}, \\ \widetilde{g}_k = \varepsilon_k^2 (g_k + 2\alpha_k g_{k+1}/H), & \widetilde{g}_{k+1} = \varepsilon_k^{-2} g_{k+1}, \\ \widetilde{\alpha}_k = -\alpha_k, & \widetilde{\alpha}_{k+1} = \alpha_{k+1} + 2\alpha_k, & \widetilde{\varepsilon}_k = \varepsilon_k^{-1}, & \widetilde{\varepsilon}_{k+1} = \varepsilon_{k+1} \varepsilon_k^2, \end{cases}$$

где $H = \varepsilon_k^2 - f_{k+1}g_{k+1}, \ k = 1, 2,$ а также преобразованиями

$$R_k: \begin{cases} \widetilde{f}_k = -g_k, & \widetilde{f}_{k+1} = g_{k+1}, & \widetilde{g}_k = -f_k, & \widetilde{g}_{k+1} = f_{k+1} \\ & \widetilde{\alpha}_j = \alpha_j, & \widetilde{\varepsilon}_j = \varepsilon_j, \end{cases}$$
$$S: \quad \widetilde{f}_j = f_{j+1}, \quad \widetilde{g}_j = g_{j+1}, \quad \widetilde{\alpha}_j = \alpha_{j+1}, \quad \widetilde{\varepsilon}_j = \varepsilon_{j+1}, \end{cases}$$

Эти преобразования удовлетворяют соотношениям

$$B_j^2 = R_j^2 = S^2 = 1, \quad B_1 S = S B_2, \quad R_1 S = S R_2,$$

 $B_i R_j = R_j B_i, \quad R_1 R_2 = R_2 R_1$

и порождают группу Кокстера с графом

$$\begin{array}{cccc} & & & & & \\ \bullet & & & \\ B_1 & & S & & \\ \end{array}$$

Рассмотрим действие этих преобразований на уравнениях (22.8). Легко проверяется, что оба преобразования R_1 и R_2 приводят к одной и той же дифференциальной подстановке

$$\widetilde{z} = z + \frac{(2+A-B)z^2}{x(z'-1+z^2) + (B-1)z}, \quad \widetilde{A} = B-2, \quad \widetilde{B} = A+2.$$

Преобразования B_1 и B_2 приводят к аналогичным подстановкам

$$B_1: \quad \tilde{z} = z + \frac{(2 - A - B)z^2}{x(z' - 1 - z^2) + (B - 1)z}, \quad \tilde{A} = 2 - B, \quad \tilde{B} = 2 - A,$$

$$B_2: \quad \tilde{z} = z + \frac{(2 + A + B)z^2}{x(z' + 1 + z^2) - (B + 1)z}, \quad \tilde{A} = -2 - B, \quad \tilde{B} = -2 - A,$$

Наконец, преобразование S порождает точечную замену

 $\widetilde{z} = 1/z, \quad \widetilde{A} = -B, \quad \widetilde{B} = -A.$

На уравнении (22.7) преобразования R_1, R_2, B_2 действуют тождественно, а преобразования S и B_1 приводят соответственно к преобразованиям Шлезингера

$$\widetilde{y} = 1 + \frac{xy^2(y-1)}{2ay^2(y-1)^2 - (\alpha_2(y-1) - xy')^2}, \quad \widetilde{a} = a, \quad \widetilde{b} = -\alpha_1^2/2$$

И

$$\widetilde{y} = 1 + \frac{(y-1)h^2}{h^2 - 2\alpha_1(y-1)\varphi h + \alpha_1^2(\varphi^2 - 8a)(y-1)^2}, \quad \widetilde{a} = a, \quad \widetilde{b} = -(1+\alpha_1)^2/2,$$

где

$$\alpha_2 = \sqrt{-2b}, \quad \alpha_1 = 1 - \alpha_2, \quad h = x - (y - 1)(\varphi^2 / 4 - 2a), \quad \varphi = \frac{2}{y} \left(\alpha_2 - \frac{xy'}{y - 1} \right).$$

23 Шестое уравнение Пенлеве

Рассмотрим случай $\det W_j = 4\lambda^2 - \gamma_j^2.$ Матрица W_j имеет вид

$$W_j = \begin{pmatrix} -2\lambda + r_j & -g_j \\ f_j & 2\lambda + r_j \end{pmatrix}$$

где $r_j^2 = \gamma_j^2 - f_j g_j$. Уравнение (19.3) эквивалентно следующим соотношениям:

$$f_{j} = \varepsilon_{j+1}^{2} u_{j+1} + u_{j}, \quad g_{j} = \varepsilon_{j+1}^{-2} v_{j+1} + v_{j},$$

$$f'_{j} = r_{j}(\varepsilon_{j+1}^{2} u_{j+1} - u_{j}), \quad g'_{j} = r_{j}(\varepsilon_{j+1}^{-2} v_{j+1} - v_{j}), \quad \varepsilon'_{j} = \alpha_{j} \varepsilon_{j}.$$

(23.1)

После замыкания с периодом 2 и исключения переменных u_j, v_j получаем систему четвертого порядка

$$f_1' = \frac{r_1}{1-E} (2\varepsilon_2^2 f_2 - (1+E)f_1), \quad g_1' = \frac{r_1}{1-E} ((1+E)g_1 - 2\varepsilon_1^2 g_2),$$

$$f_2' = \frac{r_2}{1-E} (2\varepsilon_1^2 f_1 - (1+E)f_2), \quad g_1' = \frac{r_2}{1-E} ((1+E)g_2 - 2\varepsilon_2^2 g_1),$$
(23.2)

где $E = \varepsilon_1^2 \varepsilon_2^2$, причем мы не теряя общности можем положить

$$\alpha_1 + \alpha_2 = 1/2, \quad E' = E.$$

Эта система и задает искомое представление P₆. Чтобы убедиться в этом, заметим, что она обладает первым интегралом

$$r_1 + r_2 = s = \text{const}$$

и допускает понижение порядка за счет введения переменной

$$F = \frac{f_2}{\varepsilon_1^2 f_1}.$$

Переменные F и r_1 удовлетворяют системе

$$\begin{cases} F' = -2\alpha_1 F + \frac{1}{1-E} (2(s-r_1) + (1+E)(2r_1-s)F - 2Er_1F^2), \\ r'_1 = \frac{1}{1-E} (E(r_1^2 - \gamma_1^2)F - ((r_1-s)^2 - \gamma_2^2)F^{-1}). \end{cases}$$

Подстановка

$$y(E^{-1}) = F(x), \quad \varphi(E^{-1}) = r_1(x)$$
 (23.3)

приводит ее к виду

$$\begin{cases} y' = 2\varphi \frac{(y-x)(y-1)}{x(x-1)} - \frac{2s}{x-1} + 2\alpha_1 \frac{y}{x} + s\frac{x+1}{x(x-1)}y, \\ \varphi' = \frac{1}{x(x-1)} \Big(\Big(\frac{x}{y} - y\Big)\varphi^2 - 2s\frac{x\varphi}{y} + (s^2 - \gamma_2^2)\frac{x}{y} + \gamma_1^2y \Big). \end{cases}$$

Из первого уравнения имеем

$$\varphi = \frac{x(x-1)}{2(y-x)(y-1)} \left(y' - 2\alpha_1 \frac{y}{x} + \frac{2s}{x-1} - s\frac{x+1}{x(x-1)}y \right)$$
(23.4)

и после исключения φ получаем P₆:

$$y'' = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right) (y')^2 - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right) y' + \frac{y(y-1)(y-x)}{x^2(x-1)^2} \left(a + b\frac{x}{y^2} + c\frac{x-1}{(y-1)^2} + d\frac{x(x-1)}{(y-x)^2} \right)$$
(23.5)

где

$$a = 2\gamma_1^2$$
, $b = -2\gamma_2^2$, $2c = (2\alpha_1 - s)^2$, $2d = 1 - (2\alpha_2 - s)^2$.

Найдем преобразования Шлезингера для уравнения (23.5). В принципе их можно получить из формул (15.18), но проще провести некоторые вычисления заново. Перемножая матрицы, находим, что величины

$$s_k = r_k + r_{k-1},$$

$$I_k = (2\beta_{k-1} + r_{k-1} - (2\beta_k - r_k)F_k)/(1 - F_k),$$

$$J_k = (2\beta_k + r_k)(2\beta_{k-1} + r_{k-1}) + F_k(r_k^2 - \gamma_k^2),$$

где $F_k = f_{k-1}/\varepsilon_k^2 f_k$, не меняются при преобразовании (19.4):

$$\widetilde{s}_k = s_k, \quad \widetilde{I}_k = I_k, \quad \widetilde{J}_k = J_k$$

Исключение \tilde{r}_k и \tilde{r}_{k-1} из этих трех равенств приводит к формуле

$$\widetilde{F}_{k} = F_{k} \frac{\left((2\alpha_{k} - s_{k})/(F_{k} - 1) - r_{k}\right)^{2} - \gamma_{k}^{2}}{\left((2\alpha_{k} - s_{k}/(F_{k} - 1) - r_{k} + 2\beta_{k} - 2\widetilde{\beta}_{k}\right)^{2} - \widetilde{\gamma}_{k}^{2}},$$
(23.6)

Здесь новые значения γ_k и β_k можно получить, рассмотрев действие преобразования B_k на детерминанты матриц W_k , W_{k-1} , причем, как уже отмечалось в примере 3) раздела 15, преобразование (23.6) оказывается многозначным. Кроме того, следует помнить, что при замыкании с периодом 2 формулы для пересчета коэффициентов α_j должны быть слегка модифицированы (ср. с разделом 20). Например, если B_k переставляет 1-й и 3-й множители в произведении

$$\dots (2\lambda - 2\beta_k + \gamma_k)(2\lambda - 2\beta_k - \gamma_k)(2\lambda - 2\beta_{k-1} + \gamma_{k-1})(2\lambda - 2\beta_{k-1} - \gamma_{k-1})\dots$$

то

$$\begin{split} \widetilde{\beta}_{k} &= \frac{1}{2}(\beta_{k} + \beta_{k-1}) + \frac{1}{4}(\gamma_{k} - \gamma_{k-1}), \qquad \widetilde{\beta}_{k-1} &= \frac{1}{2}(\beta_{k} + \beta_{k-1}) - \frac{1}{4}(\gamma_{k} - \gamma_{k-1}), \\ \widetilde{\gamma}_{k} &= \beta_{k} - \beta_{k-1} + \frac{1}{2}(\gamma_{k} + \gamma_{k-1}), \qquad \widetilde{\gamma}_{k-1} &= \beta_{k-1} - \beta_{k} + \frac{1}{2}(\gamma_{k} + \gamma_{k-1}), \end{split}$$

причем при замыкании с периодом 2 имеем

$$\widetilde{\alpha}_1 = \frac{1}{2}(\gamma_1 - \gamma_2), \quad \widetilde{\alpha}_2 = 1 - \frac{1}{2}(\gamma_1 - \gamma_2).$$

При k=1получаем из (23.6), в силу (23.3), искомо
е преобразование Шлезингера для \mathbf{P}_6

$$B_1: \quad \tilde{y} = y \frac{((2\alpha_1 - s)/(y - 1) - \varphi)^2 - \gamma_1^2}{((2\alpha_1 - s)/(y - 1) - \varphi + 2\beta_1 - 2\tilde{\beta}_1)^2 - \tilde{\gamma}_1^2},$$

где φ задается формулой (23.4). Аналогичная подстановка B_2 получается из (23.6) при k = 2. Она сопряжена с B_1 циклическим сдвигом

$$S: \quad \widetilde{f}_j = f_{j+1}, \quad \widetilde{g}_j = g_{j+1}, \quad \widetilde{\alpha}_j = \alpha_{j+1}, \quad \widetilde{\gamma}_j = \gamma_{j+1},$$

котрый в терминах Р₆ приводит к точечной замене

$$\widetilde{y} = x/y, \quad \widetilde{a} = -b, \quad \widetilde{b} = -a, \quad \widetilde{c} = \frac{1}{2} - d, \quad \widetilde{d} = \frac{1}{2} - c.$$

Система (23.2) инвариантна также относительно преобразований

$$\begin{aligned} R: \quad &\widetilde{f}_j(x) = f_j(-x), \quad \widetilde{g}_j(x) = g_j(-x), \quad \widetilde{\alpha}_j = \alpha_{j+1}, \quad &\widetilde{\gamma}_j = \gamma_j, \\ T: \quad &\widetilde{f}_j = g_j, \quad &\widetilde{g}_j = f_j, \quad &\widetilde{r}_j = -r+j, \quad &\widetilde{\alpha}_j = \alpha_{j+1}, \quad &\widetilde{\gamma}_j = \gamma_j, \quad &\widetilde{s} = -s \end{aligned}$$

Первое из них порождает точечное преобразование Р₆

$$\widetilde{y}(x) = xy(1/x), \quad \widetilde{a} = a, \quad \widetilde{b} = b, \quad \widetilde{c} = \frac{1}{2} - d, \quad \widetilde{d} = \frac{1}{2} - c,$$

а второе приводит к дифференциальной подстановке

$$\begin{split} \widetilde{y} &= \frac{x}{y} \frac{(\varphi - s)^2 - \gamma_2^2}{\varphi^2 - \gamma_1^2}, \\ \widetilde{a} &= a, \quad \widetilde{b} = b, \quad 2\widetilde{c} = (1 - \sqrt{2c})^2, \quad 2\widetilde{d} = 1 - (1 - \sqrt{1 - 2d})^2 \end{split}$$

где φ задано формулой (23.4)
и $s=1-\sqrt{2c}-\sqrt{1-2d}.$ Заметим, что знаки корней можно выбирать произвольно, так что последняя формула определяет фактически 4 разных преобразования.

С другой стороны, известное преобразование Р₆

$$Q: \quad \widetilde{y}(x) = 1 - y(1 - x), \quad \widetilde{a} = a, \quad \widetilde{b} = -c, \quad \widetilde{c} = -b, \quad \widetilde{d} = d$$

не выводится из дискретных симметрий системы (23.2). В этом случае редуцированная система приобретает по сравнению с исходной дополнительную симметрию.

Выполняются следующие тождества

$$\begin{split} B_j^2 &= Q^2 = R^2 = S^2 = T^2 = (RS)^2 = (ST)^2 = (TR)^2 = (QR)^3 = (QS)^4 = 1,\\ B_{j+1} &= SB_jS = RB_jR = TB_jT, \end{split}$$

где для простоты рассматривается только одна ветвь многозначных преобразований B_j, T . Преобразования Шлезингера для P_6 впервые были найдены в [18], см. также [51].

Список литературы

- Ablowitz M J and Fokas A S, On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23:11 (1982) 2033–2042
- [2] Adler M and Moser J, On a class of polynomials connected with the Korteweg–de Vries equation, Commun. Math. Phys. 61 (1978) 1–30
- [3] Adler V E, Nonlinear chains and Painlevé equations, *Physica D* 73 (1994) 335–351 5, 14
- [4] Adler V E and Yamilov R I, Explicit auto-transformations of integrable chains, J. Physics A 27 (1994) 477–492
 6, 50
- [5] Airault H, Rational solutions of Painlevé equations, Stud. Appl. Math. 61:1 (1979) 33-54
 5, 33
- [6] Bruschi M and Ragnisco O, Lax representation and complete integrability for the periodic relativistic Toda lattice, *Phys. Let. A* **134** (1989) 365–370 55
- Bruschi M, Ragnisco O, Santini P M and Tu Gui Zhang, Integrable symplectic maps, *Physica D* 49 (1991) 273–294
 4, 6, 41, 43, 52
- [8] Calogero F and Degasperis A, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, preprint Instituto di Fisica G.Markoni - Univ.di Roma 151 (1979) 1-37
- [9] Calogero F and Degasperis A, Spectral transforms and solitons, Amsterdam: North-Holland, 1982 (перевод: Калоджеро Ф., Дегасперис А. Спектральные преобразования и солитоны, М.: Мир, 1985) 14, 17
- [10] Chen H H, Lee Y C and Liu C S, Integrability of nonlinear Hamiltonian systems by inverse scattering method, *Physica Scr.* 20 (1979) 490–492 68
- [11] Chen H H and Liu C S, Bäcklund transformation solutions of the Toda lattice equation, J. Math. Phys. 16:7 (1975) 1428–1430
 53
- [12] Crum M M, Associated Sturm-Liouville systems, Quart. J. Math. Oxford (2) 6 (1955) 121–127
 4, 6, 22, 23, 25, 28

4

- [13] Darboux G, , C.R. Acad. Sci. Paris 94 (1882) 1456
- [14] Deift P A, Applications of a commutation formula, Duke Math. Journ. 45 (1978) 267
- [15] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C, Solitons and nonlinear wave equations, London: Academic Press, 1982 (перевод: Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения, М.: Мир, 1988)
 14, 52
- [16] Flaschka H, Newell A, Monodromy and spectrum preserving deformations, Comm. Math. Phys. 76 (1980) 67–116
 29
- [17] Fokas A S and Mũgan U, Schlesinger transformations of Painleve II-V, J. Math. Phys. 33:6 (1992) 2031–2045
- [18] Fokas A S and Yortsos Y C, The transformation properties of the sixth Painlevé equation and one-parameter families of solutions, *Lett. Nuovo Cim.* 30:17 (1981) 539–544

- [19] Fordy A P and Kulish P P, Nonlinear Schrödinger equations and simple Lie algebras, Commun. Math. Phys. 89:3 (1983) 427–443
 6, 62
- [20] Grammaticos B, Hietarinta J and Ramani A, Discrete versions of the Painlevé equations, *Phys. Rev. Let.* 67:14 (1991) 1829–1832 5, 43
- [21] Grammaticos B, Nijhoff F W, Papageorgiou V G and Ramani A, Isomonodromic deformation problem for discrete analogues of Painlevé equations, *INS preprint no.* **178** (1991) 5, 43
- [22] Infeld L and Hull T E, The factorization method, Rev. Modern Phys. 23:1 (1951) 21–68
- [23] Kaup D J, Finding eigenvalue problems for solving nonlinear evolution equations, *Progr. of Theor. Phys.* 54:1 (1975) 72–78
- [24] Lamb G L, jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, *Rev. Mod. Phys.* 43:2 (1971) 99–1244, 59, 60
- [25] Lamb G L, jr., Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys. 15:12 (1974) 2157–2165 4, 14
- [26] Levi D, Nonlinear differential difference equations as Bäcklund transformations, *Journal of Physics A* 14 (1981) 1083–1098
- [27] Loos O, Jordan pairs, Lecture Notes in Math. **480** (1975) 64
- [28] Miura R M, ed., Bäcklund transformations, Lect. Notes in Math. 515 (1976)
 4, 14
- [29] Moser J and Veselov A P, Discrete versions of some classical integrable systems and factorization of matrix polynomials, *Commun. Math. Phys.* 139 (1991) 217–243
 4, 41
- [30] Okamoto K, Math. Ann. 275 (1986) 221 5
- [31] Papageorgiou V G, Nijhoff F W and Capel H W, Integrable mappings and nonlinear integrable lattice equations, *Phys. Let. A* 147:2,3 (1990) 106–114 4, 41
- [32] Quispel G R W, Roberts J A G and Thompson C J, Integrable mappings and soliton equations, *Phys. Lett. A* **126** (1988) 419–421 4, 41
- [33] Rogers C and Shadwick W F, Bäcklund transformations and their applications, New York: Academic Press, 1982 4, 14
- [34] Shabat A B, The infinite-dimensional dressing dynamical system, *Inverse problems* 8 (1992) 303
- [35] Shabat A B and Yamilov R I, Lattice representations of integrable systems, *Phys. Lett. A* 130:4,5 (1988) 271–275
- [36] Svinolupov S I, Generalized Schrödinger equations and Jordan pairs, Commun. Math. Phys. 143 (1992) 559–575
 6, 50, 62, 64
- [37] Svinolupov S I and Yamilov R I, The multi-field Schrödinger lattices, *Phys. Lett. A 160* 1991 (548–552)
 6, 50, 63
- [38] Wahlquist H D and Estabrook F B, Bäcklund transformations for solutions of the Korteweg - de Vries equation, *Phys. Rev. Lett.* **31** (1973) 1386–1390 4, 14

- [39] Weiss J, Periodic fixed points of Bäcklund transformations and the Korteweg - de Vries equation, J. Math. Phys. 27:11 (1986) 2647–2656 4, 14, 46
- [40] Yamilov R I, On the construction of Miura type transformations by others of this kind, *Phys. Lett. A* 173:1 (1993) 53–57
- [41] Адлер В.Э., Перекройка многоугольников, Функц. анализ и прилож.
 27:2 (1993) 79–82
 4, 5, 6, 14, 29
- [42] Айнс Е.Л., Обыкновенные дифференциальные уравнения, Харьков: ДНТВУ, 1939 74
- [43] Веселов А.П., Интегрируемые отображения, Успехи мат. наук 46:5 (1991) 3–45
 4, 6, 41, 52
- [44] Веселов А.П., Интегрируемые лагранжевы соответствия и факторизация матричных многочленов, Функц. анализ и прилож. 25:2 (1991) 38–49
 4, 41
- [45] Веселов А.П., Шабат А.Б., Одевающая цепочка и спектральная теория оператора Шредингера, Функц. анализ и прилож. 27:2 (1993) 1–21 4, 5, 6, 14, 29, 42, 43, 73
- [46] Воробьев А.П., О рациональных решениях второго уравнения Пенлеве, Дифф. ур. 1:1 (1965) 79–81
- [47] Громак В.И., О решениях третьего уравнения Пенлеве, Дифф. ур. 9:11 (1973) 2082–2083
 5, 77
- [48] Громак В.И., Дифф. ур. 11:3 (1975) 373–376 5
- [49] Громак В.И., О решениях пятого уравнения Пенлеве, Дифф. ур. 12:4 (1976) 740–742
 5, 40
- [50] Громак В.И., Лукашевич Н.А., Специальные классы решений уравнений Пенлеве, Дифф. ур. 18:3 1982 (419–429)
 5, 33
- [51] Громак В.И., Лукашевич Н.А., Аналитические свойства решений уравнений Пенлеве, Минск: Университетское, 1992 5, 6, 31, 33, 81
- [52] Дубов С.Ю., Елеонский В.М., Кулагин Н.Е., Об эквидистантных спектрах ангармонических осцилляторов, ЖЭТФ 102:3:9 (1992) 814–826 28
- [53] Дубровин Б.А., Тэта-функции и нелинейные уравнения, Успехи мат. наук 36:2 (1981) 11–80
 4, 45
- [54] Лукашевич Н.А., К теории четвертого уравнения Пенлеве, Дифф. ур.
 3:5 (1967) 771–780
 5, 31, 33
- [55] Лукашевич Н.А., К теории второго уравнения Пенлеве, Дифф. ур. 7:6 (1971) 1124–1125
 5, 75
- [56] Манаков С.В., К теории двумерной стационарной самофокусировки электромагнитных волн, ЖЭТФ 65:2 (1973) 505–516 6, 62, 63
- [57] Михайлов А.В., Шабат А.Б., Ямилов Р.И., Симметрийный подход к классификации нелинейных уравнений, Успехи мат. наук 42:4 (1987) 3–53 55, 69

- [58] Новиков С.П., Периодическая задача Кортевега-де Фриза, Функц. анализ и прилож. 8 (1974) 54–66 4
- [59] Свинолупов С.И., Соколов В.В., Векторно-матричные обобщения классических интегрируемых уравнений, *ТМФ* (1993) 64
- [60] Свинолупов С.И., Соколов В.В., Ямилов Р.И., О преобразованиях Бэклунда для интегрируемых эволюционных уравнений, ДАН СССР 271:4 (1983) 802–805 17
- [61] Тахтаджян Л.А., Фаддеев Л.Д., Гамильтонов подход в теории солитонов, М.:Наука, 1986 54, 55
- [62] Флюгге З., Задачи по квантовой механике, т.1, М.:Мир, 1974 27
- [63] Шабат А.Б., О потенциалах с нулевым коэффициентом отражения, Динамика сплошной среды 5 (1970) 130–145 17
- [64] Шабат А.Б., Ямилов Р.И., Симметрии нелинейных цепочек, Алгебра и анализ **2:2** (1990) 183 4, 42
- [65] Ямилов Р.И., Обратимые замены переменных, порожденные преобразованиями Бэклунда, ТМФ 85:3 (1990) 368–375
 61