Lecture 6.
 $O(N)$-model: integrability and the exact S-matrix

Michael Lashkevich

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \partial \bar{\partial} \boldsymbol{n}=\omega \boldsymbol{n}, \quad \boldsymbol{n}^{2}=1 . \tag{2}
\end{equation*}
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \partial \bar{\partial} \boldsymbol{n}=\omega \boldsymbol{n}, \quad \boldsymbol{n}^{2}=1 \tag{2}
\end{equation*}
$$

The action is invariant with respect to pseudoconformal transformations

$$
\begin{equation*}
z \rightarrow f_{1}(z), \quad \bar{z} \rightarrow f_{2}(\bar{z}), \quad \omega \rightarrow \frac{\omega}{f_{1}^{\prime}(z) f_{2}^{\prime}(\bar{z})} \tag{3}
\end{equation*}
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \partial \bar{\partial} \boldsymbol{n}=\omega \boldsymbol{n}, \quad \boldsymbol{n}^{2}=1 \tag{2}
\end{equation*}
$$

The action is invariant with respect to pseudoconformal transformations

$$
\begin{equation*}
z \rightarrow f_{1}(z), \quad \bar{z} \rightarrow f_{2}(\bar{z}), \quad \omega \rightarrow \frac{\omega}{f_{1}^{\prime}(z) f_{2}^{\prime}(\bar{z})} . \tag{3}
\end{equation*}
$$

The transformations include, in particular, translations

$$
f_{1}(z)=z+c, \quad f_{2}(\bar{z})=\bar{z}+\bar{c},
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \partial \bar{\partial} \boldsymbol{n}=\omega \boldsymbol{n}, \quad \boldsymbol{n}^{2}=1 . \tag{2}
\end{equation*}
$$

The action is invariant with respect to pseudoconformal transformations

$$
\begin{equation*}
z \rightarrow f_{1}(z), \quad \bar{z} \rightarrow f_{2}(\bar{z}), \quad \omega \rightarrow \frac{\omega}{f_{1}^{\prime}(z) f_{2}^{\prime}(\bar{z})} \tag{3}
\end{equation*}
$$

The transformations include, in particular, translations

$$
f_{1}(z)=z+c, \quad f_{2}(\bar{z})=\bar{z}+\bar{c},
$$

scaling and Lorentz transformations, for which

$$
f_{1}(z)=\lambda z, \quad f_{2}(\bar{z})=\bar{\lambda} \bar{z}
$$

Conformal invariance of the action

Recall the action of the $O(N)$-model

$$
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) .
$$

The equation of motion is

$$
\partial^{\mu} \partial_{\mu} \boldsymbol{n}+\omega \boldsymbol{n}=0, \quad \boldsymbol{n}^{2}=1 .
$$

In the light cone coordinates z, \bar{z} we have

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=-\frac{1}{g} \int d z d \bar{z}\left(\partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}+\frac{\omega}{4}\left(\boldsymbol{n}^{2}-1\right)\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \partial \bar{\partial} \boldsymbol{n}=\omega \boldsymbol{n}, \quad \boldsymbol{n}^{2}=1 \tag{2}
\end{equation*}
$$

The action is invariant with respect to pseudoconformal transformations

$$
\begin{equation*}
z \rightarrow f_{1}(z), \quad \bar{z} \rightarrow f_{2}(\bar{z}), \quad \omega \rightarrow \frac{\omega}{f_{1}^{\prime}(z) f_{2}^{\prime}(\bar{z})} \tag{3}
\end{equation*}
$$

The transformations include, in particular, translations

$$
f_{1}(z)=z+c, \quad f_{2}(\bar{z})=\bar{z}+\bar{c},
$$

scaling and Lorentz transformations, for which

$$
f_{1}(z)=\lambda z, \quad f_{2}(\bar{z})=\bar{\lambda} \bar{z},
$$

and the inversion transformation

$$
f_{1}(z)=1 / z, \quad f_{2}(\bar{z})=1 / \bar{z}
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance.

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model.

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model. Indeed, it is easy to check that

$$
\begin{equation*}
4 \bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=\partial\left(\omega(\partial \boldsymbol{n})^{2}\right)-3 \partial \omega(\partial \boldsymbol{n})^{2}, \quad 4 \partial\left(\bar{\partial}^{2} \boldsymbol{n}\right)^{2}=\bar{\partial}\left(\omega(\bar{\partial} \boldsymbol{n})^{2}\right)-3 \bar{\partial} \omega(\bar{\partial} \boldsymbol{n})^{2} . \tag{5}
\end{equation*}
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model. Indeed, it is easy to check that

$$
\begin{equation*}
4 \bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=\partial\left(\omega(\partial \boldsymbol{n})^{2}\right)-3 \partial \omega(\partial \boldsymbol{n})^{2}, \quad 4 \partial\left(\bar{\partial}^{2} \boldsymbol{n}\right)^{2}=\bar{\partial}\left(\omega(\bar{\partial} \boldsymbol{n})^{2}\right)-3 \bar{\partial} \omega(\bar{\partial} \boldsymbol{n})^{2} . \tag{5}
\end{equation*}
$$

Make a pseudoconformal transformation

$$
d z^{\prime}=\left|\frac{\partial \boldsymbol{n}}{\partial z}\right| d z
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model. Indeed, it is easy to check that

$$
\begin{equation*}
4 \bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=\partial\left(\omega(\partial \boldsymbol{n})^{2}\right)-3 \partial \omega(\partial \boldsymbol{n})^{2}, \quad 4 \partial\left(\bar{\partial}^{2} \boldsymbol{n}\right)^{2}=\bar{\partial}\left(\omega(\bar{\partial} \boldsymbol{n})^{2}\right)-3 \bar{\partial} \omega(\bar{\partial} \boldsymbol{n})^{2} . \tag{5}
\end{equation*}
$$

Make a pseudoconformal transformation

$$
d z^{\prime}=\left|\frac{\partial \boldsymbol{n}}{\partial z}\right| d z
$$

In the new coordinates $(\partial \boldsymbol{n})^{2}=1$.

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model. Indeed, it is easy to check that

$$
\begin{equation*}
4 \bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=\partial\left(\omega(\partial \boldsymbol{n})^{2}\right)-3 \partial \omega(\partial \boldsymbol{n})^{2}, \quad 4 \partial\left(\bar{\partial}^{2} \boldsymbol{n}\right)^{2}=\bar{\partial}\left(\omega(\bar{\partial} \boldsymbol{n})^{2}\right)-3 \bar{\partial} \omega(\bar{\partial} \boldsymbol{n})^{2} . \tag{5}
\end{equation*}
$$

Make a pseudoconformal transformation

$$
d z^{\prime}=\left|\frac{\partial \boldsymbol{n}}{\partial z}\right| d z
$$

In the new coordinates $(\partial \boldsymbol{n})^{2}=1$. Hence, there is a continuity equation

$$
\bar{\partial}(\partial \partial \boldsymbol{n})^{2}=\partial(2 \partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}) .
$$

Classical conservation laws

Energy-momentum tensor:

$$
T_{z z}=\frac{1}{g}(\partial \boldsymbol{n})^{2}, \quad T_{\bar{z} \bar{z}}=\frac{1}{g}(\bar{\partial} \boldsymbol{n})^{2}, \quad T_{z \bar{z}}=T_{\bar{z} z}=-\frac{\omega}{4 g}\left(\boldsymbol{n}^{2}-1\right) .
$$

On the equations of motion $T_{\mu}^{\mu}=-4 T_{z \bar{z}}=0$, which also expresses conformal invariance. The energy-momentum conservation:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=0, \quad \partial(\bar{\partial} \boldsymbol{n})^{2}=0 \tag{4}
\end{equation*}
$$

There are higher spin conservation laws in the $O(N)$-model. Indeed, it is easy to check that

$$
\begin{equation*}
4 \bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=\partial\left(\omega(\partial \boldsymbol{n})^{2}\right)-3 \partial \omega(\partial \boldsymbol{n})^{2}, \quad 4 \partial\left(\bar{\partial}^{2} \boldsymbol{n}\right)^{2}=\bar{\partial}\left(\omega(\bar{\partial} \boldsymbol{n})^{2}\right)-3 \bar{\partial} \omega(\bar{\partial} \boldsymbol{n})^{2} . \tag{5}
\end{equation*}
$$

Make a pseudoconformal transformation

$$
d z^{\prime}=\left|\frac{\partial \boldsymbol{n}}{\partial z}\right| d z
$$

In the new coordinates $(\partial \boldsymbol{n})^{2}=1$. Hence, there is a continuity equation

$$
\bar{\partial}(\partial \partial \boldsymbol{n})^{2}=\partial(2 \partial \boldsymbol{n} \bar{\partial} \boldsymbol{n}) .
$$

Similarly

$$
\partial(\bar{\partial} \bar{\partial} \boldsymbol{n})^{2}=\bar{\partial}(2 \bar{\partial} \boldsymbol{n} \partial \boldsymbol{n}) .
$$

Quantum conservation laws: heuristic derivation

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$.

Quantum conservation laws: heuristic derivation

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative.

Quantum conservation laws: heuristic derivation

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega, \tag{6}
\end{equation*}
$$

where β is a constant.

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.
Consider $T_{z z}^{2}$. In classical case it satisfied $\bar{\partial} T_{z z}^{2}=0$,

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega, \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.
Consider $T_{z z}^{2}$. In classical case it satisfied $\bar{\partial} T_{z z}^{2}=0$, but in quantum case has its own anomaly:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{4}=-\left(2 \beta+\alpha^{\prime}\right)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{7}
\end{equation*}
$$

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.
Consider $T_{z z}^{2}$. In classical case it satisfied $\bar{\partial} T_{z z}^{2}=0$, but in quantum case has its own anomaly:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{4}=-\left(2 \beta+\alpha^{\prime}\right)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{7}
\end{equation*}
$$

Similarly instead of (5) we have

$$
\begin{equation*}
\bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=-(3+\alpha)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{8}
\end{equation*}
$$

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega, \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.
Consider $T_{z z}^{2}$. In classical case it satisfied $\bar{\partial} T_{z z}^{2}=0$, but in quantum case has its own anomaly:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{4}=-\left(2 \beta+\alpha^{\prime}\right)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{7}
\end{equation*}
$$

Similarly instead of (5) we have

$$
\begin{equation*}
\bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=-(3+\alpha)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{8}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\bar{\partial}\left(\left(\partial^{2} \boldsymbol{n}\right)^{2}-\frac{3+\alpha}{2 \beta+\alpha^{\prime}}(\partial \boldsymbol{n})^{4}\right)=\partial(\ldots) \tag{9}
\end{equation*}
$$

Quantum conservation laws: heuristic derivation

On the quantum level anomalies appear that formally retain the Lorentz and scale invariance: $z \rightarrow \lambda z, \bar{z} \rightarrow \bar{\lambda} \bar{z}$. Hence, the r.h.s. of the energy-momentum conservation changes. It must be a ∂-derivative. The only admissible form is

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{2}=-\beta \partial \omega, \tag{6}
\end{equation*}
$$

where β is a constant. In fact, it breaks the scaling invariance, since it means that $T_{\nu}^{\mu} \neq 0$.
Consider $T_{z z}^{2}$. In classical case it satisfied $\bar{\partial} T_{z z}^{2}=0$, but in quantum case has its own anomaly:

$$
\begin{equation*}
\bar{\partial}(\partial \boldsymbol{n})^{4}=-\left(2 \beta+\alpha^{\prime}\right)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{7}
\end{equation*}
$$

Similarly instead of (5) we have

$$
\begin{equation*}
\bar{\partial}\left(\partial^{2} \boldsymbol{n}\right)^{2}=-(3+\alpha)(\partial \boldsymbol{n})^{2} \partial \omega+\partial(\ldots) \tag{8}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\bar{\partial}\left(\left(\partial^{2} \boldsymbol{n}\right)^{2}-\frac{3+\alpha}{2 \beta+\alpha^{\prime}}(\partial \boldsymbol{n})^{4}\right)=\partial(\ldots) . \tag{9}
\end{equation*}
$$

We have two integrals of motion So, there are at least two integrals of motion of spin 1 and spin 3:

$$
\begin{equation*}
I_{1}=\int d z \frac{1}{2}(\partial \boldsymbol{n})^{2}, \quad I_{3}=\int d z\left(\frac{1}{2}\left(\partial^{2} \boldsymbol{n}\right)^{2}-\frac{3+\alpha}{2\left(2 \beta+\alpha^{\prime}\right)}(\partial \boldsymbol{n})^{4}\right) \tag{10}
\end{equation*}
$$

which satisfy the equations $\bar{\partial} I_{1}=0, \bar{\partial} I_{3}=0$.

IMs and elasticity of scattering

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\text { const } \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}. But amplitudes must be analytic in θ_{i}^{\prime}.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}. But amplitudes must be analytic in $\theta_{i}^{\prime} . \Rightarrow$ Amplitudes of these processes are identically zero.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\mathrm{const} \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}. But amplitudes must be analytic in θ_{i}^{\prime}. \Rightarrow Amplitudes of these processes are identically zero. \Rightarrow Only processes with $n=2$ are allowed and $\theta_{i}^{\prime}=\theta_{i}$ (up to an inessential permutation).

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\text { const } \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle .
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}. But amplitudes must be analytic in θ_{i}^{\prime}. \Rightarrow Amplitudes of these processes are identically zero. \Rightarrow Only processes with $n=2$ are allowed and $\theta_{i}^{\prime}=\theta_{i}$ (up to an inessential permutation).
In fact, the model has integrals of motion with all $s \in 2 \mathbb{Z}+1$.

By taking into account both components and both chiralities, we obtain four integrals of motion (IMs): $I_{ \pm 1}, I_{ \pm 3}$, which satisfy the equations $\dot{I}_{s}=0$. We have $I_{1} \sim p_{z}, I_{-1} \sim p_{\bar{z}}$. Let $\left|\theta_{1}, \ldots, \theta_{n}\right\rangle$ be a common eigenstate of IMs with n particles with rapidities θ_{i}, i.e. $p_{i z}=-\frac{m}{2} e^{\theta_{i}}, p_{i \bar{z}}=\frac{m}{2} e^{-\theta_{i}}$. The eigenvalue of I_{s} must be a homogeneous Laurent polynomial of $e^{\theta_{i}}$ of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other, their eigenvalues must be sums of eigenvalues on one-particle states. Hence

$$
I_{s}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle=\text { const } \sum_{i=1}^{n} e^{s \theta_{i}}\left|\theta_{1}, \ldots, \theta_{n}\right\rangle .
$$

Consider a $2 \rightarrow n$ particle scattering. Due to integrals of motion we have

$$
e^{s \theta_{1}}+e^{s \theta_{2}}=\sum_{i=1}^{n} e^{s \theta_{i}^{\prime}} \quad(s=-3,-1,1,3)
$$

Let us fix the rapidities $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$. We have four equations for two variables θ_{1}, θ_{2}, which depend on n parameters. If $n \geq 3$, these equations only have solutions for special values of the parameters θ_{i}^{\prime}. But amplitudes must be analytic in θ_{i}^{\prime}. \Rightarrow Amplitudes of these processes are identically zero. \Rightarrow Only processes with $n=2$ are allowed and $\theta_{i}^{\prime}=\theta_{i}$ (up to an inessential permutation).
In fact, the model has integrals of motion with all $s \in 2 \mathbb{Z}+1$. In this case only $n \rightarrow n$ processes are allowed with $\theta_{i}^{\prime}=\theta_{i}$. It is the ideally elastic scattering characteristic for integrable models.

For integrable models we have

Factorized scattering assumption
The scattering amplitude of n particles into n particles factorizes into the product of all pairwise scattering amplitudes in any order with summation over the internal states of the intermediate particles.

Factorized scattering assumption

The scattering amplitude of n particles into n particles factorizes into the product of all pairwise scattering amplitudes in any order with summation over the internal states of the intermediate particles.

Graphically it can be depicted as

Asymptotic n-particle wave function

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function.

Asymptotic n-particle wave function

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function. Due to an infinite number of IMs all particles have constant momenta p_{i} up to a permutation, and the wave function is a combination of the same plain waves for any order of x_{i} :

$$
\begin{align*}
& \psi_{\beta_{1} p_{1}, \ldots, \beta_{n} p_{n}}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\sum_{\tau \in S_{n}} A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{\sigma_{1}} \ldots \alpha_{\sigma_{n}}}[\tau] e^{i \sum_{i=1}^{n} p_{\tau_{i}} x_{\sigma_{i}}} \\
& \text { for } \quad x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}, \quad\left|x_{i}-x_{j}\right| \gg R . \tag{12}
\end{align*}
$$

Here α_{i} is an internal space of states of the particle located at x_{i}.

Asymptotic n-particle wave function

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function. Due to an infinite number of IMs all particles have constant momenta p_{i} up to a permutation, and the wave function is a combination of the same plain waves for any order of x_{i} :

$$
\begin{align*}
& \psi_{\beta_{1} p_{1}, \ldots, \beta_{n} p_{n}}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\sum_{\tau \in S_{n}} A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{\sigma_{1}} \ldots \alpha_{\sigma_{n}}}[\tau] e^{i \sum_{i=1}^{n} p_{\tau_{i}} x_{\sigma_{i}}} \\
& \text { for } \quad x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}, \quad\left|x_{i}-x_{j}\right| \gg R . \tag{12}
\end{align*}
$$

Here α_{i} is an internal space of states of the particle located at x_{i}. The function is symmetric with respect to the permutations $\alpha_{i} x_{i} \leftrightarrow \alpha_{j} x_{j}$.

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function. Due to an infinite number of IMs all particles have constant momenta p_{i} up to a permutation, and the wave function is a combination of the same plain waves for any order of x_{i} :

$$
\begin{align*}
& \psi_{\beta_{1} p_{1}, \ldots, \beta_{n} p_{n}}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\sum_{\tau \in S_{n}} A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{\sigma_{1}} \ldots \alpha_{\sigma_{n}}}[\tau] e^{i \sum_{i=1}^{n} p_{\tau_{i}} x_{\sigma_{i}}} \\
& \text { for } \quad x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}, \quad\left|x_{i}-x_{j}\right| \gg R . \tag{12}
\end{align*}
$$

Here α_{i} is an internal space of states of the particle located at x_{i}. The function is symmetric with respect to the permutations $\alpha_{i} x_{i} \leftrightarrow \alpha_{j} x_{j}$. The labels β_{i} can be defined, e.g. by the requirement

$$
A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{n}}[\mathrm{id}]=\prod_{i=1}^{n} \delta_{\beta_{i}}^{\alpha_{i}} .
$$

For $p_{1}>p_{2}>\cdots>p_{n}$, the parameters β_{i} naturally describe the internal states of the incoming particles.

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function. Due to an infinite number of IMs all particles have constant momenta p_{i} up to a permutation, and the wave function is a combination of the same plain waves for any order of x_{i} :

$$
\begin{align*}
& \psi_{\beta_{1} p_{1}, \ldots, \beta_{n} p_{n}}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\sum_{\tau \in S_{n}} A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{\sigma_{1}} \ldots \alpha_{\sigma_{n}}}[\tau] e^{i \sum_{i=1}^{n} p_{\tau_{i}} x_{\sigma_{i}}} \\
& \text { for } \quad x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}, \quad\left|x_{i}-x_{j}\right| \gg R . \tag{12}
\end{align*}
$$

Here α_{i} is an internal space of states of the particle located at x_{i}. The function is symmetric with respect to the permutations $\alpha_{i} x_{i} \leftrightarrow \alpha_{j} x_{j}$.
The labels β_{i} can be defined, e.g. by the requirement

$$
A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{n}}[\mathrm{id}]=\prod_{i=1}^{n} \delta_{\beta_{i}}^{\alpha_{i}} .
$$

For $p_{1}>p_{2}>\cdots>p_{n}$, the parameters β_{i} naturally describe the internal states of the incoming particles.
Exchange of two neighboring particles means their scattering. Therefore

$$
\begin{equation*}
A_{\beta_{1} \ldots \beta_{i} \beta_{i+1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{i+1} \alpha_{i} \ldots \alpha_{n}}\left[\tau s^{i}\right]=\sum_{\alpha_{i}^{\prime} \alpha_{i+1}^{\prime}} S_{\alpha_{i}^{\prime} \alpha_{i+1}^{\prime}}^{\alpha_{i} \alpha_{i+1}}\left(p_{\tau_{i}}, p_{\tau_{i+1}}\right) A_{\beta_{1} \ldots \beta_{i} \beta_{i+1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{i}^{\prime} \alpha_{i+1}^{\prime} \ldots \alpha_{n}}[\tau] . \tag{13}
\end{equation*}
$$

Here s^{i} is the permutation of numbers i and $i+1$. The matrix $S\left(p_{1}, p_{2}\right)$ is the two-particle S-matrix.

Asymptotic n-particle wave function

Suppose there is some characteristic distance R beyond which virtual particles are not born. Then on large distances $\left|x_{i}-x_{j}\right| \gg R$ the wave eigenfunction is indistinguishable from an n-particle wave function. Due to an infinite number of IMs all particles have constant momenta p_{i} up to a permutation, and the wave function is a combination of the same plain waves for any order of x_{i} :

$$
\begin{align*}
& \psi_{\beta_{1} p_{1}, \ldots, \beta_{n} p_{n}}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\sum_{\tau \in S_{n}} A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{\sigma_{1}} \ldots \alpha_{\sigma_{n}}}[\tau] e^{i \sum_{i=1}^{n} p_{\tau_{i}} x_{\sigma_{i}}} \\
& \text { for } \quad x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}, \quad\left|x_{i}-x_{j}\right| \gg R . \tag{12}
\end{align*}
$$

Here α_{i} is an internal space of states of the particle located at x_{i}. The function is symmetric with respect to the permutations $\alpha_{i} x_{i} \leftrightarrow \alpha_{j} x_{j}$.
The labels β_{i} can be defined, e.g. by the requirement

$$
A_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{n}}[\mathrm{id}]=\prod_{i=1}^{n} \delta_{\beta_{i}}^{\alpha_{i}} .
$$

For $p_{1}>p_{2}>\cdots>p_{n}$, the parameters β_{i} naturally describe the internal states of the incoming particles.
Exchange of two neighboring particles means their scattering. Therefore

$$
\begin{equation*}
A_{\beta_{1} \ldots \beta_{i} \beta_{i+1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{i+1} \alpha_{i} \ldots \alpha_{n}}\left[\tau s^{i}\right]=\sum_{\alpha_{i}^{\prime} \alpha_{i+1}^{\prime}} S_{\alpha_{i}^{\prime} \alpha_{i+1}^{\prime}}^{\alpha_{i} \alpha_{i+1}}\left(p_{\tau_{i}}, p_{\tau_{i+1}}\right) A_{\beta_{1} \ldots \beta_{i} \beta_{i+1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{i}^{\prime} \alpha_{i+1}^{\prime} \ldots \alpha_{n}}[\tau] \tag{13}
\end{equation*}
$$

Here s^{i} is the permutation of numbers i and $i+1$. The matrix $S\left(p_{1}, p_{2}\right)$ is the two-particle S-matrix. This defines the coefficients A and proves the factorization assumption.

Consistency requirements: three particle permutation

Due to the factorization the two-particle S-matrix satisfy a set of equations.

Consistency requirements: three particle permutation

Due to the factorization the two-particle S-matrix satisfy a set of equations. Let us inverse the order of three consecutive particles, say $1,2,3$. We may do it in two ways:

Consistency requirements: three particle permutation

The first way $123 \rightarrow 132 \rightarrow 312 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\ldots}^{\alpha_{3} \alpha_{2} \alpha_{1} \ldots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \ldots}[123 \ldots]
\end{aligned}
$$

Consistency requirements: three particle permutation

The first way $123 \rightarrow 132 \rightarrow 312 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\ldots}^{\alpha_{3} \alpha_{2} \alpha_{1} \cdots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \cdots}[123 \ldots]
\end{aligned}
$$

or graphically

Consistency requirements: three particle permutation

The first way $123 \rightarrow 132 \rightarrow 312 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\cdots}^{\alpha_{3} \alpha_{2} \alpha_{1} \cdots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \cdots}[123 \ldots]
\end{aligned}
$$

or graphically

We will write it as

$$
A_{321 \ldots}=S_{12}\left(p_{1}, p_{2}\right) S_{13}\left(p_{1}, p_{3}\right) S_{23}\left(p_{2}, p_{3}\right) A_{123 \ldots}
$$

Consistency requirements: three particle permutation
The second way $123 \rightarrow 213 \rightarrow 231 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\ldots}^{\alpha_{3} \alpha_{2} \alpha_{1} \cdots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \cdots}[123 \ldots],
\end{aligned}
$$

Consistency requirements: three particle permutation

The second way $123 \rightarrow 213 \rightarrow 231 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\ldots}^{\alpha_{3} \alpha_{2} \alpha_{1} \cdots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \cdots[123 \ldots]}
\end{aligned}
$$

or graphically

Consistency requirements: three particle permutation

The second way $123 \rightarrow 213 \rightarrow 231 \rightarrow 321$ leads to the relation

$$
\begin{aligned}
& A_{\ldots}^{\alpha_{3} \alpha_{2} \alpha_{1} \cdots}[321 \ldots] \\
= & \sum_{\beta_{1}, \beta_{2}, \beta_{3}}\left(\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)\right) A_{\ldots}^{\beta_{1} \beta_{2} \beta_{3} \cdots[123 \ldots]}
\end{aligned}
$$

or graphically

We will write it as

$$
A_{321 \ldots}=S_{23}\left(p_{2}, p_{3}\right) S_{13}\left(p_{1}, p_{3}\right) S_{12}\left(p_{1}, p_{2}\right) A_{123 \ldots}
$$

Consistency requirements: three particle permutation

The result of these two permutation processes must be the same. Hence, we have the

Yang-Baxter equation

$$
\begin{align*}
\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) & S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right) \\
& =\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)
\end{align*}
$$

Consistency requirements: three particle permutation

The result of these two permutation processes must be the same. Hence, we have the

Yang-Baxter equation

$$
\begin{align*}
\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) & S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right) \\
& =\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)
\end{align*}
$$

or, shorter,

$$
\begin{equation*}
S_{12}\left(p_{1}, p_{2}\right) S_{13}\left(p_{1}, p_{3}\right) S_{23}\left(p_{2}, p_{3}\right)=S_{23}\left(p_{2}, p_{3}\right) S_{13}\left(p_{1}, p_{3}\right) S_{12}\left(p_{1}, p_{2}\right) \tag{15}
\end{equation*}
$$

Consistency requirements: three particle permutation

The result of these two permutation processes must be the same. Hence, we have the

Yang-Baxter equation

$$
\begin{align*}
\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) & S_{\beta_{1} \gamma_{3}}^{\gamma_{1} \alpha_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{2} \beta_{3}}^{\gamma_{2} \gamma_{3}}\left(p_{2}, p_{3}\right) \\
& =\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} S_{\gamma_{2} \gamma_{3}}^{\alpha_{2} \alpha_{3}}\left(p_{2}, p_{3}\right) S_{\gamma_{1} \beta_{3}}^{\alpha_{1} \gamma_{3}}\left(p_{1}, p_{3}\right) S_{\beta_{1} \beta_{2}}^{\gamma_{1} \gamma_{2}}\left(p_{1}, p_{2}\right)
\end{align*}
$$

or, shorter,

$$
\begin{equation*}
S_{12}\left(p_{1}, p_{2}\right) S_{13}\left(p_{1}, p_{3}\right) S_{23}\left(p_{2}, p_{3}\right)=S_{23}\left(p_{2}, p_{3}\right) S_{13}\left(p_{1}, p_{3}\right) S_{12}\left(p_{1}, p_{2}\right) \tag{15}
\end{equation*}
$$

or, graphically,

Consistency requirements: inversability

Now demand that two consequent permutation of the same two particle leads to identical map: $12 \rightarrow 21 \rightarrow 12$. This implies the

Unitarity condition

$$
\begin{equation*}
\sum_{\gamma_{1}, \gamma_{2}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{2} \beta_{1}}^{\gamma_{2} \gamma_{1}}\left(p_{2}, p_{1}\right)=\delta_{\beta_{1}}^{\alpha_{1}} \delta_{\beta_{2}}^{\alpha_{2}} \tag{17}
\end{equation*}
$$

Consistency requirements: inversability

Now demand that two consequent permutation of the same two particle leads to identical map: $12 \rightarrow 21 \rightarrow 12$. This implies the

Unitarity condition

$$
\begin{equation*}
\sum_{\gamma_{1}, \gamma_{2}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{2} \beta_{1}}^{\gamma_{2} \gamma_{1}}\left(p_{2}, p_{1}\right)=\delta_{\beta_{1}}^{\alpha_{1}} \delta_{\beta_{2}}^{\alpha_{2}} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{12}\left(p_{1}, p_{2}\right) S_{21}\left(p_{2}, p_{1}\right)=1 \tag{18}
\end{equation*}
$$

Consistency requirements: inversability

Now demand that two consequent permutation of the same two particle leads to identical map: $12 \rightarrow 21 \rightarrow 12$. This implies the

Unitarity condition

$$
\begin{equation*}
\sum_{\gamma_{1}, \gamma_{2}} S_{\gamma_{1} \gamma_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right) S_{\beta_{2} \beta_{1}}^{\gamma_{2} \gamma_{1}}\left(p_{2}, p_{1}\right)=\delta_{\beta_{1}}^{\alpha_{1}} \delta_{\beta_{2}}^{\alpha_{2}} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{12}\left(p_{1}, p_{2}\right) S_{21}\left(p_{2}, p_{1}\right)=1 \tag{18}
\end{equation*}
$$

or

Relativistic condition: crossing symmetry
The last condition is due to the theory is relativistic.
Crossing symmetry

$$
\begin{equation*}
S_{\beta_{1} \beta_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right)=\sum_{\alpha_{1}^{\prime} \beta_{1}^{\prime}} C_{\beta_{1} \beta_{1}^{\prime}} S_{\beta_{2} \alpha_{1}^{\prime}}^{\alpha_{2} \beta_{1}^{\prime}}\left(p_{2},-p_{1}\right) C_{\alpha_{1}^{\prime} \alpha_{1}} \tag{20}
\end{equation*}
$$

The momenta p_{1}, p_{2} are assumed here as space-time (2D), and C is the charge conjugation matrix.

Relativistic condition: crossing symmetry
The last condition is due to the theory is relativistic.

Crossing symmetry

$$
\begin{equation*}
S_{\beta_{1} \beta_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right)=\sum_{\alpha_{1}^{\prime} \beta_{1}^{\prime}} C_{\beta_{1} \beta_{1}^{\prime}} S_{\beta_{2} \alpha_{1}^{\prime}}^{\alpha_{2} \beta_{1}^{\prime}}\left(p_{2},-p_{1}\right) C_{\alpha_{1}^{\prime} \alpha_{1}} \tag{20}
\end{equation*}
$$

The momenta p_{1}, p_{2} are assumed here as space-time (2D), and C is the charge conjugation matrix. More concisely

$$
S_{12}\left(p_{1}, p_{2}\right)=C_{1} S_{2 \tilde{1}}\left(p_{2},-p_{1}\right) C_{1},
$$

where $\tilde{1}$ means transposition in this space.

Relativistic condition: crossing symmetry
The last condition is due to the theory is relativistic.

Crossing symmetry

$$
\begin{equation*}
S_{\beta_{1} \beta_{2}}^{\alpha_{1} \alpha_{2}}\left(p_{1}, p_{2}\right)=\sum_{\alpha_{1}^{\prime} \beta_{1}^{\prime}} C_{\beta_{1} \beta_{1}^{\prime}} S_{\beta_{2} \alpha_{1}^{\prime}}^{\alpha_{2} \beta_{1}^{\prime}}\left(p_{2},-p_{1}\right) C_{\alpha_{1}^{\prime} \alpha_{1}} \tag{20}
\end{equation*}
$$

The momenta p_{1}, p_{2} are assumed here as space-time (2D), and C is the charge conjugation matrix. More concisely

$$
S_{12}\left(p_{1}, p_{2}\right)=C_{1} S_{2 \tilde{1}}\left(p_{2},-p_{1}\right) C_{1},
$$

where $\tilde{1}$ means transposition in this space. Graphically

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 . \tag{23}
\end{equation*}
$$

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 . \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 . \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi, \tag{25}
\end{equation*}
$$

Bootstrap equations for the S-matrix

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi, \tag{25}
\end{equation*}
$$

The Mandelstam variable

$$
s=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \operatorname{ch} \theta .
$$

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi \tag{25}
\end{equation*}
$$

The Mandelstam variable

$$
s=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \operatorname{ch} \theta
$$

The line $\operatorname{Im} \theta=0$ corresponds to the cut $\left[\left(m_{1}+m_{2}\right)^{2},+\infty\right)$.

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi \tag{25}
\end{equation*}
$$

The Mandelstam variable

$$
s=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \operatorname{ch} \theta
$$

The line $\operatorname{Im} \theta=0$ corresponds to the cut $\left[\left(m_{1}+m_{2}\right)^{2},+\infty\right)$.
The line $\operatorname{Im} \theta=\pi$ corresponds to the cut $\left(-\infty,\left(m_{1}-m_{2}\right)^{2}\right]$.

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi \tag{25}
\end{equation*}
$$

The Mandelstam variable

$$
s=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \operatorname{ch} \theta
$$

The line $\operatorname{Im} \theta=0$ corresponds to the cut $\left[\left(m_{1}+m_{2}\right)^{2},+\infty\right)$.
The line $\operatorname{Im} \theta=\pi$ corresponds to the cut $\left(-\infty,\left(m_{1}-m_{2}\right)^{2}\right]$.
The S-matrix is real on imaginary axis: $S(i u) \in \mathbb{R} \quad$ for $\quad u \in \mathbb{R}$. The only poles on the physical sheet is on the imaginary axis.

Finally, we obtain a set of equations, which are called bootstrap equations for the S-matrix. Repeat them in terms of rapidities:

Bootstra equations

(1) Yang-Baxter equation

$$
\begin{equation*}
S_{12}\left(\theta_{1}-\theta_{2}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{23}\left(\theta_{2}-\theta_{3}\right)=S_{23}\left(\theta_{2}-\theta_{3}\right) S_{13}\left(\theta_{1}-\theta_{3}\right) S_{12}\left(\theta_{1}-\theta_{2}\right) \tag{22}
\end{equation*}
$$

(2) Unitarity

$$
\begin{equation*}
S_{12}(\theta) S_{21}(-\theta)=1 \tag{23}
\end{equation*}
$$

(3) Crossing symmetry

$$
\begin{equation*}
S_{12}(\theta)=C_{1} S_{2 \tilde{1}}(i \pi-\theta) C_{1} . \tag{24}
\end{equation*}
$$

The physical sheet:

$$
\begin{equation*}
0 \leq \operatorname{Im} \theta<\pi \tag{25}
\end{equation*}
$$

The Mandelstam variable

$$
s=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \operatorname{ch} \theta
$$

The line $\operatorname{Im} \theta=0$ corresponds to the cut $\left[\left(m_{1}+m_{2}\right)^{2},+\infty\right)$.
The line $\operatorname{Im} \theta=\pi$ corresponds to the cut $\left(-\infty,\left(m_{1}-m_{2}\right)^{2}\right]$.
The S-matrix is real on imaginary axis: $S(i u) \in \mathbb{R} \quad$ for $\quad u \in \mathbb{R}$. The only poles on the physical sheet is on the imaginary axis.
A pole $i u_{0} \in[0, i \pi]$ corresponds to a bound state, if $\underset{u=u_{0}}{\operatorname{Res}} S_{\alpha \beta}^{\alpha \beta}(i u)>0$.

Bootstrap equations for the S-matrix of the $O(N)$ model

Recall that for the $O(N)(N \geq 3)$ model we have

$$
\begin{equation*}
S_{\alpha \beta}^{\alpha^{\prime} \beta^{\prime}}(\theta)=\delta^{\alpha^{\prime} \beta^{\prime}} \delta_{\alpha \beta} S_{1}(\theta)+\delta_{\alpha}^{\alpha^{\prime}} \delta_{\beta}^{\beta^{\prime}} S_{2}(\theta)+\delta_{\alpha}^{\beta^{\prime}} \delta_{\beta}^{\alpha^{\prime}} S_{3}(\theta) . \tag{26}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Recall that for the $O(N)(N \geq 3)$ model we have

$$
\begin{equation*}
S_{\alpha \beta}^{\alpha^{\prime} \beta^{\prime}}(\theta)=\delta^{\alpha^{\prime} \beta^{\prime}} \delta_{\alpha \beta} S_{1}(\theta)+\delta_{\alpha}^{\alpha^{\prime}} \delta_{\beta}^{\beta^{\prime}} S_{2}(\theta)+\delta_{\alpha}^{\beta^{\prime}} \delta_{\beta}^{\alpha^{\prime}} S_{3}(\theta) . \tag{26}
\end{equation*}
$$

The Yang-Baxter equations takes the form The Yang-Baxter equation for it takes the form

$$
\begin{gather*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \\
=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{gather*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Recall that for the $O(N)(N \geq 3)$ model we have

$$
\begin{equation*}
S_{\alpha \beta}^{\alpha^{\prime} \beta^{\prime}}(\theta)=\delta^{\alpha^{\prime} \beta^{\prime}} \delta_{\alpha \beta} S_{1}(\theta)+\delta_{\alpha}^{\alpha^{\prime}} \delta_{\beta}^{\beta^{\prime}} S_{2}(\theta)+\delta_{\alpha}^{\beta^{\prime}} \delta_{\beta}^{\alpha^{\prime}} S_{3}(\theta) . \tag{26}
\end{equation*}
$$

The Yang-Baxter equations takes the form The Yang-Baxter equation for it takes the form

$$
\begin{align*}
& S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}\\
& S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{align*}
$$

$=$

Bootstrap equations for the S-matrix of the $O(N)$ model

Recall that for the $O(N)(N \geq 3)$ model we have

$$
\begin{equation*}
S_{\alpha \beta}^{\alpha^{\prime} \beta^{\prime}}(\theta)=\delta^{\alpha^{\prime} \beta^{\prime}} \delta_{\alpha \beta} S_{1}(\theta)+\delta_{\alpha}^{\alpha^{\prime}} \delta_{\beta}^{\beta^{\prime}} S_{2}(\theta)+\delta_{\alpha}^{\beta^{\prime}} \delta_{\beta}^{\alpha^{\prime}} S_{3}(\theta) . \tag{26}
\end{equation*}
$$

The Yang-Baxter equations takes the form The Yang-Baxter equation for it takes the form

$$
\begin{align*}
& S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}\\
& S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}\\
& N S_{1}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{1}(\theta) S_{3}\left(\theta+\theta^{\prime}\right)\left(S_{2}\left(\theta^{\prime}\right)+S_{3}\left(\theta^{\prime}\right)\right) \\
& \quad \quad+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{3}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad+S_{1}(\theta)\left(S_{1}\left(\theta+\theta^{\prime}\right)+S_{2}\left(\theta+\theta^{\prime}\right)\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{29}
\end{align*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Recall that for the $O(N)(N \geq 3)$ model we have

$$
\begin{equation*}
S_{\alpha}^{\alpha^{\prime} \beta^{\prime}}(\theta)=\delta^{\alpha^{\prime} \beta^{\prime}} \delta_{\alpha \beta} S_{1}(\theta)+\delta_{\alpha}^{\alpha^{\prime}} \delta_{\beta}^{\beta^{\prime}} S_{2}(\theta)+\delta_{\alpha}^{\beta^{\prime}} \delta_{\beta}^{\alpha^{\prime}} S_{3}(\theta) \tag{26}
\end{equation*}
$$

The Yang-Baxter equations takes the form The Yang-Baxter equation for it takes the form

$$
\begin{align*}
& S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}\\
& S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}\\
& N S_{1}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{1}(\theta) S_{3}\left(\theta+\theta^{\prime}\right)\left(S_{2}\left(\theta^{\prime}\right)+S_{3}\left(\theta^{\prime}\right)\right) \\
& \quad \quad+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{3}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad+S_{1}(\theta)\left(S_{1}\left(\theta+\theta^{\prime}\right)+S_{2}\left(\theta+\theta^{\prime}\right)\right) S_{1}\left(\theta^{\prime}\right) \\
& \quad=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{29}
\end{align*}
$$

Let us solve these equations.

Bootstrap equations for the S-matrix of the $O(N)$ model
Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) \tag{30}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) . \tag{30}
\end{equation*}
$$

Solve the second equation

$$
\begin{equation*}
S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) . \tag{30}
\end{equation*}
$$

Solve the second equation

$$
\begin{equation*}
S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Let $g(\theta)=S_{2}(\theta) / S_{1}(\theta)$. Then

$$
g\left(\theta+\theta^{\prime}\right)-g\left(\theta^{\prime}\right)=\frac{\theta}{i \lambda} .
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) . \tag{30}
\end{equation*}
$$

Solve the second equation

$$
\begin{equation*}
S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Let $g(\theta)=S_{2}(\theta) / S_{1}(\theta)$. Then

$$
g\left(\theta+\theta^{\prime}\right)-g\left(\theta^{\prime}\right)=\frac{\theta}{i \lambda} .
$$

This equation has a solution

$$
g(\theta)=\frac{\theta-i \kappa}{i \lambda}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) . \tag{30}
\end{equation*}
$$

Solve the second equation

$$
\begin{equation*}
S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Let $g(\theta)=S_{2}(\theta) / S_{1}(\theta)$. Then

$$
g\left(\theta+\theta^{\prime}\right)-g\left(\theta^{\prime}\right)=\frac{\theta}{i \lambda} .
$$

This equation has a solution

$$
g(\theta)=\frac{\theta-i \kappa}{i \lambda} .
$$

Substituting it into the third equation (29), we get

$$
\kappa=\frac{N-2}{2} \lambda .
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Solve the first equation

$$
\begin{equation*}
S_{2}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{3}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{3}\left(\theta^{\prime}\right) \tag{27}
\end{equation*}
$$

Let $h(\theta)=S_{2}(\theta) / S_{3}(\theta)$. Then it takes the form

$$
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) .
$$

Therefore, $h(\theta) \sim \theta$ and

$$
\begin{equation*}
S_{3}(\theta)=-i \frac{\lambda}{\theta} S_{2}(\theta) \tag{30}
\end{equation*}
$$

Solve the second equation

$$
\begin{equation*}
S_{2}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)+S_{3}(\theta) S_{2}\left(\theta+\theta^{\prime}\right) S_{1}\left(\theta^{\prime}\right)=S_{3}(\theta) S_{1}\left(\theta+\theta^{\prime}\right) S_{2}\left(\theta^{\prime}\right) \tag{28}
\end{equation*}
$$

Let $g(\theta)=S_{2}(\theta) / S_{1}(\theta)$. Then

$$
g\left(\theta+\theta^{\prime}\right)-g\left(\theta^{\prime}\right)=\frac{\theta}{i \lambda} .
$$

This equation has a solution

$$
g(\theta)=\frac{\theta-i \kappa}{i \lambda}
$$

Substituting it into the third equation (29), we get

$$
\kappa=\frac{N-2}{2} \lambda .
$$

It meas that

$$
\begin{equation*}
S_{1}(\theta)=-\frac{i \lambda}{i(N-2) \lambda / 2-\theta} S_{2}(\theta) \tag{31}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{align*}
& S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1, \tag{35}\\
& \chi+\chi=\uparrow \uparrow \tag{36}
\end{align*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{align*}
& S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1 \tag{35}\\
& S_{2}(\theta) S_{3}(-\theta)+S_{3}(\theta) S_{2}(-\theta)=0 \tag{36}\\
& =0 \tag{37}
\end{align*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{gather*}
S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1, \tag{35}\\
S_{2}(\theta) S_{3}(-\theta)+S_{3}(\theta) S_{2}(-\theta)=0 \tag{36}\\
N S_{1}(\theta) S_{1}(-\theta)+S_{1}(\theta)\left(S_{2}(-\theta)+S_{3}(-\theta)\right)+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{1}(-\theta)=0 \tag{37}
\end{gather*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{gather*}
S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1, \tag{35}\\
S_{2}(\theta) S_{3}(-\theta)+S_{3}(\theta) S_{2}(-\theta)=0 \tag{36}\\
N S_{1}(\theta) S_{1}(-\theta)+S_{1}(\theta)\left(S_{2}(-\theta)+S_{3}(-\theta)\right)+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{1}(-\theta)=0 \tag{37}
\end{gather*}
$$

By substituting the solution of the YB equation to the crossing symmetry and unitarity equations, we obtain

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{gather*}
S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1, \tag{35}\\
S_{2}(\theta) S_{3}(-\theta)+S_{3}(\theta) S_{2}(-\theta)=0 \tag{36}\\
N S_{1}(\theta) S_{1}(-\theta)+S_{1}(\theta)\left(S_{2}(-\theta)+S_{3}(-\theta)\right)+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{1}(-\theta)=0 \tag{37}
\end{gather*}
$$

By substituting the solution of the YB equation to the crossing symmetry and unitarity equations, we obtain

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

There are many solutions to these equations (the CDD (Castillejo-Dalitz-Dyson) ambiguity). If we take any solution and multiply it by a factor

$$
\frac{\operatorname{sh} \theta+i \sin \alpha}{\operatorname{sh} \theta-i \sin \alpha},
$$

we will again have a solution.

Bootstrap equations for the S-matrix of the $O(N)$ model

Now substitute it into the crossing symmetry equation

$$
\begin{align*}
& S_{2}(\theta)=S_{2}(i \pi-\theta), \tag{32}\\
& S_{1}(\theta)=S_{3}(i \pi-\theta) . \tag{33}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} . \tag{34}
\end{equation*}
$$

Now impose the unitarity condition:

$$
\begin{gather*}
S_{2}(\theta) S_{2}(-\theta)+S_{3}(\theta) S_{3}(-\theta)=1, \tag{35}\\
S_{2}(\theta) S_{3}(-\theta)+S_{3}(\theta) S_{2}(-\theta)=0 \tag{36}\\
N S_{1}(\theta) S_{1}(-\theta)+S_{1}(\theta)\left(S_{2}(-\theta)+S_{3}(-\theta)\right)+\left(S_{2}(\theta)+S_{3}(\theta)\right) S_{1}(-\theta)=0 \tag{37}
\end{gather*}
$$

By substituting the solution of the YB equation to the crossing symmetry and unitarity equations, we obtain

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

There are many solutions to these equations (the CDD (Castillejo-Dalitz-Dyson) ambiguity). If we take any solution and multiply it by a factor

$$
\frac{\operatorname{sh} \theta+i \sin \alpha}{\operatorname{sh} \theta-i \sin \alpha}
$$

we will again have a solution. We will search the 'minimal' solution, which has the least number of poles and zeros on the physical sheet.

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi \stackrel{\text { crossing }}{\Rightarrow}$ Simple pole $\theta=2 i \pi \stackrel{\text { unitarity }}{\Rightarrow} \ldots$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi \stackrel{\text { crossing }}{\Rightarrow}$ Simple pole $\theta=2 i \pi \stackrel{\text { unitarity }}{\Rightarrow} \ldots$
We have series of zeros and poles:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=-2 \pi i n, i \pi+2 \pi i n, \tag{39}\\
\text { Poles: } & \theta=-i \pi-2 \pi i n, 2 \pi i+2 \pi i n,
\end{array} \quad n=0,1,2, \ldots .
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi \stackrel{\text { crossing }}{\Rightarrow}$ Simple pole $\theta=2 i \pi \stackrel{\text { unitarity }}{\Rightarrow} \ldots$
We have series of zeros and poles:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=-2 \pi i n, i \pi+2 \pi i n, \tag{39}\\
\text { Poles: } & \theta=-i \pi-2 \pi i n, 2 \pi i+2 \pi i n,
\end{array} \quad n=0,1,2, \ldots .
$$

Unitarity equation \Rightarrow Simple pole either at $\theta=-i \lambda\left(S^{(+)}\right.$solution) or at $\theta=i \lambda$ ($S^{(-)}$solution).

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi \stackrel{\text { crossing }}{\Rightarrow}$ Simple pole $\theta=2 i \pi \stackrel{\text { unitarity }}{\Rightarrow} \ldots$
We have series of zeros and poles:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=-2 \pi i n, i \pi+2 \pi i n, \\
\text { Poles: } & \theta=-i \pi-2 \pi i n, 2 \pi i+2 \pi i n, \tag{39}
\end{array} \quad n=0,1,2, \ldots .
$$

Unitarity equation \Rightarrow Simple pole either at $\theta=-i \lambda\left(S^{(+)}\right.$solution) or at $\theta=i \lambda$ ($S^{(-)}$solution). Similarly we obtain for $S^{(\pm)}$:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=\mp i \lambda-i \pi-2 \pi i n, \pm i \lambda+2 \pi i+2 \pi i n, \\
\text { Poles: } & \theta=\mp i \lambda-2 \pi i n, \pm i \lambda+i \pi+2 \pi i n, \tag{40}
\end{array} \quad n=0,1,2, \ldots .
$$

Bootstrap equations for the S-matrix of the $O(N)$ model

We have the equations

$$
\begin{equation*}
S_{2}(\theta)=S_{2}(i \pi-\theta), \quad S_{2}(\theta) S_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{38}
\end{equation*}
$$

Unitarity equation \Rightarrow Simple zero $\theta=0 \stackrel{\text { crossing }}{\Rightarrow}$ Simple zero $\theta=i \pi \stackrel{\text { unitarity }}{\Rightarrow}$ Simple pole $\theta=-i \pi \stackrel{\text { crossing }}{\Rightarrow}$ Simple pole $\theta=2 i \pi \stackrel{\text { unitarity }}{\Rightarrow} \ldots$
We have series of zeros and poles:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=-2 \pi i n, i \pi+2 \pi i n, \\
\text { Poles: } & \theta=-i \pi-2 \pi i n, 2 \pi i+2 \pi i n, \tag{39}
\end{array} \quad n=0,1,2, \ldots .
$$

Unitarity equation \Rightarrow Simple pole either at $\theta=-i \lambda\left(S^{(+)}\right.$solution) or at $\theta=i \lambda$ ($S^{(-)}$solution). Similarly we obtain for $S^{(\pm)}$:

$$
\begin{array}{ll}
\text { Zeros: } & \theta=\mp i \lambda-i \pi-2 \pi i n, \pm i \lambda+2 \pi i+2 \pi i n, \\
\text { Poles: } & \theta=\mp i \lambda-2 \pi i n, \pm i \lambda+i \pi+2 \pi i n, \tag{40}
\end{array} \quad n=0,1,2, \ldots .
$$

The function that has poles and zeros at (39) and (40) is

$$
\begin{equation*}
S_{2}^{(\pm)}(\theta)=Q^{(\pm)}(\theta) Q^{(\pm)}(i \pi-\theta), \quad Q^{(\pm)}(\theta)=\frac{\Gamma\left(\pm \frac{\lambda}{2 \pi}-i \frac{\theta}{2 \pi}\right) \Gamma\left(\frac{1}{2}-i \frac{\theta}{2 \pi}\right)}{\Gamma\left(\frac{1}{2} \pm \frac{\lambda}{2 \pi}-i \frac{\theta}{2 \pi}\right) \Gamma\left(-i \frac{\theta}{2 \pi}\right)} \tag{41}
\end{equation*}
$$

S-matrix: $N \rightarrow \infty$ behavior and final choice

Take the limit $N \rightarrow \infty$. We obtain

$$
\begin{align*}
S_{1}^{(\pm)}(\theta) & =-\frac{2 \pi i}{N(i \pi-\theta)}, \tag{42}\\
S_{2}^{(\pm)}(\theta) & =1 \mp \frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{43}\\
S_{3}^{(\pm)}(\theta) & =-\frac{2 \pi i}{N \theta} . \tag{44}
\end{align*}
$$

S-matrix: $N \rightarrow \infty$ behavior and final choice

Take the limit $N \rightarrow \infty$. We obtain

$$
\begin{align*}
& S_{1}^{(\pm)}(\theta)=-\frac{2 \pi i}{N(i \pi-\theta)}, \tag{42}\\
& S_{2}^{(\pm)}(\theta)=1 \mp \frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{43}\\
& S_{3}^{(\pm)}(\theta)=-\frac{2 \pi i}{N \theta} . \tag{44}
\end{align*}
$$

By comparing with the $1 / N$-expansion we conclude that the solution $S^{(+)}(\theta)$ is the S-matrix of the $O(N)$-model.

S-matrix: $N \rightarrow \infty$ behavior and final choice

Take the limit $N \rightarrow \infty$. We obtain

$$
\begin{align*}
& S_{1}^{(\pm)}(\theta)=-\frac{2 \pi i}{N(i \pi-\theta)}, \tag{42}\\
& S_{2}^{(\pm)}(\theta)=1 \mp \frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{43}\\
& S_{3}^{(\pm)}(\theta)=-\frac{2 \pi i}{N \theta} . \tag{44}
\end{align*}
$$

By comparing with the $1 / N$-expansion we conclude that the solution $S^{(+)}(\theta)$ is the S-matrix of the $O(N)$-model. The solution $S^{(-)}(\theta)$ is the S-matrix of the N component fermion Neveu-Schwartz model (see a problem to the last lecture).

S-matrix: $N \rightarrow \infty$ behavior and final choice

Take the limit $N \rightarrow \infty$. We obtain

$$
\begin{align*}
& S_{1}^{(\pm)}(\theta)=-\frac{2 \pi i}{N(i \pi-\theta)}, \tag{42}\\
& S_{2}^{(\pm)}(\theta)=1 \mp \frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{43}\\
& S_{3}^{(\pm)}(\theta)=-\frac{2 \pi i}{N \theta} . \tag{44}
\end{align*}
$$

By comparing with the $1 / N$-expansion we conclude that the solution $S^{(+)}(\theta)$ is the S-matrix of the $O(N)$-model. The solution $S^{(-)}(\theta)$ is the S-matrix of the N component fermion Neveu-Schwartz model (see a problem to the last lecture). Notice, that

$$
\begin{equation*}
S_{12}^{(\pm)}(0)=\mp P_{12} \tag{45}
\end{equation*}
$$

where $P_{12}: a \times b \mapsto b \times a$ is the permutation operator of the spaces 1 and 2 .

Take the limit $N \rightarrow \infty$. We obtain

$$
\begin{align*}
& S_{1}^{(\pm)}(\theta)=-\frac{2 \pi i}{N(i \pi-\theta)}, \tag{42}\\
& S_{2}^{(\pm)}(\theta)=1 \mp \frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{43}\\
& S_{3}^{(\pm)}(\theta)=-\frac{2 \pi i}{N \theta} . \tag{44}
\end{align*}
$$

By comparing with the $1 / N$-expansion we conclude that the solution $S^{(+)}(\theta)$ is the S-matrix of the $O(N)$-model. The solution $S^{(-)}(\theta)$ is the S-matrix of the N component fermion Neveu-Schwartz model (see a problem to the last lecture). Notice, that

$$
\begin{equation*}
S_{12}^{(\pm)}(0)=\mp P_{12} \tag{45}
\end{equation*}
$$

where $P_{12}: a \times b \mapsto b \times a$ is the permutation operator of the spaces 1 and 2. This means that for the particles in the $O(N)$-model a kind of the Pauli principle applies, although we considered the particles to be bosons. Two particles cannot have the same momentum.

