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Single spin 1/2

Consider a spin S = 1/2.

It means that any state |ψ〉 is a linear combination of
‘spin up’ |+〉 = |↑〉 and ‘spin down’ |−〉 = |↓〉 vectors:

|ψ〉 = ψ+|↑〉+ ψ−|↓〉 =
∑
ε=±

ψε|ε〉, ψ± ∈ C.

ε = 2sz = ±1 = ±
The space of these states is

H1 = C|↑〉 ⊕ C|↓〉 ∼= C2.

In this space of states in the basis (+−) act the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1)

In other words, they act on the basic states as

σx|↑〉 = |↓〉, σy |↑〉 = i|↓〉, σz |↑〉 = |↑〉,
σx|↓〉 = |↑〉, σy |↓〉 = −i|↑〉, σz |↓〉 = −|↓〉.

(2)

It is convenient to introduce ‘spin raise’ and ‘spin lower’ operators:

σ+ =
σx + iσy

2
=

(
0 1
0 0

)
, σ− =

σx − iσy

2
=

(
0 0
1 0

)
(3)

or
σ+|↑〉 = 0, σ−|↑〉 = |↓〉,

σ+|↓〉 = |↑〉, σ−|↓〉 = 0.
(4)
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Spin system

Now consider a chain of N spins S = 1/2.

Any state |ψ〉 is a combination

ψ =
∑

ε1,...,εN=±
ψε1...εN |ε1 . . . εN 〉 =

∑
ε1,...,εN=±

ψε1...εN |ε1〉 ⊗ · · · ⊗ |εN 〉.

Thus, the space of states is a tensor product:

HN = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N

, (5)

Define the Pauli matrices acting on the nth spin

σαn = 1⊗ · · · ⊗ 1⊗ σα︸︷︷︸
n

⊗1⊗ · · · ⊗ 1. (6)

Define the translation operator T such that

T |ε1ε2 . . . εN 〉 = |ε2 . . . εNε1〉. (7)

It satisfies the condition
Tσαn = σαn−1T. (8)
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Heisenberg spin chain

The Hamiltonian

HXYZ = −
1

2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
(9)

defines a Heisenberg spin chain.

The Hamiltonian is underdefined. Indeed, what is
σαN+1? We will impose the periodic boundary condition by assuming σαN+1 = σα1 .
There are three main cases:

XYZ chain: generic Jα. It is exactly solvable, but its solution is too tricky for
introductory lectures.
XXZ chain: |Jx| = |Jy |. Its solutions is much simpler, but the solution is rich
enough and reflects the main ideas well. It is the main subject of these
lectures.
XXX chain: |Jx| = |Jy | = |Jz |. It is too degenerate, so its direct solution has
subtleties. It is simpler to consider it as a limit from the XXZ case.

With the cyclic boundary condition the Hamiltonian is translationally invariant.
It commutes with the translation operator:

[HXYZ, T ] = 0. (10)
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Heisenberg spin chain

Let Jx = 1, Jy = Γ, Jz = ∆ with |Γ| ≤ 1. Then

HXYZ = −
1

2

N∑
n=1

(
(1 + Γ)(σ+

n σ
−
n+1 + σ−n σ

+
n+1) + (1− Γ)(σ+

n σ
+
n+1 + σ−n σ

−
n+1)

+ ∆σznσ
z
n+1

)
. (11)

If Γ = 1, the Hamiltonian is

HXXZ = −
1

2

N∑
n=1

(
2(σ+

n σ
−
n+1 + σ−n σ

+
n+1) + ∆σznσ

z
n+1

)
. (12)

Each term either does not change the spins or flips one spin up and another spin
down. Hence

[HXXZ, S
z ] = 0, Sz =

1

2

N∑
n=1

σzn. (13)

Therefore we can split the space of states into the subspaces of spin eigenvectors:

HN =

N⊕
k=0

(HN )k, (Hn)k =
{
|ψ〉
∣∣ Sz |ψ〉 = (N/2− k)|ψ〉

}
. (14)

The Hamiltonian HXXZ acts as an operator on each of these subspaces.
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Structure of subspaces (HN )k

The space (HN )0 is one-dimensional:

(HN )0 = C|Ω+〉, |Ω+〉 = |↑↑ . . . ↑〉. (15)

This state can be also defined by the condition

σ+
n |Ω+〉 = 0 ∀n = 1, . . . , N. (16)

The space (HN )1 is N -dimensional:

(HN )1 =
⊕

1≤n≤N
C|n〉, |n〉 = σ−n |Ω+〉 = |↑ . . . ↑↓

n
↑ . . . ↑〉. (17)

The space (HN )2 is N(N − 1)/2-dimensional:

(HN )2 =
⊕

1≤n1<n2≤N
C|n1, n2〉,

|n1, n2〉 = σ−n1
σ−n2
|Ω+〉 = |↑ . . . ↑ ↓

n1

↑ . . . ↑ ↓
n2

↑ . . . ↑〉.

Generally we have

(HN )k =
⊕

1≤n1<···<nk≤N
C|n1, . . . , nk〉,

|n1, . . . , nk〉 = σ−n1
· · ·σ−nk

|Ω+〉 = |↑ . . . ↑ ↓
n1

↑ . . . ↑ ↓
nk

↑ . . . ↑〉.

This space is
(N
k

)
-dimensional.
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Eigenvectors and eigenvalues: k = 0, 1

Now let us find eigenvectors.

Since (HN )0 is one-dimensional the vector |Ω+〉 is
an eigenvector of the Hamiltonian:

HXXZ|Ω+〉 = −
N∆

2
|Ω+〉. (18)

The action of HXXZ in (HN )1 is

HXXZ|n〉 = −|n−〉 − |n+ 1〉 − (N − 4)
∆

2
|n〉.

Thus the vectors |n〉 are not eigenvectors. Make use of the translational invariance
of HXXZ. Introduce the eigenvector |z〉 of the operator T :

T |z〉 = z|z〉. (19)

Since T |n〉 = |n− 1〉 we have a wave solution z = eip, p is the quasimomentum.

|z〉 =

N∑
n=1

zn|n〉 (20)

subject to the condition

zN = 1

⇔ z = e2πi n
N , n = 0, 1, . . . , N − 1.

(21)

The state |z〉 is an eigenvector of the Hamiltonian:

HXXZ|z〉 =

(
−
N∆

2
+ ε(z)

)
|z〉, ε(z) = 2∆− z − z−1. (22)
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Three regimes

We may think of the state |Ω+〉 as of some ‘vacuum’ and of the state |z〉 as of an
‘excitation’ with the energy ε(z).

Consider three regimes:

∆ > 1: ε(z) > 0 ∀z. The state |Ω+〉 is the ground state. The excitation are
physical excitations (magnons). Due to the symmetry σzn → −σzn, σ

+
n ↔ σ−n ,

there is another ground state |Ω−〉 ∈ (HN )N , so that the ground state of the
system is doubly degenerate.
∆ < −1: ε(z) < 0 ∀z. The states |Ω±〉 are states of the highest energy. The
ground state corresponds to Sz = 0 or ± 1

2
, and excited states separated by an

energy gap. We shall speak of the states |Ω±〉 as of pseudovacuum, and of the
excitations like |z〉 as of pseudoparticles.
−1 < ∆ < 1: ε(z) does not have definite sign. The ground state corresponds
to Sz = 0 or ± 1

2
. There is no energy gap.

This conclusion would follow from the conjecture that the energies of excitations
are additive E = −N∆

2
+
∑
i ε(zi) with |zi| = 1, but this conjecture is not correct.

The energies are indeed additive, but zi are generally not on the unit circle. In
fact, there are also bound states that complicate the situation. We will see later
that nevertheless the boundaries between these three regimes are exact.
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Eigenvectors and eigenvalues: k = 2

Consider the case k = 2. Let us search for an eigenstate in the form of a
combination of wave solutions:

|z1, z2〉 =
∑

n1<n2

(A12z
n1
1 zn2

2 +A21z
n1
2 zn2

1 )|n1, n2〉. (23)

The action of the Hamiltonian moves ni by 0,±1. Thus, the action on the
contributions with n2 − n1 > 1 does not differ from the action on the one-particle
state. Hence, if the state is an eigenstate, we have

HXXZ|z1, z2〉 =

(
−
N∆

2
+ ε(z1) + ε(z2)

)
|z1, z2〉.

When is it the case? First, check the action on the terms with n2 − n1 = 1. After
a calculation we obtain

A21

A12
= S(z1, z2) ≡ −

1 + z1z2 − 2∆z2

1 + z1z2 − 2∆z1
. (24)

Second, we have to impose the periodicity condition:

zN1 S(z1, z2) = 1, zN2 S(z2, z1) = 1. (25)

These two equations determine the allowed values of the pairs (z1, z2). Thus,
though the total energy looks additive, the sets of allowed quasimomenta of
excitations are different in the cases of one-particle and of two-particle states.
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)
|z1, z2〉.

When is it the case? First, check the action on the terms with n2 − n1 = 1. After
a calculation we obtain

A21

A12
= S(z1, z2) ≡ −

1 + z1z2 − 2∆z2

1 + z1z2 − 2∆z1
. (24)

Second, we have to impose the periodicity condition:

zN1 S(z1, z2) = 1, zN2 S(z2, z1) = 1. (25)

These two equations determine the allowed values of the pairs (z1, z2). Thus,
though the total energy looks additive, the sets of allowed quasimomenta of
excitations are different in the cases of one-particle and of two-particle states.
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Eigenvectors: Bethe Ansatz and Bethe equations

Consider general k. The Bethe Ansatz is

|z1, . . . , zk〉 =
∑

n1<...<nk

∑
σ∈Sk

Aσ1...σk

k∏
j=1

z
nj
σj |n1, . . . , nk〉.

It is an eigenvector of the Hamiltonian, if (1)

A...ji...

A...ij...
= S(zi, zj) (26)

and (2) the Bethe equations

zNi
∏
j, j 6=i

S(zi, zj) = 1 (27)

are satisfied. The eigenvalue is given by

HXXZ|Ψk(z1, . . . , zk)〉 =

(
−
N∆

2
+

k∑
i=1

ε(zi)

)
|Ψk(z1, . . . , zk)〉, (28)
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