Lecture 2 Six-vertex model

A mini-course "Solvable lattice models and Bethe Ansatz" (Ariel University, spring 2021)

Michael Lashkevich

Landau Institute for Theoretical Physics, Kharkevich Institute for Information Transmission Problems

The 'ice model' (- is Oxygen, \circ is Hydrogen):

Each oxygen atom has two hydrogen atom next to it.

The 'ice model' (- is Oxygen, \circ is Hydrogen):

Each oxygen atom has two hydrogen atom next to it.

$$
\begin{aligned}
-\infty & =\rightarrow \\
\dot{\infty} & =\rightarrow \\
0 & =\uparrow \\
\dot{0} & =\downarrow
\end{aligned}
$$

The 'ice model' (- is Oxygen, \circ is Hydrogen):

Each oxygen atom has two hydrogen atom next to it. Small arrows on the right figure define the orientation of the lattice lines and vertices, which will be important later.

$$
\begin{array}{r}
-\infty=\stackrel{+}{\infty}=\stackrel{-}{+}=+\downarrow \\
\{=\uparrow=+\downarrow
\end{array}
$$

Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} \prod_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\varepsilon_{1}}^{\varepsilon_{1}^{\prime}} \varepsilon_{2}^{\prime}, \quad \frac{\varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}}{\text { Ice condition }} .
$$

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} \prod_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\varepsilon_{1}}^{\varepsilon_{1}^{\prime}} \varepsilon_{2}^{\prime}, \quad \frac{\varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}}{\text { Ice condition }} .
$$

We have six vertex configurations

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} \prod_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\varepsilon_{1}}^{\varepsilon_{1}^{\prime}} \varepsilon_{2}^{\prime}, \quad \varepsilon_{1+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}}^{\text {Ice condition }} .
$$

We have six vertex configurations

$$
\begin{aligned}
& R=\left(\begin{array}{cccc}
a & & & \\
& b & c & \\
& c^{\prime} & b^{\prime} & \\
& & & a^{\prime}
\end{array}\right) \text { in the basis }(++),(+-),(-+),(--) .
\end{aligned}
$$

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

$+$	$+^{+}$	$+^{+}$	-	+
$+$	$+^{+}$	$+$	$c_{+}^{\prime}+$	C + +
$+$	$+^{+}$	-	$+^{+}$	+
	-	$c_{+}^{\prime}+$	${ }_{+}^{+}+$	-
	$+$	$c+$	-	c^{\prime}

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

	+ ${ }^{+}$	$+^{+}$	-	
	$+^{+}$	$+$	$c_{+}^{\prime}+$	c
$+_{+}^{+}$	+ ${ }^{+}$		+ ${ }^{+}$	
	-	$c_{+}^{\prime}+$	${ }^{c}+$	
		c_{+}		c^{\prime}

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

	+ ${ }^{+}$	$+^{+}$	- ${ }^{-}$	+
+	+ ${ }^{+}$	+	$c_{+}^{\prime}+$	${ }^{c}$
$+$	+	-	$+^{+}$	+
	--	$c_{+}^{\prime}+$	${ }_{+}^{+}+$	
		$+$	$-$	\sqrt{c}

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

	+ ${ }^{+}$	$+^{+}$	- ${ }^{-}$	+
+	+ ${ }^{+}$	+	$c_{+}^{\prime}+$	${ }^{c}$
$+$	+	-	$+^{+}$	+
	--	$c_{+}^{\prime}+$	${ }_{+}^{+}+$	
		$+$	$-$	\sqrt{c}

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality. The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

	+ ${ }^{+}$	$+^{+}$	- ${ }^{-}$	+
+	+ ${ }^{+}$	+	$c_{+}^{\prime}+$	${ }^{c}$
$+$	+	-	$+^{+}$	+
	--	$c_{+}^{\prime}+$	${ }_{+}^{+}+$	
		$+$	$-$	\sqrt{c}

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality.
The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field. Indeed, $2 \#(a)-2 \#\left(a^{\prime}\right)=\#(+)-\#(-)$.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

	$+^{+}$	$+^{+}$		
	$+^{+}$	$+$	$c_{+}^{\prime}+$	c
	$+^{+}$		+ +	
	-	$c_{+}^{\prime}+$	${ }_{+}^{+}$	
		+		c^{\prime}

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality. The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field. Indeed, $2 \#(a)-2 \#\left(a^{\prime}\right)=\#(+)-\#(-)$. The difference between b and b^{\prime} cannot be reduced to an "anisotropic" external field, which has opposite signs for horizontal and vertical lines.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality. The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field. Indeed, $2 \#(a)-2 \#\left(a^{\prime}\right)=\#(+)-\#(-)$. The difference between b and b^{\prime} cannot be reduced to an "anisotropic" external field, which has opposite signs for horizontal and vertical lines. It turns out that the model is exactly solvable, if $b^{\prime}=b$.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality. The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field. Indeed, $2 \#(a)-2 \#\left(a^{\prime}\right)=\#(+)-\#(-)$. The difference between b and b^{\prime} cannot be reduced to an "anisotropic" external field, which has opposite signs for horizontal and vertical lines.
It turns out that the model is exactly solvable, if $b^{\prime}=b$. If also $a^{\prime}=a$ it admits spontaneous symmetry breaking. Below we will just consider this case.

We will consider the six-vertex models with toroidal boundary conditions: any upper line connects to the lower one and any lower line connects to the upper one. With these conditions the ratio c^{\prime} / c is not essential. Indeed, consider a configuration

You see that the number of c and c^{\prime} is equal. Since the signs "-" can be organized in such paths and these paths must be closed on the torus, this will be valid for all configurations. Thus we may assume $c^{\prime}=c$ without loss of generality.
The difference between a and a^{\prime} is more essential, but it can be interpreted as an homogeneous external field. Indeed, $2 \#(a)-2 \#\left(a^{\prime}\right)=\#(+)-\#(-)$. The difference between b and b^{\prime} cannot be reduced to an "anisotropic" external field, which has opposite signs for horizontal and vertical lines.
It turns out that the model is exactly solvable, if $b^{\prime}=b$. If also $a^{\prime}=a$ it admits spontaneous symmetry breaking. Below we will just consider this case. We will see that the solution for $a^{\prime} \neq a$ is also based on the symmetric case.

We will consider the symmetric six-vertex model:

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

We will consider the symmetric six-vertex model:

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} . \tag{1}
\end{equation*}
$$

We will consider the symmetric six-vertex model:

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c .
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$.

We will consider the symmetric six-vertex model:

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c .
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} . \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$. Consider the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ of identical spaces $V_{i} \simeq V$. Let $R_{i j}$ is the R matrix acting on $V_{i} \otimes V_{j}$.

We will consider the symmetric six-vertex model:

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} . \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$. Consider the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ of identical spaces $V_{i} \simeq V$. Let $R_{i j}$ is the R matrix acting on $V_{i} \otimes V_{j}$.
Then the transfer matrix can be written as

$$
\begin{equation*}
T=\operatorname{tr}_{V_{0}}\left(R_{0 N} \ldots R_{02} R_{01}\right): V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \tag{2}
\end{equation*}
$$

The space $V_{1} \otimes \cdots \otimes V_{N}$ is called quantum space, while the space V_{0} is called auxiliary space.

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \cdots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \cdots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

We will consider it as an operator in the quantum space and a matrix in the auxiliary space

$$
L=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}
$$

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \cdots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

We will consider it as an operator in the quantum space and a matrix in the auxiliary space

$$
L=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}
$$

Then

$$
\begin{equation*}
T=\operatorname{tr}_{V_{0}} L=A+D \tag{4}
\end{equation*}
$$

Commuting transfer matrices and Yang-Baxter equation

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0
$$

How to construct them?

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0
$$

How to construct them?
Let use search for the operators $T^{\prime}=\operatorname{tr}_{V_{0}} L^{\prime}, L^{\prime}=R_{0 N}^{\prime} \ldots R_{02}^{\prime} R_{01}^{\prime}$ with some matrix R^{\prime}.

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0
$$

How to construct them?
Let use search for the operators $T^{\prime}=\operatorname{tr}_{V_{0}} L^{\prime}, L^{\prime}=R_{0 N}^{\prime} \ldots R_{02}^{\prime} R_{01}^{\prime}$ with some matrix R^{\prime}.

Theorem

If there exist nondegenerate matrices $R^{\prime}, R^{\prime \prime}$ such that

$$
\begin{equation*}
R_{12}^{\prime \prime} R_{13}^{\prime} R_{23}=R_{23} R_{13}^{\prime} R_{12}^{\prime \prime} \tag{5}
\end{equation*}
$$

or, graphically

then

$$
\begin{equation*}
\left[T, T^{\prime}\right]=0 \tag{6}
\end{equation*}
$$

Commuting transfer matrices: a proof
A graphical proof:

$$
T^{\prime} T=
$$

A graphical proof:

$$
T^{\prime} T=
$$

A graphical proof:

\[

\]

A graphical proof:

$$
T^{\prime} T=
$$

Commuting transfer matrices: a proof

A graphical proof:

$$
T^{\prime} T=
$$

Commuting transfer matrices: a proof

A graphical proof:

$$
T^{\prime} T=
$$

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

Commuting transfer matrices: a proof

A graphical proof:

$$
T^{\prime} T=
$$

A more conventional proof is based on the relation

$$
R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}=L_{2} L_{1}^{\prime} R_{12}^{\prime \prime},
$$

which is proved by induction.

A graphical proof:

$$
T^{\prime} T=
$$

A more conventional proof is based on the relation

$$
R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}=L_{2} L_{1}^{\prime} R_{12}^{\prime \prime}
$$

which is proved by induction. Then

$$
\begin{aligned}
T^{\prime} T & =\operatorname{tr}_{V_{1} \otimes V_{2}}\left(L_{1}^{\prime} L_{2}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(\left(R_{12}^{\prime \prime}\right)^{-1} R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(\left(R_{12}^{\prime \prime}\right)^{-1} L_{2} L_{1}^{\prime} R_{12}^{\prime \prime}\right) \\
& =\operatorname{tr}_{V_{1} \otimes V_{2}}\left(R_{12}^{\prime \prime}\left(R_{12}^{\prime \prime}\right)^{-1} L_{2} L_{1}^{\prime}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(L_{2} L_{1}^{\prime}\right)=T T^{\prime} .
\end{aligned}
$$

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$.

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a(\lambda, u)=1$. Trigonometric solution(s):

$$
\begin{aligned}
& b(\lambda, u)=\frac{\sin u}{\sin (\lambda-u)} \\
& c(\lambda, u)=\frac{\sin \lambda}{\sin (\lambda-u)} \\
& (a<b+c, b<a+c, c<a+b)
\end{aligned}
$$

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a(\lambda, u)=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(\lambda, u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(\lambda, u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)} \\
c(\lambda, u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(\lambda, u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c & >a+b)
\end{array}
$$

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a(\lambda, u)=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(\lambda, u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(\lambda, u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)} \\
c(\lambda, u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(\lambda, u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c & >a+b)
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later.

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right), \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right), \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a(\lambda, u)=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(\lambda, u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(\lambda, u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)}, \\
c(\lambda, u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(\lambda, u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c>a+b) .
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later. The parameter λ is the same for $R, R^{\prime}, R^{\prime \prime}$ and can be expressed as

$$
\left.\begin{array}{c}
-\cos \lambda \tag{9}\\
-\operatorname{ch} \lambda
\end{array}\right\}=\Delta \equiv \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right), \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right), \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a(\lambda, u)=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(\lambda, u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(\lambda, u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)} \\
c(\lambda, u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(\lambda, u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c & >a+b) .
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later. The parameter λ is the same for $R, R^{\prime}, R^{\prime \prime}$ and can be expressed as

$$
\left.\begin{array}{c}
-\cos \lambda \tag{9}\\
-\operatorname{ch} \lambda
\end{array}\right\}=\Delta \equiv \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Thus we will omit the parameter λ from now on:

$$
R(u) \equiv R(\lambda, u), a(u) \equiv a(\lambda, u) \text { etc. }
$$

Yang-Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

$$
R(\lambda, u-v)_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{3} \varepsilon_{4}}=\varepsilon_{2}<\underbrace{\stackrel{\varepsilon_{3}}{\gtrless} \varepsilon_{4}, \varepsilon_{1}}_{\varepsilon_{1}}
$$

Yang-Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

This R matrix is the solution to the Yang-Baxter equation in the form

$$
\begin{align*}
& R_{12}\left(\lambda, u_{1}-u_{2}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{23}\left(\lambda, u_{2}-u_{3}\right) \\
& \quad=R_{23}\left(\lambda, u_{2}-u_{3}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{12}\left(\lambda, u_{1}-u_{2}\right) \tag{10}
\end{align*}
$$

The spectral parameters can be associated to lines:

This R matrix is the solution to the Yang-Baxter equation in the form

$$
\begin{align*}
& R_{12}\left(\lambda, u_{1}-u_{2}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{23}\left(\lambda, u_{2}-u_{3}\right) \\
& \quad=R_{23}\left(\lambda, u_{2}-u_{3}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{12}\left(\lambda, u_{1}-u_{2}\right) \tag{10}
\end{align*}
$$

Graphically:

The spectral parameters can be associated to lines:

This R matrix is the solution to the Yang-Baxter equation in the form

$$
\begin{align*}
& R_{12}\left(\lambda, u_{1}-u_{2}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{23}\left(\lambda, u_{2}-u_{3}\right) \\
& \quad=R_{23}\left(\lambda, u_{2}-u_{3}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{12}\left(\lambda, u_{1}-u_{2}\right) \tag{10}
\end{align*}
$$

Graphically:

Besides, the R matrix satisfy the relations

$$
\begin{equation*}
b(u) R(\lambda-u)_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{3} \varepsilon_{4}}=R(u)_{\varepsilon_{4}-\varepsilon_{1}}^{\varepsilon_{2}-\varepsilon_{3}}, \quad R_{12}(u) R_{21}(-u)=1, \quad R(0)=P=\downarrow . \tag{11}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent. First of all, $T(0)$ is nothing but the shift operator:

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent. First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.
First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

Hamiltonians H_{n} commute with $T(u)$ and mutually commute:

$$
\begin{equation*}
\left[T(0), H_{n}\right]=\left[H_{m}, H_{n}\right]=0 \quad \forall m, n . \tag{15}
\end{equation*}
$$

The set $T(0), H_{1}, \ldots, H_{N-1}$ form a set of independent integrals of motion.

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.
First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

Hamiltonians H_{n} commute with $T(u)$ and mutually commute:

$$
\begin{equation*}
\left[T(0), H_{n}\right]=\left[H_{m}, H_{n}\right]=0 \quad \forall m, n . \tag{15}
\end{equation*}
$$

The set $T(0), H_{1}, \ldots, H_{N-1}$ form a set of independent integrals of motion. Operators H_{n} are local in the sense that each of them is a sum of term, which involves a finite number $(n+1)$ of neighboring nodes.

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

where

$$
\check{R}(u)=P R(u)=\left(\begin{array}{cccc}
a(u) & & & \\
& c(u) & b(u) & \\
& b(u) & c(u) & \\
& & & a(u)
\end{array}\right)=1+\frac{u}{\sin \lambda}\left(\begin{array}{cccc}
0 & & & \\
& \cos \lambda & 1 & \\
& 1 & \cos \lambda & \\
& & & 0
\end{array}\right)+O\left(u^{2}\right)
$$

We have

$$
\check{R}(u)=1-\frac{1}{\sin \lambda}\left(h+\frac{\cos \lambda}{2}\right) u+O\left(u^{2}\right)
$$

We have

$$
\check{R}(u)=1-\frac{1}{\sin \lambda}\left(h+\frac{\cos \lambda}{2}\right) u+O\left(u^{2}\right),
$$

where

$$
h=-\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}-\cos \lambda \sigma^{z} \otimes \sigma^{z}\right)
$$

We have

$$
\check{R}(u)=1-\frac{1}{\sin \lambda}\left(h+\frac{\cos \lambda}{2}\right) u+O\left(u^{2}\right),
$$

where

$$
h=-\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}-\cos \lambda \sigma^{z} \otimes \sigma^{z}\right)
$$

Hence

$$
H_{1} \sin \lambda=H_{\mathrm{XXZ}}+\frac{N}{2} \cos \lambda
$$

We have

$$
\check{R}(u)=1-\frac{1}{\sin \lambda}\left(h+\frac{\cos \lambda}{2}\right) u+O\left(u^{2}\right),
$$

where

$$
h=-\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}-\cos \lambda \sigma^{z} \otimes \sigma^{z}\right)
$$

Hence

$$
H_{1} \sin \lambda=H_{\mathrm{XXZ}}+\frac{N}{2} \cos \lambda,
$$

where H_{XXZ} is the Hamiltonian of the XXZ Heisenberg chain:

$$
\begin{equation*}
H_{\mathrm{XXZ}}=-\frac{1}{2} \sum_{n=1}^{N}\left(\sigma_{n}^{x} \sigma_{n+1}^{x}+\sigma_{n}^{y} \sigma_{n+1}^{y}+\Delta \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{16}
\end{equation*}
$$

with Δ given by (9):

$$
\Delta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\left\{\begin{array}{l}
-\cos \lambda \\
-\operatorname{ch} \lambda
\end{array}\right.
$$

We have

$$
\check{R}(u)=1-\frac{1}{\sin \lambda}\left(h+\frac{\cos \lambda}{2}\right) u+O\left(u^{2}\right),
$$

where

$$
h=-\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}-\cos \lambda \sigma^{z} \otimes \sigma^{z}\right)
$$

Hence

$$
H_{1} \sin \lambda=H_{\mathrm{XXZ}}+\frac{N}{2} \cos \lambda
$$

where H_{XXZ} is the Hamiltonian of the XXZ Heisenberg chain:

$$
\begin{equation*}
H_{\mathrm{XXZ}}=-\frac{1}{2} \sum_{n=1}^{N}\left(\sigma_{n}^{x} \sigma_{n+1}^{x}+\sigma_{n}^{y} \sigma_{n+1}^{y}+\Delta \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{16}
\end{equation*}
$$

with Δ given by (9):

$$
\Delta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\left\{\begin{array}{l}
-\cos \lambda \\
-\operatorname{ch} \lambda
\end{array} .\right.
$$

This leads to the identification of the space \mathcal{H}_{N} and the quantum space of the sixvertex model:

$$
\mathcal{H}_{N}=\underbrace{V \otimes \cdots \otimes V}, \quad v_{ \pm}=| \pm\rangle .
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Recall that

$$
S^{z}\left|\Omega_{ \pm}\right\rangle= \pm \frac{N}{2}\left|\Omega_{ \pm}\right\rangle, \quad H_{\mathrm{XXZ}}\left|\Omega_{ \pm}\right\rangle=-\frac{N \Delta}{2}\left|\Omega_{ \pm}\right\rangle
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Recall that

$$
S^{z}\left|\Omega_{ \pm}\right\rangle= \pm \frac{N}{2}\left|\Omega_{ \pm}\right\rangle, \quad H_{\mathrm{XXZ}}\left|\Omega_{ \pm}\right\rangle=-\frac{N \Delta}{2}\left|\Omega_{ \pm}\right\rangle
$$

The action of the transfer matrix:

$$
T(u)\left|\Omega_{+}\right\rangle
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Recall that

$$
S^{z}\left|\Omega_{ \pm}\right\rangle= \pm \frac{N}{2}\left|\Omega_{ \pm}\right\rangle, \quad H_{\mathrm{XXZ}}\left|\Omega_{ \pm}\right\rangle=-\frac{N \Delta}{2}\left|\Omega_{ \pm}\right\rangle
$$

The action of the transfer matrix:

$$
T(u)\left|\Omega_{+}\right\rangle=\sum_{\varepsilon= \pm} \begin{aligned}
& +\leftarrow^{\varepsilon}+ \\
& +\leftarrow_{\varepsilon}^{\varepsilon}+ \\
& \\
& +
\end{aligned}
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Recall that

$$
S^{z}\left|\Omega_{ \pm}\right\rangle= \pm \frac{N}{2}\left|\Omega_{ \pm}\right\rangle, \quad H_{\mathrm{XXZ}}\left|\Omega_{ \pm}\right\rangle=-\frac{N \Delta}{2}\left|\Omega_{ \pm}\right\rangle
$$

The action of the transfer matrix:

$$
T(u)\left|\Omega_{+}\right\rangle=\sum_{\varepsilon= \pm} \begin{aligned}
& +\leftarrow_{+}^{\varepsilon}+ \\
& +\leftarrow_{\varepsilon}^{+}+
\end{aligned}=\left(a^{N}(u)+b^{N}(u)\right)\left|\Omega_{+}\right\rangle
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Recall that

$$
S^{z}\left|\Omega_{ \pm}\right\rangle= \pm \frac{N}{2}\left|\Omega_{ \pm}\right\rangle, \quad H_{\mathrm{XXZ}}\left|\Omega_{ \pm}\right\rangle=-\frac{N \Delta}{2}\left|\Omega_{ \pm}\right\rangle
$$

The action of the transfer matrix:

$$
T(u)\left|\Omega_{+}\right\rangle=\sum_{\varepsilon= \pm} \begin{aligned}
& +\leftarrow_{+}^{\varepsilon}+ \\
& +\leftarrow_{\varepsilon}^{+}+
\end{aligned}=\left(a^{N}(u)+b^{N}(u)\right)\left|\Omega_{+}\right\rangle
$$

Finally,

$$
T(u)\left|\Omega_{ \pm}\right\rangle=\left(a^{N}(u)+b^{N}(u)\right)\left|\Omega_{ \pm}\right\rangle
$$

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Ground configurations:

and

2. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations?

3. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

4. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Ground configurations:

and

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order. 2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations?

and

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

and

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order. 2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

and

The excitations have finite weight. \Rightarrow Nontrivial thermodynamics.

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

and

The excitations have finite weight. \Rightarrow Nontrivial thermodynamics.
3. Disordered regime: $|\Delta|<1$. No ground configurations. It turns out that this regime is always critical.

