Lecture 2. Bosonization of the Thirring model

Michael Lashkevich

Michael Lashkevich Lecture 2. Bosonization of the Thirring model

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

イロト イヨト イヨト イヨト

æ

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

Here $\psi(x)$, $\bar{\psi}(x)$ are the Dirac fermion field and its Dirac conjugate. The γ matrices satisfy the relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \qquad \gamma^{\mu+} = \gamma^{0}\gamma^{\mu}\gamma^{0}.$$

(日) (同) (日) (日)

æ

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

Here $\psi(x)$, $\bar{\psi}(x)$ are the Dirac fermion field and its Dirac conjugate. The γ matrices satisfy the relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \qquad \gamma^{\mu+} = \gamma^{0}\gamma^{\mu}\gamma^{0}.$$

They can be chosen as

$$\gamma^0 = \begin{pmatrix} & -i \\ i \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} & i \\ i \end{pmatrix}, \qquad \gamma^3 = \gamma^0 \gamma^1 = \begin{pmatrix} 1 \\ & -1 \end{pmatrix}.$$
 (2)

(日) (同) (日) (日)

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

Here $\psi(x)$, $\bar{\psi}(x)$ are the Dirac fermion field and its Dirac conjugate. The γ matrices satisfy the relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \qquad \gamma^{\mu+} = \gamma^{0}\gamma^{\mu}\gamma^{0}.$$

They can be chosen as

$$\gamma^0 = \begin{pmatrix} & -i \\ i & \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} & i \\ i & \end{pmatrix}, \qquad \gamma^3 = \gamma^0 \gamma^1 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}.$$
 (2)

The model has a conserved current

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi. \tag{3}$$

(日) (同) (日) (日)

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

Here $\psi(x)$, $\bar{\psi}(x)$ are the Dirac fermion field and its Dirac conjugate. The γ matrices satisfy the relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \qquad \gamma^{\mu+} = \gamma^{0}\gamma^{\mu}\gamma^{0}.$$

They can be chosen as

$$\gamma^0 = \begin{pmatrix} & -i \\ i & \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} & i \\ i & \end{pmatrix}, \qquad \gamma^3 = \gamma^0 \gamma^1 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}.$$
 (2)

The model has a conserved current

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi. \tag{3}$$

(日) (同) (日) (日)

3

When m = 0 there is another conserved current

$$j_3^{\mu} = \bar{\psi}\gamma^3\gamma^{\mu}\psi = -\epsilon^{\mu\nu}j_{\nu}, \qquad \epsilon^{01} = -\epsilon^{10} = -1.$$
 (4)

The massive Thirring model in the Minkowski space:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right).$$
(1)

Here $\psi(x)$, $\bar{\psi}(x)$ are the Dirac fermion field and its Dirac conjugate. The γ matrices satisfy the relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \qquad \gamma^{\mu+} = \gamma^{0}\gamma^{\mu}\gamma^{0}.$$

They can be chosen as

$$\gamma^0 = \begin{pmatrix} & -i \\ i & \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} & i \\ i & \end{pmatrix}, \qquad \gamma^3 = \gamma^0 \gamma^1 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}.$$
 (2)

The model has a conserved current

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi. \tag{3}$$

イロト イポト イヨト イヨト

3

When m = 0 there is another conserved current

$$j_3^{\mu} = \bar{\psi}\gamma^3\gamma^{\mu}\psi = -\epsilon^{\mu\nu}j_{\nu}, \qquad \epsilon^{01} = -\epsilon^{10} = -1.$$
 (4)

Excitations: fermion, antifermion, and for g > 0 neutral boson bound states.

The sine-Gordon model:

$$S^{SG}[\phi] = \int d^2x \left(\frac{(\partial_{\mu}\phi)^2}{8\pi} + \mu \cos\beta\phi \right).$$
 (5)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

■ のへで

Sine-Gordon model

The sine-Gordon model:

$$S^{SG}[\phi] = \int d^2x \left(\frac{(\partial_\mu \phi)^2}{8\pi} + \mu \cos \beta \phi \right).$$
 (5)

This model has a topological number

$$q = \frac{\beta}{2\pi} (\phi(t, +\infty) - \phi(t, -\infty)) \in \mathbb{Z}.$$
 (6)

・ロト ・部ト ・ヨト ・ヨト

Ξ.

Sine-Gordon model

The sine-Gordon model:

$$S^{SG}[\phi] = \int d^2x \left(\frac{(\partial_\mu \phi)^2}{8\pi} + \mu \cos\beta\phi\right).$$
(5)

This model has a topological number

$$q = \frac{\beta}{2\pi} (\phi(t, +\infty) - \phi(t, -\infty)) \in \mathbb{Z}.$$
 (6)

It conserves on solutions and can be written as

$$q = \frac{\beta}{2\pi} \int_{-\infty}^{\infty} dx \,\partial_1 \phi(t, x) = \int_{-\infty}^{\infty} df_\mu \, j_{\rm top}^\mu,\tag{7}$$

where $df_{\mu} = \epsilon_{\mu\nu} dx^{\nu}$ is the one-dimensional surface element

・ロト ・四ト ・ヨト ・ヨト

э.

Sine-Gordon model

The sine-Gordon model:

$$S^{SG}[\phi] = \int d^2x \left(\frac{(\partial_\mu \phi)^2}{8\pi} + \mu \cos\beta\phi\right).$$
(5)

This model has a topological number

$$q = \frac{\beta}{2\pi} (\phi(t, +\infty) - \phi(t, -\infty)) \in \mathbb{Z}.$$
 (6)

It conserves on solutions and can be written as

$$q = \frac{\beta}{2\pi} \int_{-\infty}^{\infty} dx \,\partial_1 \phi(t, x) = \int_{-\infty}^{\infty} df_\mu \,j_{\rm top}^\mu,\tag{7}$$

where $df_{\mu} = \epsilon_{\mu\nu} dx^{\nu}$ is the one-dimensional surface element and j^{μ}_{top} is the topological current:

$$j_{\rm top}^{\mu} = -\frac{\beta}{2\pi} \epsilon^{\mu\nu} \partial_{\nu} \phi, \quad \partial_{\mu} j_{\rm top}^{\mu} = -\frac{\beta}{2\pi} \epsilon^{\mu\nu} \partial_{\mu} \partial_{\nu} \phi = 0.$$
(8)

・ロト ・四ト ・ヨト ・ヨト

臣

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$.

イロト イヨト イヨト

э.

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$. We say that a solution $\phi(x)$ with finite action has topological charge q, if

- $\phi(x) \to \phi_i \text{ as } x^1 \to -\infty,$
- $\phi(x) \to \phi_{i+q}$ as $x^1 \to +\infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

э.

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$. We say that a solution $\phi(x)$ with finite action has topological charge q, if

- $\phi(x) \to \phi_i \text{ as } x^1 \to -\infty,$
- $\phi(x) \to \phi_{i+q}$ as $x^1 \to +\infty$.

Theorem

Subject to these conditions any nontrivial static solution $\phi(x) = \varphi(x^1)$ has topological charge $q = \pm 1$.

• E • • E •

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$. We say that a solution $\phi(x)$ with finite action has topological charge q, if

- $\phi(x) \to \phi_i \text{ as } x^1 \to -\infty,$
- $\phi(x) \to \phi_{i+q}$ as $x^1 \to +\infty$.

Theorem

Subject to these conditions any nontrivial static solution $\phi(x) = \varphi(x^1)$ has topological charge $q = \pm 1$.

Proof. The static solution satisfies the equation

 $\partial_1^2 \varphi = U'(\varphi).$

• □ • • • □ • • □ • • • □ • •

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$. We say that a solution $\phi(x)$ with finite action has topological charge q, if

- $\phi(x) \to \phi_i \text{ as } x^1 \to -\infty,$
- $\phi(x) \to \phi_{i+q}$ as $x^1 \to +\infty$.

Theorem

Subject to these conditions any nontrivial static solution $\phi(x) = \varphi(x^1)$ has topological charge $q = \pm 1$.

Proof. The static solution satisfies the equation

$$\partial_1^2 \varphi = U'(\varphi).$$

This is the Newton equation with the potential $-U(\varphi)$. The points ϕ_i correspond to maxima of this potential. The field φ , which starts its 'movement' at the point ϕ_i may only finish it at the points $\phi_{i\pm 1}$.

Consider a two-dimensional model of one scalar field with the action

$$S[\phi] = \int d^2x \, \left(\frac{(\partial_\mu \phi)^2}{2} - U(\phi)\right).$$

Suppose that the potential $U(\phi)$ possesses a set of degenerate absolute minima ϕ_i . Let us order these minima so that $\phi_i < \phi_{i+1}$. We say that a solution $\phi(x)$ with finite action has topological charge q, if

- $\phi(x) \to \phi_i \text{ as } x^1 \to -\infty,$
- $\phi(x) \to \phi_{i+q}$ as $x^1 \to +\infty$.

Theorem

Subject to these conditions any nontrivial static solution $\phi(x) = \varphi(x^1)$ has topological charge $q = \pm 1$.

Proof. The static solution satisfies the equation

$$\partial_1^2 \varphi = U'(\varphi).$$

This is the Newton equation with the potential $-U(\varphi)$. The points ϕ_i correspond to maxima of this potential. The field φ , which starts its 'movement' at the point ϕ_i may only finish it at the points $\phi_{i\pm 1}$.

If there is a static solution, we may define a family of solutions moving with any velocity -1 < v < 1:

$$\phi(x) = \varphi\left(\frac{x^1 - vx^0}{\sqrt{1 - v^2}}\right).$$

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \operatorname{arctg} \exp \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \arctan \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω (0 $\leq \omega <$ 1).

イロト イポト イヨト イヨト

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \arctan \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω ($0 \le \omega < 1$). It is not stationary and can be considered as a kink–antikink bound state.

∃ 990

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \operatorname{arctg} \exp \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω ($0 \le \omega < 1$). It is not stationary and can be considered as a kink–antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon equation.

・ロト ・日ト ・日ト ・日ト

There are kink (q = 1) and antikink (q = -1) solutions:

6

$$\phi(x) = \pm \frac{4}{\beta} \arctan \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω ($0 \le \omega < 1$). It is not stationary and can be considered as a kink–antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon equation. It can be checked that any solution decays to a system of solitary waves with different velocities as $x^0 \to \pm \infty$.

イロト イヨト イヨト

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \arctan \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω ($0 \le \omega < 1$). It is not stationary and can be considered as a kink–antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon equation. It can be checked that any solution decays to a system of solitary waves with different velocities as $x^0 \to \pm \infty$. Moreover, the composition and velocities of the solitary waves in far past and far future coincide, so that the scattering of solitary wave reduces to shifts of the parameters $x_{0,1}^0 x_{0}^1$ as a result of interaction.

• E • • E •

There are kink (q = 1) and antikink (q = -1) solutions:

$$\phi(x) = \pm \frac{4}{\beta} \arctan \frac{m(x^1 - vx^0 - x_0^1)}{\sqrt{1 - v^2}}$$

The breather solution

$$\phi(x) = 4 \arctan \frac{\sqrt{1 - \omega^2} \cos \omega \tau}{\omega \cos \sqrt{1 - \omega^2} \xi}, \quad \tau = \frac{x^0 - vx^1 - x_0^0}{\sqrt{1 - v^2}}, \quad \xi = \frac{x^1 - vx^0 - x_0^1}{\sqrt{1 - v^2}},$$

depends on the parameter ω ($0 \le \omega < 1$). It is not stationary and can be considered as a kink–antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon equation. It can be checked that any solution decays to a system of solitary waves with different velocities as $x^0 \to \pm \infty$. Moreover, the composition and velocities of the solitary waves in far past and far future coincide, so that the scattering of solitary wave reduces to shifts of the parameters x_0^0, x_0^1 as a result of interaction. One may expect the quantum spectrum to consist of a kink (q = 1), antikink (q = -1) and a discrete series of breathers. The density of the mass spectrum of breathers decreases with increasing β .

Equivalence of the two models

We will see that these two models are equivalent subject to

$$g = \pi(\beta^{-2} - 1), \tag{9}$$

イロト イヨト イヨト イヨト

Ξ.

Equivalence of the two models

We will see that these two models are equivalent subject to

$$g = \pi(\beta^{-2} - 1), \tag{9}$$

The massive term in the Thirring model corresponds to the cosine term in the sine-Gordon model, so that

$$\mu \sim m r_0^{\beta^2 - 1},\tag{10}$$

イロト イヨト イヨト イヨト

æ

Equivalence of the two models

We will see that these two models are equivalent subject to

$$g = \pi(\beta^{-2} - 1), \tag{9}$$

The massive term in the Thirring model corresponds to the cosine term in the sine-Gordon model, so that

$$\mu \sim m r_0^{\beta^2 - 1},\tag{10}$$

The conserved currents also coincide

$$j^{\mu} = j^{\mu}_{\rm top},\tag{11}$$

so that the fermion number in the Thirring model coincides with the topological number in the sine-Gordon model.

イロト イポト イヨト イヨト

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

イロト イヨト イヨト イヨト

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

イロト イヨト イヨト イヨト

æ

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

(日) (同) (日) (日)

æ

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

Since $\epsilon^{\mu\nu}\partial_{\mu}j_{\nu} = \partial_{\mu}j_{3}^{\mu} = 0$ the current j_{μ} is a gradient of a free field:

$$j_{\mu} = -\frac{\beta}{2\pi} \partial_{\mu} \tilde{\phi} \qquad (14)$$

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

Since $\epsilon^{\mu\nu}\partial_{\mu}j_{\nu} = \partial_{\mu}j_{3}^{\mu} = 0$ the current j_{μ} is a gradient of a free field:

$$j_{\mu} = -\frac{\beta}{2\pi} \partial_{\mu} \tilde{\phi} = -\frac{\beta}{2\pi} \epsilon_{\mu\nu} \partial^{\nu} \phi.$$
 (14)

We will think of $\tilde{\phi}$ as of the dual of another field ϕ .

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

Since $\epsilon^{\mu\nu}\partial_{\mu}j_{\nu} = \partial_{\mu}j_{3}^{\mu} = 0$ the current j_{μ} is a gradient of a free field:

$$j_{\mu} = -\frac{\beta}{2\pi} \partial_{\mu} \tilde{\phi} = -\frac{\beta}{2\pi} \epsilon_{\mu\nu} \partial^{\nu} \phi.$$
 (14)

We will think of $\tilde{\phi}$ as of the dual of another field $\phi.$ Both satisfy the d'Alembert equation:

$$\partial_{\mu}\partial^{\mu}\phi = \partial_{\mu}\partial^{\mu}\tilde{\phi} = 0.$$

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

Since $\epsilon^{\mu\nu}\partial_{\mu}j_{\nu} = \partial_{\mu}j_{3}^{\mu} = 0$ the current j_{μ} is a gradient of a free field:

$$j_{\mu} = -\frac{\beta}{2\pi} \partial_{\mu} \tilde{\phi} = -\frac{\beta}{2\pi} \epsilon_{\mu\nu} \partial^{\nu} \phi.$$
 (14)

We will think of $\tilde{\phi}$ as of the dual of another field $\phi.$ Both satisfy the d'Alembert equation:

$$\partial_{\mu}\partial^{\mu}\phi = \partial_{\mu}\partial^{\mu}\tilde{\phi} = 0.$$

The solution to these equations reads

$$\phi(x) = \varphi(z) + \bar{\varphi}(\bar{z}), \quad \tilde{\phi}(x) = \varphi(z) - \bar{\varphi}(\bar{z}), \tag{15}$$

Rewrite the action in terms of the light cone variables:

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(2i\psi_1^+ \bar{\partial}\psi_1 - 2i\psi_2^+ \partial\psi_2 + im(\psi_1^+\psi_2 - \psi_2^+\psi_1) - 2g\psi_1^+\psi_2^+\psi_2\psi_1\right).$$

The components of the currents are

$$j_z = -\psi_1^+ \psi_1, \qquad j_{\bar{z}} = \psi_2^+ \psi_2.$$
 (12)

In the case m = 0 the equations of motion read

$$\bar{\partial}\psi_1 = -ig\psi_2^+\psi_2\psi_1 \equiv -igj_{\bar{z}}\psi_1,
\partial\psi_2 = ig\psi_1^+\psi_1\psi_2 \equiv -igj_z\psi_2.$$
(13)

Since $\epsilon^{\mu\nu}\partial_{\mu}j_{\nu} = \partial_{\mu}j_{3}^{\mu} = 0$ the current j_{μ} is a gradient of a free field:

$$j_{\mu} = -\frac{\beta}{2\pi} \partial_{\mu} \tilde{\phi} = -\frac{\beta}{2\pi} \epsilon_{\mu\nu} \partial^{\nu} \phi.$$
 (14)

We will think of $\tilde{\phi}$ as of the dual of another field $\phi.$ Both satisfy the d'Alembert equation:

$$\partial_{\mu}\partial^{\mu}\phi = \partial_{\mu}\partial^{\mu}\tilde{\phi} = 0.$$

The solution to these equations reads

$$\phi(x) = \varphi(z) + \bar{\varphi}(\bar{z}), \quad \tilde{\phi}(x) = \varphi(z) - \bar{\varphi}(\bar{z}), \tag{15}$$

Thus we have

$$j_z = -\frac{\beta}{2\pi}\partial\varphi, \quad j_{\bar{z}} = \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi}. \tag{16}$$

Massless Thirring model: quantization

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

イロト イヨト イヨト イヨト

æ

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

æ

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

イロト イヨト イヨト イヨト

æ

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case?

(日) (四) (日) (日) (日)

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case? Conjecture the fields ψ_i in the form

$$\psi_i(x) = \eta_i \sqrt{\frac{N_i}{2\pi}} e^{i\alpha_i \varphi(z) + i\beta_i \bar{\varphi}(\bar{z})}, \qquad \psi_i^+(x) = \eta_i^{-1} \sqrt{\frac{N_i}{2\pi}} e^{-i\alpha_i \varphi(z) - i\beta_i \bar{\varphi}(\bar{z})}, \quad (18)$$

イロト イポト イヨト イヨト

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case? Conjecture the fields ψ_i in the form

$$\psi_i(x) = \eta_i \sqrt{\frac{N_i}{2\pi}} e^{i\alpha_i \varphi(z) + i\beta_i \bar{\varphi}(\bar{z})}, \qquad \psi_i^+(x) = \eta_i^{-1} \sqrt{\frac{N_i}{2\pi}} e^{-i\alpha_i \varphi(z) - i\beta_i \bar{\varphi}(\bar{z})}, \quad (18)$$

where N_i are constants

イロト イポト イヨト イヨト

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case? Conjecture the fields ψ_i in the form

$$\psi_i(x) = \eta_i \sqrt{\frac{N_i}{2\pi}} e^{i\alpha_i \varphi(z) + i\beta_i \bar{\varphi}(\bar{z})}, \qquad \psi_i^+(x) = \eta_i^{-1} \sqrt{\frac{N_i}{2\pi}} e^{-i\alpha_i \varphi(z) - i\beta_i \bar{\varphi}(\bar{z})}, \quad (18)$$

where N_i are constants and η_i are algebraic elements with the relations

$$\eta_1 \eta_2 = -\eta_2 \eta_1. \tag{19}$$

イロト イヨト イヨト イヨト

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case? Conjecture the fields ψ_i in the form

$$\psi_i(x) = \eta_i \sqrt{\frac{N_i}{2\pi}} e^{i\alpha_i \varphi(z) + i\beta_i \bar{\varphi}(\bar{z})}, \qquad \psi_i^+(x) = \eta_i^{-1} \sqrt{\frac{N_i}{2\pi}} e^{-i\alpha_i \varphi(z) - i\beta_i \bar{\varphi}(\bar{z})}, \quad (18)$$

where N_i are constants and η_i are algebraic elements with the relations

$$\eta_1 \eta_2 = -\eta_2 \eta_1. \tag{19}$$

As in the classical case we have

$$\alpha_2 = -\beta_1 = \frac{g\beta}{2\pi},\tag{20}$$

イロト イヨト イヨト イヨト

The equations of motion (13) have the solution

$$\psi_1(z,\bar{z}) = F_1(z)e^{-i\frac{g\beta}{2\pi}\bar{\varphi}(\bar{z})}, \quad \psi_2(z,\bar{z}) = F_2(\bar{z})e^{i\frac{g\beta}{2\pi}\varphi(z)},$$

while equation (12) gives

$$\frac{\beta}{2\pi}\partial\varphi = \psi_1^+\psi_1 = F_1(z)F_1^*(z), \qquad \frac{\beta}{2\pi}\bar{\partial}\bar{\varphi} = \psi_2^+\psi_2 = F_2(\bar{z})F_2^*(\bar{z}).$$
(17)

This makes it possible to find a classical solution in terms of two analytic functions $F_i(z)$.

What can be done in the quantum case? Conjecture the fields ψ_i in the form

$$\psi_i(x) = \eta_i \sqrt{\frac{N_i}{2\pi}} e^{i\alpha_i \varphi(z) + i\beta_i \bar{\varphi}(\bar{z})}, \qquad \psi_i^+(x) = \eta_i^{-1} \sqrt{\frac{N_i}{2\pi}} e^{-i\alpha_i \varphi(z) - i\beta_i \bar{\varphi}(\bar{z})}, \quad (18)$$

where N_i are constants and η_i are algebraic elements with the relations

$$\eta_1 \eta_2 = -\eta_2 \eta_1. \tag{19}$$

As in the classical case we have

$$\alpha_2 = -\beta_1 = \frac{g\beta}{2\pi},\tag{20}$$

イロト イヨト イヨト

3

But the exponential form of F_i seems to be strange. To understand them consider the operator product expansions of ψ_i .

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
 (21)

< 17 b

A B F A B F

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_j\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
(21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

■ のへで

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i \alpha_j} (\bar{z}'-\bar{z})^{\beta_i \beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
(21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_1^+(x')\psi_1(x) = \frac{N_1}{2\pi}(z'-z)^{-\alpha_1^2} \left(\bar{z}'-\bar{z}\right)^{-\beta_1^2} \times e^{-i\alpha_1(\varphi(z')-\varphi(z))-i\beta_1(\bar{\varphi}(\bar{z}')-\bar{\varphi}(\bar{z}))}.$$
 (23)

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
 (21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_1^+(x')\psi_1(x) = \frac{N_1}{2\pi} (z'-z)^{-\alpha_1^2} (\bar{z}'-\bar{z})^{-\beta_1^2} \\ \times \left(1 - i\alpha_1(z'-z) \ \partial\phi(x) \ -i\beta_1(\bar{z}'-\bar{z}) \ \bar{\partial}\phi(x) + \cdots\right).$$
(23)

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
 (21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_1^+(x')\psi_1(x) = \frac{N_1}{2\pi}(z'-z)^{-\alpha_1^2} \left(\bar{z}'-\bar{z}\right)^{-\beta_1^2} \\ \times \left(1 - i\alpha_1(z'-z) \ \partial\phi(x) \ -i\beta_1(\bar{z}'-\bar{z}) \ \bar{\partial}\phi(x) + \cdots\right).$$
(23)

Define the current j_z as follows:

$$j_z(z,\bar{z}) = -\int_0^{2\pi} \frac{d\theta}{2\pi} \psi_1^+(z+r_0e^{i\theta},\bar{z}+r_0e^{-i\theta})\psi_1(z,\bar{z})$$

for some small r_0 .

3 × 4 3 ×

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_j\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
(21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_1^+(x')\psi_1(x) = \frac{N_1}{2\pi} (z'-z)^{-\alpha_1^2} \left(\bar{z}'-\bar{z}\right)^{-\beta_1^2} \\ \times \left(1 - i\alpha_1(z'-z) \ \partial\phi(x) \ -i\beta_1(\bar{z}'-\bar{z}) \ \bar{\partial}\phi(x) + \cdots\right).$$
(23)

Define the current j_z as follows:

$$j_z(z,\bar{z}) = -\int_0^{2\pi} \frac{d\theta}{2\pi} \psi_1^+(z+r_0e^{i\theta},\bar{z}+r_0e^{-i\theta})\psi_1(z,\bar{z})$$

for some small r_0 .

$$\alpha_1^2 - \beta_1^2 = 1, \tag{24}$$

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
 (21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_{1}^{+}(x')\psi_{1}(x) = \frac{N_{1}}{2\pi}(z'-z)^{-\alpha_{1}^{2}}\left(\bar{z}'-\bar{z}\right)^{-\beta_{1}^{2}} \times \left(1 - i\alpha_{1}(z'-z) \,\partial\phi(x) - i\beta_{1}(\bar{z}'-\bar{z})\bar{\partial}\phi(x) + \cdots\right). \quad (23)$$

Define the current j_z as follows:

$$j_z(z,\bar{z}) = -\int_0^{2\pi} \frac{d\theta}{2\pi} \psi_1^+(z+r_0e^{i\theta},\bar{z}+r_0e^{-i\theta})\psi_1(z,\bar{z})$$

for some small r_0 .

$$\alpha_1^2 - \beta_1^2 = 1, (24)$$

3

the first and the third terms give zero contribution due to the angular dependence

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i\alpha_j} (\bar{z}'-\bar{z})^{\beta_i\beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
 (21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_{1}^{+}(x')\psi_{1}(x) = \frac{N_{1}}{2\pi}(z'-z)^{-\alpha_{1}^{2}}\left(\bar{z}'-\bar{z}\right)^{-\beta_{1}^{2}} \times \left(\left(-i\alpha_{1}(z'-z) \partial\phi(x) - i\beta_{1}(\bar{z}'-\bar{z})\partial\phi(x) + \cdots \right) \right) \right)$$
(23)

Define the current j_z as follows:

$$j_z(z,\bar{z}) = -\int_0^{2\pi} \frac{d\theta}{2\pi} \psi_1^+(z+r_0e^{i\theta},\bar{z}+r_0e^{-i\theta})\psi_1(z,\bar{z})$$

for some small r_0 .

$$\alpha_1^2 - \beta_1^2 = 1, \tag{24}$$

イロト イポト イヨト イヨト

3

the first and the third terms give zero contribution due to the angular dependence and the terms from the forth on are negligible.

We have

$$\psi_i(x')\psi_j(x) = \eta_i\eta_j \frac{\sqrt{N_i N_j}}{2\pi} (z'-z)^{\alpha_i \alpha_j} (\bar{z}'-\bar{z})^{\beta_i \beta_j} \\ \times e^{i\alpha_i\varphi(z')+i\beta_i\bar{\varphi}(\bar{z}')+i\alpha_j\varphi(z)+i\beta_j\bar{\varphi}(\bar{z})}.$$
(21)

Then $\psi_i(x')\psi_j(x) = -\psi_j(x)\psi_i(x')$, if

$$\alpha_i^2 - \beta_i^2 \in 2\mathbb{Z} + 1, \qquad \alpha_1 \alpha_2 - \beta_1 \beta_2 \in 2\mathbb{Z}.$$
(22)

Now let us expand the product $\psi_1^+(x')\psi_1(x)$ in powers of x'-x:

$$\psi_{1}^{+}(x')\psi_{1}(x) = \frac{N_{1}}{2\pi}(z'-z)^{-\alpha_{1}^{2}}\left(\bar{z}'-\bar{z}\right)^{-\beta_{1}^{2}} \times \left((1-i\alpha_{1}(z'-z)\partial\phi(x)) - i\beta_{1}(\bar{z}'-\bar{z})\bar{\partial}\phi(x) + \cdots\right). \quad (23)$$

Define the current j_z as follows:

$$j_z(z,\bar{z}) = -\int_0^{2\pi} \frac{d\theta}{2\pi} \psi_1^+(z+r_0e^{i\theta},\bar{z}+r_0e^{-i\theta})\psi_1(z,\bar{z})$$

for some small r_0 .

$$\alpha_1^2 - \beta_1^2 = 1, (24)$$

the first and the third terms give zero contribution due to the angular dependence and the terms from the forth on are negligible. The second term only contributes the current.

We obtain

$$j_z = -N_1 r_0^{-2\beta_1^2} \left(\frac{-i\alpha_1 \partial \varphi}{2\pi}\right)$$

イロト イヨト イヨト イヨト

■ のへで

We obtain

$$j_z = -N_1 r_0^{-2\beta_1^2} \left(\frac{-i\alpha_1 \partial \varphi}{2\pi}\right)$$

Comparing with $j_z = \frac{\beta}{2\pi} \partial \varphi$ we find

$$\beta = -ir_0^{-2\beta_1^2} N_1 \alpha_1.$$
 (25)

▲ □ ▶ ▲ 三 ▶ ▲ 三 ● ● ● ●

We obtain

$$j_z = -N_1 r_0^{-2\beta_1^2} \left(\frac{-i\alpha_1 \partial \varphi}{2\pi}\right).$$

Comparing with $j_z = \frac{\beta}{2\pi} \partial \varphi$ we find

$$\beta = -ir_0^{-2\beta_1^2} N_1 \alpha_1.$$
 (25)

Repeating the same for $\psi_2^+\psi_2$ and assuming

$$\alpha_2^2 - \beta_2^2 = -1, \tag{26}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

We obtain

$$j_z = -N_1 r_0^{-2\beta_1^2} \left(\frac{-i\alpha_1 \partial \varphi}{2\pi}\right).$$

Comparing with $j_z = \frac{\beta}{2\pi} \partial \varphi$ we find

$$\beta = -ir_0^{-2\beta_1^2} N_1 \alpha_1.$$
 (25)

Repeating the same for $\psi_2^+\psi_2$ and assuming

$$\alpha_2^2 - \beta_2^2 = -1, \tag{26}$$

we obtain

$$\beta = -ir_0^{-2\alpha_2^2} N_2 \beta_2. \tag{27}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

We obtain

$$j_z = -N_1 r_0^{-2\beta_1^2} \left(\frac{-i\alpha_1 \partial \varphi}{2\pi}\right).$$

Comparing with $j_z = \frac{\beta}{2\pi} \partial \varphi$ we find

$$\beta = -ir_0^{-2\beta_1^2} N_1 \alpha_1.$$
 (25)

Repeating the same for $\psi_2^+\psi_2$ and assuming

$$\alpha_2^2 - \beta_2^2 = -1, \tag{26}$$

we obtain

$$\beta = -ir_0^{-2\alpha_2^2} N_2 \beta_2. \tag{27}$$

We need one more equation. To find it, we have to analyze the mass term.

イロト イロト イヨト イヨト 三日

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

∃ 990

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge. Consider the expansion

$$\psi_{2}^{+}(x')\psi_{1}(x) = -\eta_{1}\eta_{2}^{-1}\frac{\sqrt{N_{1}N_{2}}}{2\pi}(z'-z)^{-\alpha_{1}\alpha_{2}}(\bar{z}'-\bar{z})^{-\beta_{1}\beta_{2}} \times \left(e^{i(\alpha_{1}-\alpha_{2})\varphi(z)+i(\beta_{1}-\beta_{2})\bar{\varphi}(\bar{z})}+\cdots\right).$$
(28)

< 47 ▶

Ξ.

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge. Consider the expansion

$$\psi_{2}^{+}(x')\psi_{1}(x) = -\eta_{1}\eta_{2}^{-1}\frac{\sqrt{N_{1}N_{2}}}{2\pi}(z'-z)^{-\alpha_{1}\alpha_{2}}(\bar{z}'-\bar{z})^{-\beta_{1}\beta_{2}} \times \left(e^{i(\alpha_{1}-\alpha_{2})\varphi(z)+i(\beta_{1}-\beta_{2})\bar{\varphi}(\bar{z})}+\cdots\right).$$
(28)

The first term survives in the averaged product defined similarly to j_z , if

$$\alpha_1 \alpha_2 = \beta_1 \beta_2 \quad \Rightarrow \quad \alpha_1 = -\beta_2. \tag{29}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge. Consider the expansion

$$\psi_{2}^{+}(x')\psi_{1}(x) = -\eta_{1}\eta_{2}^{-1}\frac{\sqrt{N_{1}N_{2}}}{2\pi}(z'-z)^{-\alpha_{1}\alpha_{2}}(\bar{z}'-\bar{z})^{-\beta_{1}\beta_{2}} \times \left(e^{i(\alpha_{1}-\alpha_{2})\varphi(z)+i(\beta_{1}-\beta_{2})\bar{\varphi}(\bar{z})}+\cdots\right).$$
(28)

The first term survives in the averaged product defined similarly to j_z , if

$$\alpha_1 \alpha_2 = \beta_1 \beta_2 \quad \Rightarrow \quad \alpha_1 = -\beta_2. \tag{29}$$

With this assumption we may define

$$\psi_2^+\psi_1(x) = -\eta_1\eta_2^{-1}\frac{\sqrt{N_1N_2}}{2\pi}r_0^{-2\alpha_1\alpha_2}e^{i(\alpha_1-\alpha_2)\varphi(z)+i(\beta_1-\beta_2)\bar{\varphi}(\bar{z})}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge. Consider the expansion

$$\psi_{2}^{+}(x')\psi_{1}(x) = -\eta_{1}\eta_{2}^{-1}\frac{\sqrt{N_{1}N_{2}}}{2\pi}(z'-z)^{-\alpha_{1}\alpha_{2}}(\bar{z}'-\bar{z})^{-\beta_{1}\beta_{2}} \times \left(e^{i(\alpha_{1}-\alpha_{2})\varphi(z)+i(\beta_{1}-\beta_{2})\bar{\varphi}(\bar{z})}+\cdots\right).$$
(28)

The first term survives in the averaged product defined similarly to j_z , if

$$\alpha_1 \alpha_2 = \beta_1 \beta_2 \quad \Rightarrow \quad \alpha_1 = -\beta_2. \tag{29}$$

With this assumption we may define

$$\psi_2^+\psi_1(x) = -\eta_1\eta_2^{-1}\frac{\sqrt{N_1N_2}}{2\pi}r_0^{-2\alpha_1\alpha_2}e^{i(\alpha_1-\alpha_2)\varphi(z)+i(\beta_1-\beta_2)\bar{\varphi}(\bar{z})}.$$

Now check the consistency with the conservancy of the fermion charge Q means that it should be a function of ϕ .

イロト イヨト イヨト

Consider now the mass term $-m\bar{\psi}\psi = im(\psi_1^+\psi_2 - \psi_2^+\psi_1)$. Both terms must be well-defined and be consistent with the conservancy of the fermion charge. Consider the expansion

$$\psi_{2}^{+}(x')\psi_{1}(x) = -\eta_{1}\eta_{2}^{-1}\frac{\sqrt{N_{1}N_{2}}}{2\pi}(z'-z)^{-\alpha_{1}\alpha_{2}}(\bar{z}'-\bar{z})^{-\beta_{1}\beta_{2}} \times \left(e^{i(\alpha_{1}-\alpha_{2})\varphi(z)+i(\beta_{1}-\beta_{2})\bar{\varphi}(\bar{z})}+\cdots\right).$$
(28)

The first term survives in the averaged product defined similarly to j_z , if

$$\alpha_1 \alpha_2 = \beta_1 \beta_2 \quad \Rightarrow \quad \alpha_1 = -\beta_2. \tag{29}$$

With this assumption we may define

$$\psi_2^+\psi_1(x) = -\eta_1\eta_2^{-1}\frac{\sqrt{N_1N_2}}{2\pi}r_0^{-2\alpha_1\alpha_2}e^{i(\alpha_1-\alpha_2)\varphi(z)+i(\beta_1-\beta_2)\bar{\varphi}(\bar{z})}.$$

Now check the consistency with the conservancy of the fermion charge Q means that it should be a function of ϕ . Consider the commutator

$$\begin{split} &[O(0),Q] = \oint df_{\mu} j^{\mu}(x)O(0) = \oint dx^{\nu} \epsilon_{\mu\nu} j^{\mu}(x)O(0) = -\frac{\beta}{2\pi} \oint dx^{\nu} \epsilon_{\mu\nu} \partial^{\mu} \tilde{\phi}(x) O(0) \\ &= -\frac{\beta}{2\pi} \oint dx^{\nu} \epsilon_{\mu\nu} \epsilon^{\mu\lambda} \partial_{\lambda} \phi(x) O(0) = \frac{\beta}{2\pi} \oint dx^{\lambda} \partial_{\lambda} \phi(x) O(0) = \frac{\beta}{2\pi} \Delta \phi(x) O(0), \end{split}$$

where Δ means the increment of the field while passing the closed contour.

Let
$$O(x) = e^{\alpha \varphi(z) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then
 $[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$
 $= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$

・ロト ・部ト ・ヨト ・ヨト

Let
$$O(x) = e^{\alpha \varphi(\bar{z}) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then

$$[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$$

$$= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$$

Hence, the operator Q is commuting with $\psi_2^+\psi_1$, since $\alpha_1 - \alpha_2 = \beta_1 - \beta_2$.

■ のへで

Let
$$O(x) = e^{\alpha \varphi(z) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then

$$[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$$

$$= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$$

Hence, the operator Q is commuting with $\psi_2^+\psi_1$, since $\alpha_1 - \alpha_2 = \beta_1 - \beta_2$. Now fix the β parameter. Set $O(x) = \psi_i(x)$. Since the operators ψ_i have the fermion charge -1, we have

$$\psi_i(0) = [\psi_i(0), Q] = \beta(\alpha_i - \beta_i)\psi_i(0) = \beta(\alpha_1 + \alpha_2)\psi_i(0)$$

3 × 4 3 ×

Let
$$O(x) = e^{\alpha \varphi(z) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then

$$[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$$

$$= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$$

Hence, the operator Q is commuting with $\psi_2^+\psi_1$, since $\alpha_1 - \alpha_2 = \beta_1 - \beta_2$. Now fix the β parameter. Set $O(x) = \psi_i(x)$. Since the operators ψ_i have the fermion charge -1, we have

$$\psi_i(0) = [\psi_i(0), Q] = \beta(\alpha_i - \beta_i)\psi_i(0) = \beta(\alpha_1 + \alpha_2)\psi_i(0)$$

Hence

$$\alpha_1 + \alpha_2 = \beta^{-1} \quad \Rightarrow \quad \alpha_1 - \alpha_2 = \beta.$$

∃ ► < ∃ ►</p>

Let
$$O(x) = e^{\alpha \varphi(z) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then

$$[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$$

$$= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$$

Hence, the operator Q is commuting with $\psi_2^+\psi_1$, since $\alpha_1 - \alpha_2 = \beta_1 - \beta_2$. Now fix the β parameter. Set $O(x) = \psi_i(x)$. Since the operators ψ_i have the fermion charge -1, we have

$$\psi_i(0) = [\psi_i(0), Q] = \beta(\alpha_i - \beta_i)\psi_i(0) = \beta(\alpha_1 + \alpha_2)\psi_i(0)$$

Hence

$$\alpha_1 + \alpha_2 = \beta^{-1} \quad \Rightarrow \quad \alpha_1 - \alpha_2 = \beta$$

Hence

$$\alpha_1 = -\beta_2 = \frac{1}{2} \left(\frac{1}{\beta} + \beta \right),$$

$$\alpha_2 = -\beta_1 = \frac{1}{2} \left(\frac{1}{\beta} - \beta \right).$$
(30)

∃ ► < ∃ ►</p>

Let
$$O(x) = e^{\alpha \varphi(z) + \alpha' \bar{\varphi}(\bar{z})}$$
. Then

$$[O(0), Q] = \frac{\beta}{2\pi} \Delta(\varphi(z) + \bar{\varphi}(\bar{z})) e^{i\alpha\varphi(z) + i\alpha' \bar{\varphi}(\bar{z})}$$

$$= \frac{i\beta}{2\pi} \Delta\left(\alpha \log \frac{1}{z} + \alpha' \log \frac{1}{\bar{z}}\right) e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)} = \beta(\alpha - \alpha') e^{i\alpha\varphi(0) + i\alpha' \bar{\varphi}(0)}.$$

Hence, the operator Q is commuting with $\psi_2^+\psi_1$, since $\alpha_1 - \alpha_2 = \beta_1 - \beta_2$. Now fix the β parameter. Set $O(x) = \psi_i(x)$. Since the operators ψ_i have the fermion charge -1, we have

$$\psi_i(0) = [\psi_i(0), Q] = \beta(\alpha_i - \beta_i)\psi_i(0) = \beta(\alpha_1 + \alpha_2)\psi_i(0)$$

Hence

$$\alpha_1 + \alpha_2 = \beta^{-1} \quad \Rightarrow \quad \alpha_1 - \alpha_2 = \beta.$$

Hence

$$\alpha_1 = -\beta_2 = \frac{1}{2} \left(\frac{1}{\beta} + \beta \right),$$

$$\alpha_2 = -\beta_1 = \frac{1}{2} \left(\frac{1}{\beta} - \beta \right).$$
(30)

Using $\alpha_2 = g\beta/2\pi$ we obtain the relation between coupling constants:

$$g = \pi(\beta^{-2} - 1).$$
(9)

(I) < (I)

-

Thirring model and sine-Gordon model

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

イロト イヨト イヨト イヨト

æ

Thirring model and sine-Gordon model

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

・ロト ・部ト ・ヨト ・ヨト

æ

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

Consider the mass contribution

$$im(\psi_2^+\psi_1 - \psi_1^+\psi_2) \sim (i\eta_1\eta_2^{-1})e^{i\beta\phi} + (i\eta_1\eta_2^{-1})^{-1}e^{-i\beta\phi}$$

as a perturbation.

イロト イボト イヨト イヨト

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

Consider the mass contribution

$$im(\psi_2^+\psi_1 - \psi_1^+\psi_2) \sim (i\eta_1\eta_2^{-1})e^{i\beta\phi} + (i\eta_1\eta_2^{-1})^{-1}e^{-i\beta\phi}$$

as a perturbation. Due to the 'neutrality' on the infinite plane, $\#(e^{i\beta\phi}) - \#(e^{-i\beta\phi})$ is the same in each perturbation term.

イロト イポト イヨト イヨト

э.

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

Consider the mass contribution

$$im(\psi_2^+\psi_1 - \psi_1^+\psi_2) \sim (i\eta_1\eta_2^{-1})e^{i\beta\phi} + (i\eta_1\eta_2^{-1})^{-1}e^{-i\beta\phi}$$

as a perturbation. Due to the 'neutrality' on the infinite plane, $\#(e^{i\beta\phi}) - \#(e^{-i\beta\phi})$ is the same in each perturbation term. Hence the substitution

$$\left(i\eta_1\eta_2^{-1}\right)^{\alpha/\beta}e^{i\alpha\phi} \to e^{i\alpha\phi}$$

makes it possible to get rid of the algebraic elements η_i .

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

Consider the mass contribution

$$im(\psi_2^+\psi_1 - \psi_1^+\psi_2) \sim (i\eta_1\eta_2^{-1})e^{i\beta\phi} + (i\eta_1\eta_2^{-1})^{-1}e^{-i\beta\phi}$$

as a perturbation. Due to the 'neutrality' on the infinite plane, $\#(e^{i\beta\phi}) - \#(e^{-i\beta\phi})$ is the same in each perturbation term. Hence the substitution

$$\left(i\eta_1\eta_2^{-1}\right)^{\alpha/\beta}e^{i\alpha\phi} \to e^{i\alpha\phi}$$

makes it possible to get rid of the algebraic elements η_i . Then we have

$$i(\psi_1^+\psi_2 - \psi_2^+\psi_1) = \frac{2}{\pi} \frac{\beta^2}{\beta^2 + 1} r_0^{\beta^2 - 1} \cos\beta\phi, \qquad (32)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Substituting it we obtain

$$N_1 = -N_2 = ir_0^{\frac{\beta^2}{2} + \frac{1}{2\beta^2} - 1} \frac{2\beta^2}{\beta^2 + 1},$$
(31)

Hence

$$-i\psi_{2}^{+}\psi_{1} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)e^{i\beta\phi},$$
$$i\psi_{1}^{+}\psi_{2} = \frac{1}{\pi}\frac{\beta^{2}}{\beta^{2}+1}r_{0}^{\beta^{2}-1}\left(i\eta_{1}\eta_{2}^{-1}\right)^{-1}e^{-i\beta\phi}.$$

Consider the mass contribution

$$im(\psi_2^+\psi_1 - \psi_1^+\psi_2) \sim (i\eta_1\eta_2^{-1})e^{i\beta\phi} + (i\eta_1\eta_2^{-1})^{-1}e^{-i\beta\phi}$$

as a perturbation. Due to the 'neutrality' on the infinite plane, $\#(e^{i\beta\phi}) - \#(e^{-i\beta\phi})$ is the same in each perturbation term. Hence the substitution

$$\left(i\eta_1\eta_2^{-1}\right)^{\alpha/\beta}e^{i\alpha\phi} \to e^{i\alpha\phi}$$

makes it possible to get rid of the algebraic elements η_i . Then we have

$$i(\psi_1^+\psi_2 - \psi_2^+\psi_1) = \frac{2}{\pi} \frac{\beta^2}{\beta^2 + 1} r_0^{\beta^2 - 1} \cos\beta\phi, \qquad (32)$$

from which we find

$$\mu \sim m r_0^{\beta^2 - 1}, \tag{10}$$

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

(日) (四) (日) (日) (日)

э.

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

The parameter μ of the sine-Gordon model is finite and measurable. It is related to the physical mass $m_{\rm phys}$ of a particle:

$$\mu \sim m_{\rm phys}^{2-\beta^2}$$
.

The coefficient is known exactly, but its calculation is far beyond the scope of these lectures.

(人間) ション ション

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

The parameter μ of the sine-Gordon model is finite and measurable. It is related to the physical mass $m_{\rm phys}$ of a particle:

$$\mu \sim m_{\rm phys}^{2-\beta^2}$$
.

The coefficient is known exactly, but its calculation is far beyond the scope of these lectures.

Hence the parameter m is divergent:

$$m \sim m_{\rm phys} (m_{\rm phys} r_0)^{1-\beta^2} = m_{\rm phys} (m_{\rm phys} r_0)^{\frac{g/\pi}{1+g/\pi}},$$
 (33)

(人間) ション ション

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

The parameter μ of the sine-Gordon model is finite and measurable. It is related to the physical mass $m_{\rm phys}$ of a particle:

$$\mu \sim m_{\rm phys}^{2-\beta^2}$$
.

The coefficient is known exactly, but its calculation is far beyond the scope of these lectures.

Hence the parameter m is divergent:

$$m \sim m_{\rm phys} (m_{\rm phys} r_0)^{1-\beta^2} = m_{\rm phys} (m_{\rm phys} r_0)^{\frac{g/\pi}{1+g/\pi}},$$
 (33)

Consider the operators from Lecture 1:

$$e^{iJ\varphi} = e^{\frac{iJ}{2\beta}\tilde{\phi}}, \qquad J \in \mathbb{Z}.$$
(34)

(人間) ション ション

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

The parameter μ of the sine-Gordon model is finite and measurable. It is related to the physical mass $m_{\rm phys}$ of a particle:

$$\mu \sim m_{\rm phys}^{2-\beta^2}$$
.

The coefficient is known exactly, but its calculation is far beyond the scope of these lectures.

Hence the parameter m is divergent:

$$m \sim m_{\rm phys} (m_{\rm phys} r_0)^{1-\beta^2} = m_{\rm phys} (m_{\rm phys} r_0)^{\frac{g/\pi}{1+g/\pi}},$$
 (33)

Consider the operators from Lecture 1:

$$e^{iJ\varphi} = e^{\frac{iJ}{2\beta}\tilde{\phi}}, \qquad J \in \mathbb{Z}.$$
 (34)

These operators change the topological charge by $J: q \to q + J$.

・ロト ・日ト ・日ト ・日ト

Correlation functions of the Thirring and the sine-Gordon models coincide in each order of the perturbation theory in the parameter m. This is a strong argument for their coincidence.

The parameter μ of the sine-Gordon model is finite and measurable. It is related to the physical mass $m_{\rm phys}$ of a particle:

$$\mu \sim m_{\rm phys}^{2-\beta^2}$$
.

The coefficient is known exactly, but its calculation is far beyond the scope of these lectures.

Hence the parameter m is divergent:

$$m \sim m_{\rm phys} (m_{\rm phys} r_0)^{1-\beta^2} = m_{\rm phys} (m_{\rm phys} r_0)^{\frac{g/\pi}{1+g/\pi}},$$
 (33)

Consider the operators from Lecture 1:

$$e^{iJ\varphi} = e^{\frac{iJ}{2\beta}\tilde{\phi}}, \qquad J \in \mathbb{Z}.$$
 (34)

These operators change the topological charge by $J: q \to q + J$. For $J = \pm 1$ they are boson kink creation-annihilation operators.

(日)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ