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Thirring model
The massive Thirring model in the Minkowski space:

SMT [ψ, ψ̄] =

∫
d2x

(
ψ̄(iγµ∂µ −m)ψ −

g

2
(ψ̄γµψ)2

)
. (1)

Here ψ(x), ψ̄(x) are the Dirac fermion field and its Dirac conjugate. The γ
matrices satisfy the relations

γµγν + γνγµ = 2gµν , γµ+ = γ0γµγ0.

They can be chosen as

γ0 =

(
−i

i

)
, γ1 =

(
i

i

)
, γ3 = γ0γ1 =

(
1
−1

)
. (2)

The model has a conserved current

jµ = ψ̄γµψ. (3)

When m = 0 there is another conserved current

jµ3 = ψ̄γ3γµψ = −εµνjν , ε01 = −ε10 = −1. (4)

Excitations: fermion, antifermion, and for g > 0 neutral boson bound states.
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Sine-Gordon model
The sine-Gordon model:

SSG[φ] =

∫
d2x

(
(∂µφ)2

8π
+ µ cosβφ

)
. (5)

This model has a topological number

q =
β

2π
(φ(t,+∞)− φ(t,−∞)) ∈ Z. (6)

It conserves on solutions and can be written as

q =
β

2π

∫ ∞
−∞

dx ∂1φ(t, x) =

∫ ∞
−∞

dfµ j
µ
top, (7)

where dfµ = εµνdxν is the one-dimensional surface element and jµtop is the
topological current:

jµtop = −
β

2π
εµν∂νφ, ∂µj

µ
top = −

β

2π
εµν∂µ∂νφ = 0. (8)
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Digression: Stationary solutions of field equations
Consider a two-dimensional model of one scalar field with the action

S[φ] =

∫
d2x

(
(∂µφ)2

2
− U(φ)

)
.

Suppose that the potential U(φ) possesses a set of degenerate absolute minima φi.
Let us order these minima so that φi < φi+1.

We say that a solution φ(x) with
finite action has topological charge q, if

φ(x)→ φi as x1 → −∞,
φ(x)→ φi+q as x1 → +∞.

Theorem

Subject to these conditions any nontrivial static solution φ(x) = ϕ(x1) has
topological charge q = ±1.

Proof. The static solution satisfies the equation

∂2
1ϕ = U ′(ϕ).

This is the Newton equation with the potential −U(ϕ). The points φi correspond
to maxima of this potential. The field ϕ, which starts its ‘movement’ at the point
φi may only finish it at the points φi±1.
If there is a static solution, we may define a family of solutions moving with any
velocity −1 < v < 1:

φ(x) = ϕ

(
x1 − vx0

√
1− v2

)
.
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Digression: Classical solutions of the sine-Gordon equation
There are kink (q = 1) and antikink (q = −1) solutions:

φ(x) = ±
4

β
arctg exp

m(x1 − vx0 − x1
0)

√
1− v2

The breather solution

φ(x) = 4 arctg

√
1− ω2 cosωτ

ω cos
√

1− ω2ξ
, τ =

x0 − vx1 − x0
0√

1− v2
, ξ =

x1 − vx0 − x1
0√

1− v2
,

depends on the parameter ω (0 ≤ ω < 1). It is not stationary and can be
considered as a kink–antikink bound state.
Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon
equation. It can be checked that any solution decays to a system of solitary waves
with different velocities as x0 → ±∞. Moreover, the composition and velocities of
the solitary waves in far past and far future coincide, so that the scattering of
solitary wave reduces to shifts of the parameters x0

0, x
1
0 as a result of interaction.

One may expect the quantum spectrum to consist of a kink (q = 1), antikink
(q = −1) and a discrete series of breathers. The density of the mass spectrum of
breathers decreases with increasing β.
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Equivalence of the two models
We will see that these two models are equivalent subject to

g = π(β−2 − 1), (9)

The massive term in the Thirring model corresponds to the cosine term in the
sine-Gordon model, so that

µ ∼ mrβ
2−1

0 , (10)

The conserved currents also coincide

jµ = jµtop, (11)

so that the fermion number in the Thirring model coincides with the topological
number in the sine-Gordon model.

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Equivalence of the two models
We will see that these two models are equivalent subject to

g = π(β−2 − 1), (9)

The massive term in the Thirring model corresponds to the cosine term in the
sine-Gordon model, so that

µ ∼ mrβ
2−1

0 , (10)

The conserved currents also coincide

jµ = jµtop, (11)

so that the fermion number in the Thirring model coincides with the topological
number in the sine-Gordon model.

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Equivalence of the two models
We will see that these two models are equivalent subject to

g = π(β−2 − 1), (9)

The massive term in the Thirring model corresponds to the cosine term in the
sine-Gordon model, so that

µ ∼ mrβ
2−1

0 , (10)

The conserved currents also coincide

jµ = jµtop, (11)

so that the fermion number in the Thirring model coincides with the topological
number in the sine-Gordon model.

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Massless Thirring model
Rewrite the action in terms of the light cone variables:

SMT [ψ, ψ̄] =

∫
d2x (2iψ+

1 ∂̄ψ1 − 2iψ+
2 ∂ψ2 + im(ψ+

1 ψ2 − ψ+
2 ψ1)− 2gψ+

1 ψ
+
2 ψ2ψ1).

The components of the currents are

jz = −ψ+
1 ψ1, jz̄ = ψ+

2 ψ2. (12)

In the case m = 0 the equations of motion read

∂̄ψ1 = −igψ+
2 ψ2ψ1 ≡ −igjz̄ψ1,

∂ψ2 = igψ+
1 ψ1ψ2 ≡ −igjzψ2.

(13)

Since εµν∂µjν = ∂µj
µ
3 = 0 the current jµ is a gradient of a free field:

jµ = −
β

2π
∂µφ̃

= −
β

2π
εµν∂

νφ

. (14)

We will think of φ̃ as of the dual of another field φ. Both satisfy the d’Alembert
equation:

∂µ∂
µφ = ∂µ∂

µφ̃ = 0.

The solution to these equations reads

φ(x) = ϕ(z) + ϕ̄(z̄), φ̃(x) = ϕ(z)− ϕ̄(z̄), (15)

Thus we have
jz = −

β

2π
∂ϕ, jz̄ =

β

2π
∂̄ϕ̄. (16)
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Massless Thirring model: quantization
The equations of motion (13) have the solution

ψ1(z, z̄) = F1(z)e−i
gβ
2π
ϕ̄(z̄), ψ2(z, z̄) = F2(z̄)ei

gβ
2π
ϕ(z),

while equation (12) gives

β

2π
∂ϕ = ψ+

1 ψ1 = F1(z)F ∗1 (z),
β

2π
∂̄ϕ̄ = ψ+

2 ψ2 = F2(z̄)F ∗2 (z̄). (17)

This makes it possible to find a classical solution in terms of two analytic
functions Fi(z).
What can be done in the quantum case? Conjecture the fields ψi in the form

ψi(x) = ηi

√
Ni

2π
eiαiϕ(z)+iβiϕ̄(z̄), ψ+

i (x) = η−1
i

√
Ni

2π
e−iαiϕ(z)−iβiϕ̄(z̄), (18)

where Ni are constants and ηi are algebraic elements with the relations

η1η2 = −η2η1. (19)

As in the classical case we have

α2 = −β1 =
gβ

2π
, (20)

But the exponential form of Fi seems to be strange. To understand them consider
the operator product expansions of ψi.
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Massless Thirring model: quantization
We have

ψi(x
′)ψj(x) = ηiηj

√
NiNj

2π
(z′ − z)αiαj (z̄′ − z̄)βiβj

× eiαiϕ(z′)+iβiϕ̄(z̄′)+iαjϕ(z)+iβj ϕ̄(z̄). (21)

Then ψi(x′)ψj(x) = −ψj(x)ψi(x
′), if

α2
i − β2

i ∈ 2Z + 1, α1α2 − β1β2 ∈ 2Z. (22)

Now let us expand the product ψ+
1 (x′)ψ1(x) in powers of x′ − x:

ψ+
1 (x′)ψ1(x) =

N1

2π
(z′ − z)−α

2
1
(
z̄′ − z̄

)−β2
1
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Massless Thirring model: conditions for αi, βi, Ni

We obtain

jz = −N1r
−2β2

1
0

(
−iα1∂ϕ

2π

)
.

Comparing with jz = β
2π
∂ϕ we find

β = −ir−2β2
1

0 N1α1. (25)

Repeating the same for ψ+
2 ψ2 and assuming

α2
2 − β2

2 = −1, (26)

we obtain
β = −ir−2α2

2
0 N2β2. (27)

We need one more equation. To find it, we have to analyze the mass term.
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Thirring model: mass term
Consider now the mass term −mψ̄ψ = im(ψ+

1 ψ2 − ψ+
2 ψ1). Both terms must be

well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

ψ+
2 (x′)ψ1(x) = −η1η

−1
2

√
N1N2

2π
(z′ − z)−α1α2 (z̄′ − z̄)−β1β2

×
(
ei(α1−α2)ϕ(z)+i(β1−β2)ϕ̄(z̄) + · · ·

)
. (28)

The first term survives in the averaged product defined similarly to jz , if

α1α2 = β1β2 ⇒ α1 = −β2. (29)

With this assumption we may define

ψ+
2 ψ1(x) = −η1η

−1
2

√
N1N2

2π
r−2α1α2
0 ei(α1−α2)ϕ(z)+i(β1−β2)ϕ̄(z̄).

Now check the consistency with the conservancy of the fermion charge Q means
that it should be a function of φ. Consider the commutator

[O(0), Q] =

∮
dfµ j

µ(x)O(0) =

∮
dxν εµνj

µ(x)O(0) = −
β

2π

∮
dxν εµν∂

µφ̃(x)O(0)

= −
β

2π

∮
dxν εµνε

µλ∂λφ(x)O(0) =
β

2π

∮
dxλ ∂λφ(x)O(0) =

β

2π
∆φ(x)O(0),

where ∆ means the increment of the field while passing the closed contour.
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ψ+
2 ψ1(x) = −η1η

−1
2

√
N1N2

2π
r−2α1α2
0 ei(α1−α2)ϕ(z)+i(β1−β2)ϕ̄(z̄).

Now check the consistency with the conservancy of the fermion charge Q means
that it should be a function of φ. Consider the commutator

[O(0), Q] =

∮
dfµ j

µ(x)O(0) =

∮
dxν εµνj

µ(x)O(0) = −
β

2π

∮
dxν εµν∂

µφ̃(x)O(0)

= −
β

2π

∮
dxν εµνε

µλ∂λφ(x)O(0) =
β

2π

∮
dxλ ∂λφ(x)O(0) =

β

2π
∆φ(x)O(0),

where ∆ means the increment of the field while passing the closed contour.
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Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model: mass term
Let O(x) = eαϕ(z)+α′ϕ̄(z̄). Then

[O(0), Q] =
β

2π
∆(ϕ(z) + ϕ̄(z̄))eiαϕ(z)+iα′ϕ̄(z̄)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαϕ(0)+iα′ϕ̄(0) = β(α− α′)eiαϕ(0)+iα′ϕ̄(0).

Hence, the operator Q is commuting with ψ+
2 ψ1, since α1 − α2 = β1 − β2.

Now fix the β parameter. Set O(x) = ψi(x). Since the operators ψi have the
fermion charge −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence
α1 + α2 = β−1 ⇒ α1 − α2 = β.

Hence

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(30)

Using α2 = gβ/2π we obtain the relation between coupling constants:

g = π(β−2 − 1). (9)

Michael Lashkevich Lecture 2. Bosonization of the Thirring model



Thirring model and sine-Gordon model
Substituting it we obtain

N1 = −N2 = ir

β2

2
+ 1

2β2
−1

0

2β2

β2 + 1
, (31)

Hence

− iψ+
2 ψ1 =

1

π

β2

β2 + 1
rβ

2−1
0

(
iη1η

−1
2

)
eiβφ,

iψ+
1 ψ2 =

1

π

β2

β2 + 1
rβ

2−1
0

(
iη1η

−1
2

)−1
e−iβφ.

Consider the mass contribution

im(ψ+
2 ψ1 − ψ+

1 ψ2) ∼
(
iη1η

−1
2

)
eiβφ +

(
iη1η

−1
2

)−1
e−iβφ

as a perturbation. Due to the ‘neutrality’ on the infinite plane,
#(eiβφ)−#(e−iβφ) is the same in each perturbation term. Hence the substitution(

iη1η
−1
2

)α/β
eiαφ → eiαφ.

makes it possible to get rid of the algebraic elements ηi. Then we have

i(ψ+
1 ψ2 − ψ+

2 ψ1) =
2

π

β2

β2 + 1
rβ

2−1
0 cosβφ, (32)

from which we find
µ ∼ mrβ

2−1
0 , (10)
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Thirring model and sine-Gordon model
Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter µ of the sine-Gordon model is finite and measurable. It is related
to the physical mass mphys of a particle:

µ ∼ m2−β2

phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
Hence the parameter m is divergent:

m ∼ mphys(mphysr0)1−β2
= mphys(mphysr0)

g/π
1+g/π , (33)

Consider the operators from Lecture 1:

eiJϕ = e
iJ
2β
φ̃
, J ∈ Z. (34)

These operators change the topological charge by J : q → q + J . For J = ±1 they
are boson kink creation-annihilation operators.
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