Lecture 3.
Renormalization group for the Berezinskii-Kosterlitz-Thouless transition

Michael Lashkevich

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory.

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory. There exists a dressed action, which depend on the set of parameters λ. Let $G_{\text {tree }}(\lambda, r ; \cdots)$ the tree (first nonvanishing order) correlation functions for the dressed action.

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory. There exists a dressed action, which depend on the set of parameters λ. Let $G_{\text {tree }}(\lambda, r ; \cdots)$ the tree (first nonvanishing order) correlation functions for the dressed action. The dressed action is defined in such a way that

$$
G_{\text {exact }}\left(\lambda_{0}, r_{0} ; x_{1}, \ldots, x_{n}\right)=G_{\text {tree }}\left(\lambda, r ; \frac{x_{1}}{r}, \ldots, \frac{x_{n}}{r}\right) .
$$

if $x_{i} \sim r$.

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory. There exists a dressed action, which depend on the set of parameters λ. Let $G_{\text {tree }}(\lambda, r ; \cdots)$ the tree (first nonvanishing order) correlation functions for the dressed action. The dressed action is defined in such a way that

$$
G_{\text {exact }}\left(\lambda_{0}, r_{0} ; x_{1}, \ldots, x_{n}\right)=G_{\text {tree }}\left(\lambda, r ; \frac{x_{1}}{r}, \ldots, \frac{x_{n}}{r}\right) .
$$

if $x_{i} \sim r$. With this definition the parameters λ depend on the scale r. The group of transformations $(r, \lambda) \rightarrow\left(r^{\prime}, \lambda^{\prime}\right)$ for the same λ_{0}, r_{0} is called the renormalization group (RG).

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory. There exists a dressed action, which depend on the set of parameters λ. Let $G_{\text {tree }}(\lambda, r ; \cdots)$ the tree (first nonvanishing order) correlation functions for the dressed action. The dressed action is defined in such a way that

$$
G_{\text {exact }}\left(\lambda_{0}, r_{0} ; x_{1}, \ldots, x_{n}\right)=G_{\text {tree }}\left(\lambda, r ; \frac{x_{1}}{r}, \ldots, \frac{x_{n}}{r}\right) .
$$

if $x_{i} \sim r$. With this definition the parameters λ depend on the scale r. The group of transformations $(r, \lambda) \rightarrow\left(r^{\prime}, \lambda^{\prime}\right)$ for the same λ_{0}, r_{0} is called the renormalization group (RG).
In combining the RG approach with the perturbation theory make it possible to find the behavior of correlation functions in a wide range of scales in the case of a nearly-marginal perturbation.

Suppose we consider a field theory system with the correlation length r_{c}. It is described by a bare action defined the at the UV cutoff r_{0}, which depends on the set of parameters λ_{0}. We are interested in correlations functions on a scale r, $r_{0} \ll r \ll r_{c}$. Let $G_{\text {exact }}\left(\lambda_{0}, r_{0} ; \cdots\right)$ be exact correlation functions calculated in all orders of the perturbation theory. There exists a dressed action, which depend on the set of parameters λ. Let $G_{\text {tree }}(\lambda, r ; \cdots)$ the tree (first nonvanishing order) correlation functions for the dressed action. The dressed action is defined in such a way that

$$
G_{\text {exact }}\left(\lambda_{0}, r_{0} ; x_{1}, \ldots, x_{n}\right)=G_{\text {tree }}\left(\lambda, r ; \frac{x_{1}}{r}, \ldots, \frac{x_{n}}{r}\right) .
$$

if $x_{i} \sim r$. With this definition the parameters λ depend on the scale r. The group of transformations $(r, \lambda) \rightarrow\left(r^{\prime}, \lambda^{\prime}\right)$ for the same λ_{0}, r_{0} is called the renormalization group (RG).
In combining the RG approach with the perturbation theory make it possible to find the behavior of correlation functions in a wide range of scales in the case of a nearly-marginal perturbation. In our case it is

$$
\delta=\beta^{2}-2 \ll 1
$$

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff,

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant.

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action.

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action. It can be done by means of a small mass term

$$
\begin{equation*}
S_{S G}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m_{0}^{2} \phi^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right) . \tag{2}
\end{equation*}
$$

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action. It can be done by means of a small mass term

$$
\begin{equation*}
S_{S G}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m_{0}^{2} \phi^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right) . \tag{2}
\end{equation*}
$$

For ultraviolet regularization, we will replace x^{2} by $x^{2}+r_{0}^{2}$. Then for $m_{0}^{2} x^{2} \ll 1$ the free field propagator (with $\alpha_{0}=0$) is equal to

$$
\begin{equation*}
G_{0}\left(x-x^{\prime}\right)=\log \frac{R_{0}^{2}}{\left(x-x^{\prime}\right)^{2}+r_{0}^{2}}, \quad R_{0}=\left(c m_{0}\right)^{-1}, \quad c=e^{\gamma_{E}} / 2 \tag{3}
\end{equation*}
$$

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action. It can be done by means of a small mass term

$$
\begin{equation*}
S_{S G}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m_{0}^{2} \phi^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right) \tag{2}
\end{equation*}
$$

For ultraviolet regularization, we will replace x^{2} by $x^{2}+r_{0}^{2}$. Then for $m_{0}^{2} x^{2} \ll 1$ the free field propagator (with $\alpha_{0}=0$) is equal to

$$
\begin{equation*}
G_{0}\left(x-x^{\prime}\right)=\log \frac{R_{0}^{2}}{\left(x-x^{\prime}\right)^{2}+r_{0}^{2}}, \quad R_{0}=\left(c m_{0}\right)^{-1}, \quad c=e^{\gamma_{E}} / 2 \tag{3}
\end{equation*}
$$

Now write down the renormalized (dressed) action
$\begin{aligned} \frac{d \alpha}{d \log R} & =\beta(\alpha, \delta) \\ \frac{d \delta}{d \log R} & =\delta(\alpha, \delta)\end{aligned}$

Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action. It can be done by means of a small mass term

$$
\begin{equation*}
S_{S G}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m_{0}^{2} \phi^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right) \tag{2}
\end{equation*}
$$

For ultraviolet regularization, we will replace x^{2} by $x^{2}+r_{0}^{2}$. Then for $m_{0}^{2} x^{2} \ll 1$ the free field propagator (with $\alpha_{0}=0$) is equal to

$$
\begin{equation*}
G_{0}\left(x-x^{\prime}\right)=\log \frac{R_{0}^{2}}{\left(x-x^{\prime}\right)^{2}+r_{0}^{2}}, \quad R_{0}=\left(c m_{0}\right)^{-1}, \quad c=e^{\gamma_{E}} / 2 \tag{3}
\end{equation*}
$$

Now write down the renormalized (dressed) action

$$
\begin{equation*}
S_{\mathrm{SG}}^{R}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m^{2} \phi^{2}}{8 \pi}-\frac{\alpha}{R^{2}} \cos \beta \phi\right), \quad R=(c m)^{-1} \tag{4}
\end{equation*}
$$

such that $S_{\mathrm{SG}}[\phi]=S_{\mathrm{SG}}^{R}\left[Z_{\phi}^{-1 / 2} \phi\right]+S^{\mathrm{ct}}\left[Z_{\phi}^{-1 / 2} \phi\right]$.

The bare action of the sine-Gordon model on the Euclidean plane:

$$
\begin{equation*}
S_{\mathrm{SG}}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right), \tag{1}
\end{equation*}
$$

Here r_{0} is the UV cutoff, α_{0} is the dimensionless bare coupling constant. Instead of the scale r it is convenient to introduce an infrared scale into the action. It can be done by means of a small mass term

$$
\begin{equation*}
S_{S G}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m_{0}^{2} \phi^{2}}{8 \pi}-\alpha_{0} r_{0}^{\beta_{0}^{2}-2} \cos \beta_{0} \phi\right) \tag{2}
\end{equation*}
$$

For ultraviolet regularization, we will replace x^{2} by $x^{2}+r_{0}^{2}$. Then for $m_{0}^{2} x^{2} \ll 1$ the free field propagator (with $\alpha_{0}=0$) is equal to

$$
\begin{equation*}
G_{0}\left(x-x^{\prime}\right)=\log \frac{R_{0}^{2}}{\left(x-x^{\prime}\right)^{2}+r_{0}^{2}}, \quad R_{0}=\left(c m_{0}\right)^{-1}, \quad c=e^{\gamma_{E}} / 2 \tag{3}
\end{equation*}
$$

Now write down the renormalized (dressed) action

$$
\begin{equation*}
S_{\mathrm{SG}}^{R}[\phi]=\int d^{2} x\left(\frac{\left(\partial_{\mu} \phi\right)^{2}}{8 \pi}+\frac{m^{2} \phi^{2}}{8 \pi}-\frac{\alpha}{R^{2}} \cos \beta \phi\right), \quad R=(c m)^{-1} \tag{4}
\end{equation*}
$$

such that $S_{\mathrm{SG}}[\phi]=S_{\mathrm{SG}}^{R}\left[Z_{\phi}^{-1 / 2} \phi\right]+S^{\mathrm{ct}}\left[Z_{\phi}^{-1 / 2} \phi\right]$. Assume that the counterterms

$$
S^{\mathrm{ct}}[\phi]=\int d^{2} x\left(\#\left(\partial_{\mu} \phi\right)^{2}+\# \cos \beta \phi\right)
$$

do not contain a counterterm for the auxiliary mass term.

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta, \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha .
\end{align*}
$$

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory,

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ,

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
& \phi=Z_{\phi}^{1 / 2} \phi_{R}, \quad \beta_{0}=Z_{\phi}^{-1 / 2} \beta, \tag{5}\\
& m_{0}=Z_{\phi}^{-1 / 2} m, \quad \alpha_{0}=Z_{\alpha} \alpha .
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ, and $G_{R}\left(x-x^{\prime}\right)=\left\langle\phi_{R}(x) \phi_{R}\left(x^{\prime}\right)\right\rangle=Z_{\phi}^{-1} G\left(x-x^{\prime}\right)$ be the renormalized exact propagator.

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ, and $G_{R}\left(x-x^{\prime}\right)=\left\langle\phi_{R}(x) \phi_{R}\left(x^{\prime}\right)\right\rangle=Z_{\phi}^{-1} G\left(x-x^{\prime}\right)$ be the renormalized exact propagator. They can be consider as kernels of operators $G_{0}=4 \pi\left(-\partial_{\mu}^{2}+m_{0}^{2}\right)^{-1}, G$ and G_{R} correspondingly.

The renormalization procedure

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha \tag{5}
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ, and $G_{R}\left(x-x^{\prime}\right)=\left\langle\phi_{R}(x) \phi_{R}\left(x^{\prime}\right)\right\rangle=Z_{\phi}^{-1} G\left(x-x^{\prime}\right)$ be the renormalized exact propagator. They can be consider as kernels of operators
$G_{0}=4 \pi\left(-\partial_{\mu}^{2}+m_{0}^{2}\right)^{-1}, G$ and G_{R} correspondingly.
The mass operator Σ is defined by the relation

$$
\begin{equation*}
G^{-1}=G_{0}^{-1}+\frac{1}{4 \pi} \Sigma \tag{6}
\end{equation*}
$$

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ, and $G_{R}\left(x-x^{\prime}\right)=\left\langle\phi_{R}(x) \phi_{R}\left(x^{\prime}\right)\right\rangle=Z_{\phi}^{-1} G\left(x-x^{\prime}\right)$ be the renormalized exact propagator. They can be consider as kernels of operators $G_{0}=4 \pi\left(-\partial_{\mu}^{2}+m_{0}^{2}\right)^{-1}, G$ and G_{R} correspondingly.
The mass operator Σ is defined by the relation

$$
\begin{equation*}
G^{-1}=G_{0}^{-1}+\frac{1}{4 \pi} \Sigma \tag{6}
\end{equation*}
$$

Suppose that in the momentum space

$$
\begin{equation*}
G_{R}\left(p^{2}\right)=\frac{4 \pi}{p^{2}+M^{2}}+O\left(p^{4}\right) \quad \text { as } p^{2} \rightarrow 0 \tag{7}
\end{equation*}
$$

Hence we have two renormalization constants Z_{ϕ} and Z_{α} :

$$
\begin{align*}
\phi & =Z_{\phi}^{1 / 2} \phi_{R}, & & \beta_{0}=Z_{\phi}^{-1 / 2} \beta \tag{5}\\
m_{0} & =Z_{\phi}^{-1 / 2} m, & & \alpha_{0}=Z_{\alpha} \alpha
\end{align*}
$$

Let $G_{0}\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}$ be the propagator of the unperturbed ($\alpha_{0}=0$) theory, $G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle$ be the exact propagator of the full theory for the field ϕ, and $G_{R}\left(x-x^{\prime}\right)=\left\langle\phi_{R}(x) \phi_{R}\left(x^{\prime}\right)\right\rangle=Z_{\phi}^{-1} G\left(x-x^{\prime}\right)$ be the renormalized exact propagator. They can be consider as kernels of operators $G_{0}=4 \pi\left(-\partial_{\mu}^{2}+m_{0}^{2}\right)^{-1}, G$ and G_{R} correspondingly. The mass operator Σ is defined by the relation

$$
\begin{equation*}
G^{-1}=G_{0}^{-1}+\frac{1}{4 \pi} \Sigma \tag{6}
\end{equation*}
$$

Suppose that in the momentum space

$$
\begin{equation*}
G_{R}\left(p^{2}\right)=\frac{4 \pi}{p^{2}+M^{2}}+O\left(p^{4}\right) \quad \text { as } p^{2} \rightarrow 0 \tag{7}
\end{equation*}
$$

with a constant

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

This defines the renormalized coupling constant α for a given scale R.

The renormalization procedure
The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$.

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{equation*}
4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right) \tag{9}
\end{equation*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{equation*}
\left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \tag{9}
\end{equation*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right) \tag{9}
\end{align*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) \tag{9}
\end{align*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\underbrace{\left(1+\Sigma_{1}\right)}_{Z_{\phi}^{-1}}\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) . \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\underbrace{\left(1+\Sigma_{1}\right)}_{Z_{\phi}^{-1}}(p^{2}+\underbrace{m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}}_{M^{2}})+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) . \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2} \stackrel{\downarrow}{=} \frac{m_{0}^{2}}{1+\Sigma_{1}} . \tag{10}
\end{equation*}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} . \tag{10}
\end{equation*}
$$

Instead of calculating Σ it is more convenient to calculate the correlation function

$$
\begin{aligned}
G\left(x-x^{\prime}\right)= & \left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle=\frac{\left\langle\phi(x) \phi\left(x^{\prime}\right) e^{-S_{1}[\phi]}\right\rangle_{0}}{\left\langle e^{-S_{1}[\phi]}\right\rangle_{0}} \\
=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle_{0, \mathrm{c}} & +\frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}} \\
& -\frac{1}{6}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{3}[\phi]\right\rangle_{0, \mathrm{c}}+O\left(\alpha_{0}^{4}\right) .
\end{aligned}
$$

The renormalization procedure

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} . \tag{10}
\end{equation*}
$$

Instead of calculating Σ it is more convenient to calculate the correlation function

$$
\begin{aligned}
G\left(x-x^{\prime}\right)= & \left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle=\frac{\left\langle\phi(x) \phi\left(x^{\prime}\right) e^{-S_{1}[\phi]}\right\rangle_{0}}{\left\langle e^{-S_{1}[\phi]}\right\rangle_{0}} \\
=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle_{0, \mathrm{c}} & +\frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}} \\
& -\frac{1}{6}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{3}[\phi]\right\rangle_{0, \mathrm{c}}+O\left(\alpha_{0}^{4}\right) .
\end{aligned}
$$

The connected averages $\langle\cdots\rangle_{0, \mathrm{c}}$ will be extracted on the fly.

The renormalization condition can be rewritten as $\Sigma\left(p^{2}\right)=\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)$. Indeed,

$$
\begin{align*}
& \left.4 \pi G^{-1}\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma\left(p^{2}\right)=p^{2}+m_{0}^{2}+\Sigma_{0}+\Sigma_{1} p^{2}+O\left(p^{4}\right)\right) \\
& \quad=\left(1+\Sigma_{1}\right)\left(p^{2}+m^{2}+\Sigma_{0}\left(1+\Sigma_{1}\right)^{-1}\right)+O\left(p^{4}\right)=4 \pi\left(1+\Sigma_{1}\right) G_{R}^{-1}\left(p^{2}\right) \tag{9}
\end{align*}
$$

We obtain

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} . \tag{10}
\end{equation*}
$$

Instead of calculating Σ it is more convenient to calculate the correlation function

$$
\begin{aligned}
& G\left(x-x^{\prime}\right)=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle=\frac{\left\langle\phi(x) \phi\left(x^{\prime}\right) e^{-S_{1}[\phi]}\right\rangle_{0}}{\left\langle e^{-S_{1}[\phi]}\right\rangle_{0}} \\
&=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle_{0, \mathrm{c}}+\frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}} \\
&-\frac{1}{6}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{3}[\phi]\right\rangle_{0, \mathrm{c}}+O\left(\alpha_{0}^{4}\right) .
\end{aligned}
$$

The connected averages $\langle\cdots\rangle_{0, \mathrm{c}}$ will be extracted on the fly. Then the mass operator will be extracted by removing 'legs' from the diagrams.

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
&\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
&-\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

RG: first order

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\langle\phi(x) \phi & \left.\left.\phi x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
& \quad-\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

The first term is disconnected,

RG: first order

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\langle\phi(x) & \left.\phi\left(x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
& -\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

The first term is disconnected, the second one contains two external lines:

RG: first order

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\langle\phi(x) \phi & \left.\left.\phi x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
& \quad-\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

The first term is disconnected, the second one contains two external lines:

RG: first order

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\langle\phi(x) \phi & \left.\left.\phi x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
& \quad-\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

The first term is disconnected, the second one contains two external lines:

Let us calculate

$$
-\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}[\phi]\right\rangle=\alpha_{0} r_{0}^{\delta_{0}} \int d^{2} y\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}
$$

We have

$$
\begin{aligned}
\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi(y):\right\rangle_{0}=\langle\phi(x) & \left.\phi\left(x^{\prime}\right)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} \\
& \quad-\beta_{0}^{2}\langle\phi(x) \phi(y)\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi(y)\right\rangle_{0}\left\langle: \cos \beta_{0} \phi(y):\right\rangle_{0} .
\end{aligned}
$$

The first term is disconnected, the second one contains two external lines:

In the momentum space:

$$
\begin{equation*}
\Sigma^{(1)}\left(p^{2}\right)=\Sigma_{0}^{(1)}=\frac{4 \pi \alpha_{0} \beta_{0}^{2}}{R_{0}^{2}}\left(\frac{r_{0}}{R_{0}}\right)^{\delta_{0}}, \quad \Sigma_{1}^{(1)}=0 \tag{11}
\end{equation*}
$$

RG: first order
By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$.

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

Though the answer is quite clear and applicable to any value of δ, let us formally perform the standard RG procedure.

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

Though the answer is quite clear and applicable to any value of δ, let us formally perform the standard RG procedure. For $\delta \ll 1$ we have

$$
Z_{\alpha}=1+\delta \log \frac{R}{r_{0}}
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

Though the answer is quite clear and applicable to any value of δ, let us formally perform the standard RG procedure. For $\delta \ll 1$ we have

$$
Z_{\alpha}=1+\delta \log \frac{R}{r_{0}}
$$

Take the derivative of $\alpha=Z_{\alpha}^{-1} \alpha_{0}$:

$$
\frac{d \alpha}{d t}=-\alpha_{0} \delta, \quad t=\log R
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

Though the answer is quite clear and applicable to any value of δ, let us formally perform the standard RG procedure. For $\delta \ll 1$ we have

$$
Z_{\alpha}=1+\delta \log \frac{R}{r_{0}}
$$

Take the derivative of $\alpha=Z_{\alpha}^{-1} \alpha_{0}$:

$$
\frac{d \alpha}{d t}=-\alpha_{0} \delta, \quad t=\log R
$$

Substitute α_{0} by α in the r.h.s.:

$$
\frac{d \alpha}{d t}=-\alpha \delta
$$

By comparing this with the formulas

$$
\begin{equation*}
M^{2}=m^{2}+\frac{4 \pi \alpha \beta^{2}}{R^{2}}=m^{2}\left(1+4 \pi c^{2} \alpha \beta^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{\phi}=\frac{1}{1+\Sigma_{1}}, \quad M^{2}=m^{2}+\frac{\Sigma_{0}}{1+\Sigma_{1}}, \quad m^{2}=\frac{m_{0}^{2}}{1+\Sigma_{1}} \tag{10}
\end{equation*}
$$

we obtain $Z_{\phi}=1 \Rightarrow m=m_{0}, \beta=\beta_{0}$. Therefore

$$
\begin{equation*}
Z_{\alpha}=\left(\frac{R}{r_{0}}\right)^{\delta} \tag{12}
\end{equation*}
$$

Though the answer is quite clear and applicable to any value of δ, let us formally perform the standard RG procedure. For $\delta \ll 1$ we have

$$
Z_{\alpha}=1+\delta \log \frac{R}{r_{0}}
$$

Take the derivative of $\alpha=Z_{\alpha}^{-1} \alpha_{0}$:

$$
\frac{d \alpha}{d t}=-\alpha_{0} \delta, \quad t=\log R
$$

Substitute α_{0} by α in the r.h.s.:

$$
\frac{d \alpha}{d t}=-\alpha \delta
$$

The solution is $\alpha \sim R^{-\delta}$ in consistency with (12).

The RG trajectories look like

The RG trajectories look like

The transition point $\delta=0$ here is a line of fixed points for any value of α. Is it really the case?

Consider the second order contribution. The connected contribution to the pair

$$
\begin{aligned}
& \text { correlation function is } \\
& \qquad \frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}}=\frac{\alpha_{0}^{2} r_{0}^{2 \delta_{0}}}{2} \int d^{2} y_{1} d^{2} y_{2}\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0, \mathrm{c}}
\end{aligned}
$$

RG: second order

Consider the second order contribution. The connected contribution to the pair

$$
\begin{aligned}
& \text { correlation function is } \\
& \quad \frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}}=\frac{\alpha_{0}^{2} r_{0}^{2 \delta_{0}}}{2} \int d^{2} y_{1} d^{2} y_{2}\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0, \mathrm{c}} \\
& =\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}} \int d^{2} y_{1} d^{2} y_{2}\left(\left\langle\phi(x) \phi\left(y_{1}\right)\right\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi\left(y_{2}\right)\right\rangle_{0}\left\langle: \sin \beta_{0} \phi\left(y_{1}\right):: \sin \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0}\right.
\end{aligned}
$$

These terms correspond to the diagrams

RG: second order

Consider the second order contribution. The connected contribution to the pair

$$
\begin{aligned}
& \text { correlation function is } \\
& \quad \frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}}=\frac{\alpha_{0}^{2} r_{0}^{2 \delta_{0}}}{2} \int d^{2} y_{1} d^{2} y_{2}\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0, \mathrm{c}} \\
& =\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}} \int d^{2} y_{1} d^{2} y_{2}\left(\left\langle\phi(x) \phi\left(y_{1}\right)\right\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi\left(y_{2}\right)\right\rangle_{0}\left\langle: \sin \beta_{0} \phi\left(y_{1}\right):: \sin \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0}\right. \\
& \left.\quad-\left\langle\phi(x) \phi\left(y_{1}\right)\right\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi\left(y_{1}\right)\right\rangle_{0}\left(\left\langle: \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0}-R_{0}^{-2 \beta_{0}^{2}}\right)\right) \text {. }
\end{aligned}
$$

These terms correspond to the diagrams

Consider the second order contribution. The connected contribution to the pair

$$
\begin{aligned}
& \text { correlation function is } \\
& \qquad \begin{array}{l}
\frac{1}{2}\left\langle\phi(x) \phi\left(x^{\prime}\right) S_{1}^{2}[\phi]\right\rangle_{0, \mathrm{c}}=\frac{\alpha_{0}^{2} r_{0}^{2 \delta_{0}}}{2} \int d^{2} y_{1} d^{2} y_{2}\left\langle\phi(x) \phi\left(x^{\prime}\right): \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0, \mathrm{c}} \\
=\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}} \int d^{2} y_{1} d^{2} y_{2}\left(\left\langle\phi(x) \phi\left(y_{1}\right)\right\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi\left(y_{2}\right)\right\rangle_{0}\left\langle: \sin \beta_{0} \phi\left(y_{1}\right):: \sin \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0}\right. \\
\left.\quad-\left\langle\phi(x) \phi\left(y_{1}\right)\right\rangle_{0}\left\langle\phi\left(x^{\prime}\right) \phi\left(y_{1}\right)\right\rangle_{0}\left(\left\langle: \cos \beta_{0} \phi\left(y_{1}\right):: \cos \beta_{0} \phi\left(y_{2}\right):\right\rangle_{0}-R_{0}^{-2 \beta_{0}^{2}}\right)\right) .
\end{array}
\end{aligned}
$$

These terms correspond to the diagrams

For calculation of $\Sigma^{(2)}$ we have to remove 'legs' and to subtract the contribution of one line in the first diagram:

$$
\begin{aligned}
-\frac{1}{4 \pi} \Sigma^{(2)}(x)= & \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}\left(\left\langle: \sin \beta_{0} \phi(x):: \sin \beta_{0} \phi(0):\right\rangle_{0}-\beta_{0}^{2} R_{0}^{-2 \beta_{0}^{2}}\langle\phi(x) \phi(0)\rangle_{0}\right. \\
& \left.-\delta(x) \int d^{2} y\left(\left\langle: \cos \beta_{0} \phi(0):: \cos \beta_{0} \phi(y):\right\rangle_{0}-R_{0}^{-2 \beta_{0}^{2}}\right)\right)
\end{aligned}
$$

Explicitly,

$$
\begin{aligned}
-\frac{1}{4 \pi} \Sigma^{(2)}(x)= & \frac{\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}}{2 R_{0}^{2 \beta_{0}^{2}}}\left(\left(\frac{R_{0}}{x}\right)^{2 \beta_{0}^{2}}-\left(\frac{x}{R_{0}}\right)^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} \log \frac{R_{0}^{2}}{x^{2}}\right. \\
& \left.-\delta(x) \int d^{2} y\left(\left(\frac{R_{0}}{y}\right)^{2 \beta_{0}^{2}}+\left(\frac{y}{R_{0}}\right)^{2 \beta_{0}^{2}}-2\right)\right)
\end{aligned}
$$

In the momentum space we have

$$
\begin{align*}
\Sigma^{(2)}\left(p^{2}\right) & =-2 \pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}\left(\int d^{2} x\left(e^{\mathrm{i} p x}-1\right) x^{-2 \beta_{0}^{2}}\right. \\
& \left.-R_{0}^{-4 \beta_{0}^{2}} \int d^{2} x\left(e^{\mathrm{i} p x}+1\right) x^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} R_{0}^{-2 \beta_{0}^{2}} G_{0}\left(p^{2}\right)+2 R_{0}^{2-2 \beta_{0}^{2}}\right) \tag{13}
\end{align*}
$$

Explicitly,

$$
\begin{aligned}
-\frac{1}{4 \pi} \Sigma^{(2)}(x)= & \frac{\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}}{2 R_{0}^{2 \beta_{0}^{2}}}\left(\left(\frac{R_{0}}{x}\right)^{2 \beta_{0}^{2}}-\left(\frac{x}{R_{0}}\right)^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} \log \frac{R_{0}^{2}}{x^{2}}\right. \\
& \left.-\delta(x) \int d^{2} y\left(\left(\frac{R_{0}}{y}\right)^{2 \beta_{0}^{2}}+\left(\frac{y}{R_{0}}\right)^{2 \beta_{0}^{2}}-2\right)\right)
\end{aligned}
$$

In the momentum space we have

$$
\begin{align*}
\Sigma^{(2)}\left(p^{2}\right) & =-2 \pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}\left(\int d^{2} x\left(e^{\mathrm{i} p x}-1\right) x^{-2 \beta_{0}^{2}}\right. \\
& \left.-R_{0}^{-4 \beta_{0}^{2}} \int d^{2} x\left(e^{\mathrm{i} p x}+1\right) x^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} R_{0}^{-2 \beta_{0}^{2}} G_{0}\left(p^{2}\right)+2 R_{0}^{2-2 \beta_{0}^{2}}\right) . \tag{13}
\end{align*}
$$

The second line vanishes as $R_{0} \rightarrow \infty$ for $\delta_{0} \ll 1$.

Explicitly,

$$
\begin{aligned}
-\frac{1}{4 \pi} \Sigma^{(2)}(x)= & \frac{\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}}{2 R_{0}^{2 \beta_{0}^{2}}}\left(\left(\frac{R_{0}}{x}\right)^{2 \beta_{0}^{2}}-\left(\frac{x}{R_{0}}\right)^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} \log \frac{R_{0}^{2}}{x^{2}}\right. \\
& \left.-\delta(x) \int d^{2} y\left(\left(\frac{R_{0}}{y}\right)^{2 \beta_{0}^{2}}+\left(\frac{y}{R_{0}}\right)^{2 \beta_{0}^{2}}-2\right)\right)
\end{aligned}
$$

In the momentum space we have

$$
\begin{align*}
\Sigma^{(2)}\left(p^{2}\right) & =-2 \pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}\left(\int d^{2} x\left(e^{\mathrm{i} p x}-1\right) x^{-2 \beta_{0}^{2}}\right. \\
& \left.-R_{0}^{-4 \beta_{0}^{2}} \int d^{2} x\left(e^{\mathrm{i} p x}+1\right) x^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} R_{0}^{-2 \beta_{0}^{2}} G_{0}\left(p^{2}\right)+2 R_{0}^{2-2 \beta_{0}^{2}}\right) \tag{13}
\end{align*}
$$

The second line vanishes as $R_{0} \rightarrow \infty$ for $\delta_{0} \ll 1$. The integral in the first line must be expanded in p :

$$
\begin{equation*}
\Sigma^{(2)}\left(p^{2}\right)=\pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}} \int d^{2} x(p x)^{2} x^{-2 \beta_{0}^{2}}+O\left(p^{4}\right) \simeq \pi^{2} \alpha_{0}^{2} \beta_{0}^{2} p^{2} \log \frac{R_{0}}{r_{0}}+O\left(p^{4}\right) \tag{14}
\end{equation*}
$$

Explicitly,

$$
\begin{aligned}
-\frac{1}{4 \pi} \Sigma^{(2)}(x)= & \frac{\alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}}{2 R_{0}^{2 \beta_{0}^{2}}}\left(\left(\frac{R_{0}}{x}\right)^{2 \beta_{0}^{2}}-\left(\frac{x}{R_{0}}\right)^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} \log \frac{R_{0}^{2}}{x^{2}}\right. \\
& \left.-\delta(x) \int d^{2} y\left(\left(\frac{R_{0}}{y}\right)^{2 \beta_{0}^{2}}+\left(\frac{y}{R_{0}}\right)^{2 \beta_{0}^{2}}-2\right)\right)
\end{aligned}
$$

In the momentum space we have

$$
\begin{align*}
\Sigma^{(2)}\left(p^{2}\right) & =-2 \pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}}\left(\int d^{2} x\left(e^{\mathrm{i} p x}-1\right) x^{-2 \beta_{0}^{2}}\right. \\
& \left.-R_{0}^{-4 \beta_{0}^{2}} \int d^{2} x\left(e^{\mathrm{i} p x}+1\right) x^{2 \beta_{0}^{2}}-2 \beta_{0}^{2} R_{0}^{-2 \beta_{0}^{2}} G_{0}\left(p^{2}\right)+2 R_{0}^{2-2 \beta_{0}^{2}}\right) . \tag{13}
\end{align*}
$$

The second line vanishes as $R_{0} \rightarrow \infty$ for $\delta_{0} \ll 1$. The integral in the first line must be expanded in p :

$$
\begin{equation*}
\Sigma^{(2)}\left(p^{2}\right)=\pi \alpha_{0}^{2} \beta_{0}^{2} r_{0}^{2 \delta_{0}} \int d^{2} x(p x)^{2} x^{-2 \beta_{0}^{2}}+O\left(p^{4}\right) \simeq \pi^{2} \alpha_{0}^{2} \beta_{0}^{2} p^{2} \log \frac{R_{0}}{r_{0}}+O\left(p^{4}\right) \tag{14}
\end{equation*}
$$

It only contributes to Σ_{1}. We have

$$
\begin{equation*}
Z_{\phi}=1-\pi^{2} \alpha_{0}^{2} \beta_{0}^{2} \log \frac{R}{r_{0}}, \quad Z_{\alpha}=1+\delta_{0} \log \frac{R}{r_{0}} \tag{15}
\end{equation*}
$$

Substituting it to $\alpha=Z_{\alpha}^{-1} \alpha_{0}$ and $1+\delta / 2=Z_{\phi}\left(1+\delta_{0} / 2\right)$, taking the derivation and expressing α_{0}, δ_{0} in terms of α, δ in the r.h.s., we obtain

$$
\begin{equation*}
\frac{d \alpha}{d t}=-\delta \alpha, \quad \frac{d \delta}{d t}=-4 \pi^{2} \alpha^{2}, \quad t=\log R . \tag{16}
\end{equation*}
$$

Substituting it to $\alpha=Z_{\alpha}^{-1} \alpha_{0}$ and $1+\delta / 2=Z_{\phi}\left(1+\delta_{0} / 2\right)$, taking the derivation and expressing α_{0}, δ_{0} in terms of α, δ in the r.h.s., we obtain

$$
\begin{equation*}
\frac{d \alpha}{d t}=-\delta \alpha, \quad \frac{d \delta}{d t}=-4 \pi^{2} \alpha^{2}, \quad t=\log R \tag{16}
\end{equation*}
$$

These equations can be rewritten in the form

$$
\begin{equation*}
\frac{d(2 \pi \alpha \mp \delta)}{d t}= \pm 2 \pi \alpha(2 \pi \alpha \mp \delta) . \tag{16a}
\end{equation*}
$$

Substituting it to $\alpha=Z_{\alpha}^{-1} \alpha_{0}$ and $1+\delta / 2=Z_{\phi}\left(1+\delta_{0} / 2\right)$, taking the derivation and expressing α_{0}, δ_{0} in terms of α, δ in the r.h.s., we obtain

$$
\begin{equation*}
\frac{d \alpha}{d t}=-\delta \alpha, \quad \frac{d \delta}{d t}=-4 \pi^{2} \alpha^{2}, \quad t=\log R \tag{16}
\end{equation*}
$$

These equations can be rewritten in the form

$$
\begin{equation*}
\frac{d(2 \pi \alpha \mp \delta)}{d t}= \pm 2 \pi \alpha(2 \pi \alpha \mp \delta) . \tag{16a}
\end{equation*}
$$

This means that the straight lines $2 \pi \alpha= \pm \delta$ are RG trajectories. They divide the half-plane $\alpha>0$ into three regions:

There are three regions:

There are three regions:

- Region I. $\alpha \rightarrow 0$ as $R \rightarrow \infty$, so that the system looks like a free massless boson at large distances.

There are three regions:

- Region I. $\alpha \rightarrow 0$ as $R \rightarrow \infty$, so that the system looks like a free massless boson at large distances.
- Region III. $\alpha \rightarrow 0$ as $R \rightarrow 0$, so that the system looks like a free massless boson at small distances. It was conjectured that $\delta \rightarrow-1$ as $R \rightarrow \infty$ and the system behaves as a massive Dirac fermion. The line $\delta=-1$ was conjectured

There are three regions:

- Region I. $\alpha \rightarrow 0$ as $R \rightarrow \infty$, so that the system looks like a free massless boson at large distances.
- Region III. $\alpha \rightarrow 0$ as $R \rightarrow 0$, so that the system looks like a free massless boson at small distances. It was conjectured that $\delta \rightarrow-1$ as $R \rightarrow \infty$ and the system behaves as a massive Dirac fermion. The line $\delta=-1$ was conjectured to be a separatrix.
- Region II. α grows for both large and small R. The system has no conformal behavior in both IR and UV regions. Since it approaches the line s_{2} at large R, it must be a massive theory.

Seminar

$$
\begin{aligned}
T\left(z^{\prime}\right) T(z) & =\frac{c / 2}{\left(z^{\prime}-z\right)^{\prime 2}}+\frac{2 T(z)}{\left(z^{\prime}-z\right)^{2}}-\frac{2 T(z)}{z^{\prime}-z}+O(1) \\
L_{n} & =\oint \frac{d z}{2 m z^{n}} \frac{z^{\prime}}{} T(z) \\
{\left[L_{m}, L_{n}\right] } & \left.=\oint \frac{d z^{\prime}}{2 \pi i^{\prime}}, \oint \frac{d z}{2 \pi i}\right] z^{m}+1 z^{n+1} T\left(z^{\prime}\right) T(z)=
\end{aligned}
$$

$$
\begin{aligned}
& \oint \frac{d z_{2}}{x i} \frac{c}{2} z_{2}^{m+n-1}\left(\frac{r(m+2)}{r(m-1)}-\frac{r(n+2)}{r(n-1)}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{c}{2} \delta_{m,-n}((m+1) m(m-1)-(-m+1)(-m)(-m-1))+ \\
& =\int \frac{d z_{2} z_{2}^{m}+n+z}{2 \pi i} \partial T\left(z_{2}\right) \\
& +2(m-n) L_{m+n}=c(m+1) m(m-1) \delta_{m,-n}+2(m-n) L_{m+n}
\end{aligned}
$$

Seminar

$$
\begin{aligned}
& \text { 1) } m_{1, n}=0, \pm 1 \quad\left[L_{x_{1}, L_{-1}}\right]=2 L_{0}, \quad\left[L_{0, L} L_{ \pm 1}\right]=\mp L_{ \pm 1} \\
& s(2) \\
& \left.L_{-1}=\phi \frac{d z}{2 \pi i} T / 2\right) \rightarrow \partial \\
& {\left[L_{-1}, O(z, \overline{2})\right]=\partial O(2, \overline{2}) \quad J^{N N}=\left|1 x^{1}\right| x^{n}+^{v a}-\left.x^{v-1}\right|^{+9} \mid} \\
& L_{0}=\oint \frac{d z_{2}}{\frac{\pi i}{} z} T(z) \rightarrow\left(z \rightarrow L^{(1+\varepsilon)}(z) \quad L_{0}-\tau_{0}=S\right. \\
& L_{0}+L_{0}=D \\
& L_{1} \quad z^{2}\left(z \frac{1}{z^{-1}+\varepsilon}\right) \\
& d z^{-1}+3^{-1}
\end{aligned}
$$

$$
z \rightarrow z+\varepsilon(z)
$$

Highest weight reps

$$
\left\{\begin{array}{l}
L_{n}|\Delta\rangle=0, \quad n>0 \\
L_{0}|\Delta\rangle=\Delta|\Delta\rangle \\
L_{-n_{1}} \cdots L_{-r_{h}}|\Delta\rangle
\end{array}\right.
$$

Δ conf. dim

$$
\begin{aligned}
& \phi(2, i)<|\phi\rangle \gg \\
& {\left[L_{0}, \phi(2, i)\right]=\partial \phi\left(L_{i}\right),\left[L_{0}, \phi\right]=\bar{\partial} \phi}
\end{aligned}
$$

Freceboson $c=1$
sega
$c=\frac{1}{2}$
Free DF $c=1 \mathcal{1}_{\tau+46}$

$$
\begin{aligned}
& L_{n}|\Delta\rangle=0, n>0 \\
& {\left[L_{n}, \phi_{\Delta}(2)\right]=\text { ? }} \\
& L_{0}|\Delta\rangle=\Delta|\Delta\rangle \\
& T(z) \phi_{\Delta}(0)=\text { ? } \\
& {\left[L_{-1} \phi_{A}\right]=\partial \phi_{\Delta}} \\
& T(2)=\sum_{n \in \mathbb{Z}} L_{n} 2^{-n-2} \\
& T(2)|\Delta\rangle=\frac{\Delta}{\Sigma^{2}}\left[\Delta \Delta+\frac{\partial \phi_{\Delta}\left(0 \|_{\text {acc }}\right\rangle}{2}+O(1)^{n}\right. \\
& T\left(z^{\prime}\right) \phi_{\Delta}(2)=\frac{\Delta \phi_{\Delta}^{(4)}}{\left(z^{\prime}-2\right)^{2}}+\frac{\partial \phi_{\Delta}^{(2)}}{z^{\prime}-2}+O^{(1)} \underset{\substack{\text { under } \\
\text { onforatois }}}{\substack{\text { primary }}}
\end{aligned}
$$

