Lecture 4.
 $O(3)$-model: mass generation by instantons

Michael Lashkevich

$O(3)$-model: topology of \boldsymbol{n}-field

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 . \tag{1}
\end{equation*}
$$

$O(3)$-model: topology of \boldsymbol{n}-field

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$.

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$. Hence, it realized a map

$$
\begin{equation*}
\boldsymbol{n}: S^{2} \rightarrow S^{2 \prime} \tag{3}
\end{equation*}
$$

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$. Hence, it realized a map

$$
\begin{equation*}
\boldsymbol{n}: S^{2} \rightarrow S^{2 \prime} \tag{3}
\end{equation*}
$$

Examples. Let (θ, ϕ) are spherical coordinates on S^{2} and $\left(\theta^{\prime}, \phi^{\prime}\right)$ are those on $S^{2 \prime}$. Define the mapping

$$
\begin{equation*}
\theta^{\prime}=\theta, \quad \varphi^{\prime}=q \varphi, \quad q \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$. Hence, it realized a map

$$
\begin{equation*}
\boldsymbol{n}: S^{2} \rightarrow S^{2 \prime} \tag{3}
\end{equation*}
$$

Examples. Let (θ, ϕ) are spherical coordinates on S^{2} and $\left(\theta^{\prime}, \phi^{\prime}\right)$ are those on $S^{2 \prime}$. Define the mapping

$$
\begin{equation*}
\theta^{\prime}=\theta, \quad \varphi^{\prime}=q \varphi, \quad q \in \mathbb{Z} \tag{4}
\end{equation*}
$$

The mappings with different values of q cannot be deformed to each other continuously. Thus q is a topological number.

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$. Hence, it realized a map

$$
\begin{equation*}
\boldsymbol{n}: S^{2} \rightarrow S^{2 \prime} \tag{3}
\end{equation*}
$$

Examples. Let (θ, ϕ) are spherical coordinates on S^{2} and $\left(\theta^{\prime}, \phi^{\prime}\right)$ are those on $S^{2 \prime}$. Define the mapping

$$
\begin{equation*}
\theta^{\prime}=\theta, \quad \varphi^{\prime}=q \varphi, \quad q \in \mathbb{Z} \tag{4}
\end{equation*}
$$

The mappings with different values of q cannot be deformed to each other continuously. Thus q is a topological number.
In generic coordinates $\left(x^{1}, x^{2}\right)$ on S^{2} and ($x^{\prime 1}, x^{\prime 2}$) on $S^{2 \prime}$. Define any metric g^{\prime} on the target sphere, such that

$$
S=\int_{S^{2} \prime} d^{2} x^{\prime} \sqrt{g^{\prime}}
$$

is finite.

Consider the $O(3)$-model on the Euclidean plane:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{1}
\end{equation*}
$$

We will be interested in the functions $\boldsymbol{n}(x)$ with finite action. They must be constant at infinity:

$$
\begin{equation*}
\boldsymbol{n}_{0}(x) \underset{x \rightarrow \infty}{\rightarrow} \boldsymbol{n}_{0} \tag{2}
\end{equation*}
$$

It means that the function $\boldsymbol{n}(x)$ lives on the topological sphere $\mathbb{R}^{2} \cup\{\infty\}$. Hence, it realized a map

$$
\begin{equation*}
\boldsymbol{n}: S^{2} \rightarrow S^{2 \prime} \tag{3}
\end{equation*}
$$

Examples. Let (θ, ϕ) are spherical coordinates on S^{2} and $\left(\theta^{\prime}, \phi^{\prime}\right)$ are those on $S^{2 \prime}$. Define the mapping

$$
\begin{equation*}
\theta^{\prime}=\theta, \quad \varphi^{\prime}=q \varphi, \quad q \in \mathbb{Z} \tag{4}
\end{equation*}
$$

The mappings with different values of q cannot be deformed to each other continuously. Thus q is a topological number.
In generic coordinates $\left(x^{1}, x^{2}\right)$ on S^{2} and $\left(x^{\prime 1}, x^{2}\right)$ on $S^{2 \prime}$. Define any metric g^{\prime} on the target sphere, such that

$$
S=\int_{S^{2} \prime} d^{2} x^{\prime} \sqrt{g^{\prime}}
$$

is finite. Then

$$
q=\frac{1}{S} \int_{x^{\prime}\left(S^{2}\right)} d^{2} x^{\prime} \sqrt{g^{\prime}}=\frac{1}{S} \int_{S^{2}} d^{2} x \frac{\partial\left(x^{\prime}\right)}{\partial(x)} \sqrt{g^{\prime}}
$$

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Put

$$
\begin{equation*}
\boldsymbol{n}=\left(\sin \theta^{\prime} \cos \varphi^{\prime}, \sin \theta^{\prime} \sin \varphi^{\prime}, \cos \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Put

$$
\begin{equation*}
\boldsymbol{n}=\left(\sin \theta^{\prime} \cos \varphi^{\prime}, \sin \theta^{\prime} \sin \varphi^{\prime}, \cos \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

It can be checked by a direct calculation that

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu}=\frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime} \tag{6}
\end{equation*}
$$

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Put

$$
\begin{equation*}
\boldsymbol{n}=\left(\sin \theta^{\prime} \cos \varphi^{\prime}, \sin \theta^{\prime} \sin \varphi^{\prime}, \cos \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

It can be checked by a direct calculation that

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu}=\frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime} \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q=\frac{1}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{7}
\end{equation*}
$$

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Put

$$
\begin{equation*}
\boldsymbol{n}=\left(\sin \theta^{\prime} \cos \varphi^{\prime}, \sin \theta^{\prime} \sin \varphi^{\prime}, \cos \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

It can be checked by a direct calculation that

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu}=\frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime} . \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q=\frac{1}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{7}
\end{equation*}
$$

It can be proved in a simple way. $\boldsymbol{a}=\partial_{1} \boldsymbol{n} d x^{1}$ and $\boldsymbol{b}=\partial_{2} \boldsymbol{n} d x^{2}$ are small vectors on the sphere.

Assuming the spherical coordinates on $S^{2 \prime}$ with the standard metric:

$$
q=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial(\theta, \varphi)} \sin \theta^{\prime}=\frac{1}{4 \pi} \int d^{2} x \frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime}
$$

Put

$$
\begin{equation*}
\boldsymbol{n}=\left(\sin \theta^{\prime} \cos \varphi^{\prime}, \sin \theta^{\prime} \sin \varphi^{\prime}, \cos \theta^{\prime}\right) \tag{5}
\end{equation*}
$$

It can be checked by a direct calculation that

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu}=\frac{\partial\left(\theta^{\prime}, \varphi^{\prime}\right)}{\partial\left(x^{1}, x^{2}\right)} \sin \theta^{\prime} \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q=\frac{1}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{7}
\end{equation*}
$$

It can be proved in a simple way. $\boldsymbol{a}=\partial_{1} \boldsymbol{n} d x^{1}$ and $\boldsymbol{b}=\partial_{2} \boldsymbol{n} d x^{2}$ are small vectors on the sphere. The element $d f$ of the surface in the parallelogram $(\boldsymbol{a}, \boldsymbol{b})$ is

$$
d f= \pm|\boldsymbol{a} \times \boldsymbol{b}|=\boldsymbol{n}(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{n}\left(\partial_{1} \boldsymbol{n} d x^{1} \times \partial_{2} \boldsymbol{n} d x^{2}\right)=\frac{1}{2} \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} d x^{1} d x^{2} .
$$

Self-duality equations

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} . \tag{9}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} . \tag{9}
\end{equation*}
$$

By the substitution $\boldsymbol{n} \rightarrow-\boldsymbol{n}, q \rightarrow-q$ we have

$$
\begin{equation*}
S[\boldsymbol{n}]=-\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} . \tag{10}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{9}
\end{equation*}
$$

By the substitution $\boldsymbol{n} \rightarrow-\boldsymbol{n}, q \rightarrow-q$ we have

$$
\begin{equation*}
S[\boldsymbol{n}]=-\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S[\boldsymbol{n}] \geq \frac{4 \pi|q|}{g} \tag{11}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{9}
\end{equation*}
$$

By the substitution $\boldsymbol{n} \rightarrow-\boldsymbol{n}, q \rightarrow-q$ we have

$$
\begin{equation*}
S[\boldsymbol{n}]=-\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S[\boldsymbol{n}] \geq \frac{4 \pi|q|}{g} \tag{11}
\end{equation*}
$$

The equality in (11) is achieved, if one of the self-duality equations is satisfied:

$$
\begin{array}{ll}
\partial_{\mu} \boldsymbol{n}=-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n} & \\
\partial_{\mu} \boldsymbol{n}=\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n} & \tag{13}\\
(q<0) .
\end{array}
$$

From the identity

$$
\begin{equation*}
\int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2}=2 \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-2 \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}+\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{9}
\end{equation*}
$$

By the substitution $\boldsymbol{n} \rightarrow-\boldsymbol{n}, q \rightarrow-q$ we have

$$
\begin{equation*}
S[\boldsymbol{n}]=-\frac{4 \pi q}{g}+\frac{1}{4 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n}\right)^{2} \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S[\boldsymbol{n}] \geq \frac{4 \pi|q|}{g} \tag{11}
\end{equation*}
$$

The equality in (11) is achieved, if one of the self-duality equations is satisfied:

$$
\begin{align*}
\partial_{\mu} \boldsymbol{n} & =-\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n} & & (q>0) \tag{12}\\
\partial_{\mu} \boldsymbol{n} & =\epsilon_{\mu \nu} \boldsymbol{n} \times \partial^{\nu} \boldsymbol{n} & & (q<0) . \tag{13}
\end{align*}
$$

These are first-order differential equations. Every their solution is a solution to the equations of motion, but not vice versa.

The stereographic projection:

Solutions to the self-duality equations

The stereographic projection:

Solutions to the self-duality equations

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere.

Solutions to the self-duality equations

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{ll}
\bar{\partial} w=0 & (q>0), \\
\partial w=0 & (q<0) . \tag{16}
\end{array}
$$

Solutions to the self-duality equations

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{ll}
\bar{\partial} w=0 & (q>0), \\
\partial w=0 & (q<0) . \tag{16}
\end{array}
$$

Take, for example, $q>0$.

Solutions to the self-duality equations

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{ll}
\bar{\partial} w=0 & (q>0), \\
\partial w=0 & (q<0) . \tag{16}
\end{array}
$$

Take, for example, $q>0$. A regular solution around $\boldsymbol{n}=\boldsymbol{e}_{3}$ corresponds to a simple node of $w \simeq \frac{n_{1}+i n_{2}}{2}$,

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{ll}
\bar{\partial} w=0 & (q>0), \\
\partial w=0 & (q<0) . \tag{16}
\end{array}
$$

Take, for example, $q>0$. A regular solution around $\boldsymbol{n}=\boldsymbol{e}_{3}$ corresponds to a simple node of $w \simeq \frac{n_{1}+i n_{2}}{2}$, while a regular solution around $\boldsymbol{n}=-\boldsymbol{e}_{3}$ corresponds to a simple pole of $w \simeq \frac{2}{n_{1}-i n_{2}}$.

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{lll}
\bar{\partial} w=0 & (q>0), \\
\partial w & =0 & (q<0) . \tag{16}
\end{array}
$$

Take, for example, $q>0$. A regular solution around $\boldsymbol{n}=\boldsymbol{e}_{3}$ corresponds to a simple node of $w \simeq \frac{n_{1}+i n_{2}}{2}$, while a regular solution around $\boldsymbol{n}=-\boldsymbol{e}_{3}$ corresponds to a simple pole of $w \simeq \frac{2}{n_{1}-i n_{2}}$. Hence, the general solution is

$$
\begin{equation*}
w(n, \vec{a}, \vec{b}, c ; z)=c \prod_{j=1}^{n} \frac{z-a_{j}}{z-b_{j}} \tag{17}
\end{equation*}
$$

The stereographic projection:

The complex parameter w becomes a coordinate on the sphere. Substituting it to the self-duality equations we obtain

$$
\begin{array}{ll}
\bar{\partial} w=0 & (q>0), \\
\partial w=0 & (q<0) . \tag{16}
\end{array}
$$

Take, for example, $q>0$. A regular solution around $\boldsymbol{n}=\boldsymbol{e}_{3}$ corresponds to a simple node of $w \simeq \frac{n_{1}+i n_{2}}{2}$, while a regular solution around $\boldsymbol{n}=-\boldsymbol{e}_{3}$ corresponds to a simple pole of $w \simeq \frac{2}{n_{1}-i n_{2}}$. Hence, the general solution is

$$
\begin{equation*}
w(n, \vec{a}, \vec{b}, c ; z)=c \prod_{j=1}^{n} \frac{z-a_{j}}{z-b_{j}} \tag{17}
\end{equation*}
$$

The values $a_{j}, b_{j} \in \mathbb{C} \cup\{\infty\}$, but $a_{i} \neq b_{j}(\forall i, j)$.

Let w_{0} be large enough and generic. Then the equation $w(n, \vec{a}, \vec{b}, c ; z)=w_{0}$ has exactly n solutions.

Let w_{0} be large enough and generic. Then the equation $w(n, \vec{a}, \vec{b}, c ; z)=w_{0}$ has exactly n solutions. \Rightarrow It has exactly n solution un to multiplicity for any w_{0}.

Let w_{0} be large enough and generic. Then the equation $w(n, \vec{a}, \vec{b}, c ; z)=w_{0}$ has exactly n solutions. \Rightarrow It has exactly n solution un to multiplicity for any $w_{0} . \Rightarrow$

$$
\begin{equation*}
n=q . \tag{17a}
\end{equation*}
$$

Solutions to the self-duality equations

Let w_{0} be large enough and generic. Then the equation $w(n, \vec{a}, \vec{b}, c ; z)=w_{0}$ has exactly n solutions. \Rightarrow It has exactly n solution un to multiplicity for any $w_{0} . \Rightarrow$

$$
\begin{equation*}
n=q . \tag{17a}
\end{equation*}
$$

Similarly, for $q<0$ we have

$$
\begin{equation*}
w(q, \vec{a}, \vec{b}, c ; \bar{z})=c \prod_{j=1}^{-q} \frac{\bar{z}-a_{j}}{\bar{z}-b_{j}} \tag{18}
\end{equation*}
$$

Discuss the calculation of the functional integral.

Discuss the calculation of the functional integral. Let $w(z, \bar{z})$ be an arbitrary function. Then the action reads

$$
\begin{align*}
S[w, \bar{w}] & =\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\bar{\partial} w \partial \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{19}\\
& =-\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\partial w \bar{\partial} \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{20}
\end{align*}
$$

Discuss the calculation of the functional integral. Let $w(z, \bar{z})$ be an arbitrary function. Then the action reads

$$
\begin{align*}
S[w, \bar{w}] & =\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\bar{\partial} w \partial \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{19}\\
& =-\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\partial w \bar{\partial} \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{20}
\end{align*}
$$

Suppose $q \geq 0$. Let

$$
\begin{equation*}
S_{q}[\varphi, \bar{\varphi}]=S\left[w(q, \vec{a}, \vec{b}, c ; z)(1+\varphi(z, \bar{z})), w^{*}(q, \vec{a}, \vec{b}, c ; z)(1+\bar{\varphi}(z, \bar{z}))\right] \tag{21}
\end{equation*}
$$

Discuss the calculation of the functional integral. Let $w(z, \bar{z})$ be an arbitrary function. Then the action reads

$$
\begin{align*}
S[w, \bar{w}] & =\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\bar{\partial} w \partial \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{19}\\
& =-\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\partial w \bar{\partial} \bar{w}}{\left(1+|w|^{2}\right)^{2}} . \tag{20}
\end{align*}
$$

Suppose $q \geq 0$. Let

$$
\begin{equation*}
S_{q}[\varphi, \bar{\varphi}]=S\left[w(q, \vec{a}, \vec{b}, c ; z)(1+\varphi(z, \bar{z})), w^{*}(q, \vec{a}, \vec{b}, c ; z)(1+\bar{\varphi}(z, \bar{z}))\right] \tag{21}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
S_{q}[\varphi, \bar{\varphi}]=\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{|w|^{2}}{\left(1+|w|^{2}\right)^{2}} \bar{\partial} \varphi \partial \bar{\varphi} \tag{22}
\end{equation*}
$$

in the quadratic approximation.

Discuss the calculation of the functional integral. Let $w(z, \bar{z})$ be an arbitrary function. Then the action reads

$$
\begin{align*}
S[w, \bar{w}] & =\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\bar{\partial} w \partial \bar{w}}{\left(1+|w|^{2}\right)^{2}} \tag{19}\\
& =-\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{\partial w \bar{\partial} \bar{w}}{\left(1+|w|^{2}\right)^{2}} . \tag{20}
\end{align*}
$$

Suppose $q \geq 0$. Let

$$
\begin{equation*}
S_{q}[\varphi, \bar{\varphi}]=S\left[w(q, \vec{a}, \vec{b}, c ; z)(1+\varphi(z, \bar{z})), w^{*}(q, \vec{a}, \vec{b}, c ; z)(1+\bar{\varphi}(z, \bar{z}))\right] \tag{21}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
S_{q}[\varphi, \bar{\varphi}]=\frac{4 \pi q}{g}+\frac{8}{g} \int d^{2} x \frac{|w|^{2}}{\left(1+|w|^{2}\right)^{2}} \bar{\partial} \varphi \partial \bar{\varphi} \tag{22}
\end{equation*}
$$

in the quadratic approximation. The q-instanton action is

$$
\begin{align*}
Z_{q} & =\frac{e^{-4 \pi q / g}}{(q!)^{2}} \int d \mu(\vec{a}, \vec{b}, c) Z[w(q, \vec{a}, \vec{b}, c ; z)] \\
Z[w] & =\int D \varphi D \bar{\varphi} \exp \left(-\frac{8}{g} \int d^{2} x \frac{|w|^{2}}{\left(1+|w|^{2}\right)^{2}} \bar{\partial} \varphi \partial \bar{\varphi}\right) \tag{23}
\end{align*}
$$

with a conformal invariant measure μ.

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k.

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent,

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent, but due to the UV and IR divergences is not literally conformal invariant.

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent, but due to the UV and IR divergences is not literally conformal invariant. Instead,

$$
Z[w] \rightarrow Z\left[w^{\prime}\right] \prod_{j=1}^{q}\left|\frac{d a_{j}^{\prime}}{d a_{j}}\right|^{2 \alpha}\left|\frac{d b_{j}^{\prime}}{d b_{j}}\right|^{2 \alpha}
$$

with a certain exponent α.

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent, but due to the UV and IR divergences is not literally conformal invariant. Instead,

$$
Z[w] \rightarrow Z\left[w^{\prime}\right] \prod_{j=1}^{q}\left|\frac{d a_{j}^{\prime}}{d a_{j}}\right|^{2 \alpha}\left|\frac{d b_{j}^{\prime}}{d b_{j}}\right|^{2 \alpha}
$$

with a certain exponent α. Hence,

$$
Z[w] \sim f(c) \prod_{i<j}\left|a_{i}-a_{j}\right|^{-4 \alpha}\left|b_{i}-b_{j}\right|^{-4 \alpha} \prod_{i \neq j}\left|a_{i}-b_{j}\right|^{4 \alpha} .
$$

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent, but due to the UV and IR divergences is not literally conformal invariant. Instead,

$$
Z[w] \rightarrow Z\left[w^{\prime}\right] \prod_{j=1}^{q}\left|\frac{d a_{j}^{\prime}}{d a_{j}}\right|^{2 \alpha}\left|\frac{d b_{j}^{\prime}}{d b_{j}}\right|^{2 \alpha}
$$

with a certain exponent α. Hence,

$$
Z[w] \sim f(c) \prod_{i<j}\left|a_{i}-a_{j}\right|^{-4 \alpha}\left|b_{i}-b_{j}\right|^{-4 \alpha} \prod_{i \neq j}\left|a_{i}-b_{j}\right|^{4 \alpha} .
$$

A rather complex calculation results in $\alpha=1 / 2$ and $f(c)=|c|^{2} /\left(1+|c|^{2}\right)^{2}$, so the integral over c gives just a finite factor.

The only conformal invariant measure is

$$
\begin{equation*}
\mu(\vec{a}, \vec{b}, c)=k^{q} \frac{d^{2} c}{|c|^{2}} \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{4}\left|b_{i}-b_{j}\right|^{4} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-4} \tag{24}
\end{equation*}
$$

with a certain constant k. The partition function $Z[w]$ is g-independent, but due to the UV and IR divergences is not literally conformal invariant. Instead,

$$
Z[w] \rightarrow Z\left[w^{\prime}\right] \prod_{j=1}^{q}\left|\frac{d a_{j}^{\prime}}{d a_{j}}\right|^{2 \alpha}\left|\frac{d b_{j}^{\prime}}{d b_{j}}\right|^{2 \alpha}
$$

with a certain exponent α. Hence,

$$
Z[w] \sim f(c) \prod_{i<j}\left|a_{i}-a_{j}\right|^{-4 \alpha}\left|b_{i}-b_{j}\right|^{-4 \alpha} \prod_{i \neq j}\left|a_{i}-b_{j}\right|^{4 \alpha}
$$

A rather complex calculation results in $\alpha=1 / 2$ and $f(c)=|c|^{2} /\left(1+|c|^{2}\right)^{2}$, so the integral over c gives just a finite factor. Thus we have

$$
\begin{equation*}
Z_{q} \sim \frac{\lambda^{q}}{(q!)^{2}} \int \prod_{j=1}^{q} d^{2} a_{j} d^{2} b_{j} \prod_{i<j}\left|a_{i}-a_{j}\right|^{2}\left|b_{i}-b_{j}\right|^{2} \prod_{i, j}\left|a_{i}-b_{j}\right|^{-2} \tag{25}
\end{equation*}
$$

where $\lambda \sim e^{-4 \pi / g}$.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the $O(3)$-model looks falls in to the general pattern $N \geq 3$ very well.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the $O(3)$-model looks falls in to the general pattern $N \geq 3$ very well. What is the real consequence of the solitons?

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the O (3)-model looks falls in to the general pattern $N \geq 3$ very well. What is the real consequence of the solitons? In the case of solitons we may modify the action:

$$
\begin{equation*}
S_{\theta}(\boldsymbol{n})=S(\boldsymbol{n})+i \theta q=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}+i \frac{\theta}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{26}
\end{equation*}
$$

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the O (3)-model looks falls in to the general pattern $N \geq 3$ very well. What is the real consequence of the solitons? In the case of solitons we may modify the action:

$$
\begin{equation*}
S_{\theta}(\boldsymbol{n})=S(\boldsymbol{n})+i \theta q=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}+i \frac{\theta}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{26}
\end{equation*}
$$

The second theta-term is purely topological, but it essentially modifies the theory. The partition function reads

$$
Z=\sum_{q=-\infty}^{\infty} e^{i \theta q} Z_{q}
$$

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the O (3)-model looks falls in to the general pattern $N \geq 3$ very well. What is the real consequence of the solitons? In the case of solitons we may modify the action:

$$
\begin{equation*}
S_{\theta}(\boldsymbol{n})=S(\boldsymbol{n})+i \theta q=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}+i \frac{\theta}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{26}
\end{equation*}
$$

The second theta-term is purely topological, but it essentially modifies the theory. The partition function reads

$$
Z=\sum_{q=-\infty}^{\infty} e^{i \theta q} Z_{q}
$$

In particular, it is known that for $\theta=\pi$ the $O(3)$-model is massless, but not scaleinvariant.

The total partition function $Z=\sum_{q \in \mathbb{Z}} Z_{q}$ formally coincides with the partition function of the sine-Gordon model with $\beta^{2}=1$, i.e. with the partition function of massive free fermions. Literally it is not correct. The problem is the we cannot find contributions of solutions that behave like multi-instanton in certain regions of space and like multi-antisoliton in other regions. The only correct conclusion is that the total theory is massive. We will see below that the $O(N)$-models with $N>3$, where there are no solitons, are massive too. It is not related to solitons. Moreover, the O (3)-model looks falls in to the general pattern $N \geq 3$ very well. What is the real consequence of the solitons? In the case of solitons we may modify the action:

$$
\begin{equation*}
S_{\theta}(\boldsymbol{n})=S(\boldsymbol{n})+i \theta q=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}+i \frac{\theta}{8 \pi} \int d^{2} x \boldsymbol{n}\left(\partial_{\mu} \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n}\right) \epsilon^{\mu \nu} . \tag{26}
\end{equation*}
$$

The second theta-term is purely topological, but it essentially modifies the theory. The partition function reads

$$
Z=\sum_{q=-\infty}^{\infty} e^{i \theta q} Z_{q}
$$

In particular, it is known that for $\theta=\pi$ the $O(3)$-model is massless, but not scaleinvariant. For $\theta \neq 0, \pi(\bmod 2 \pi)$ the theory does not seem to be exactly solvable.

