
Lecture 2
SOS model and vertex-face correspondence

To understand better the origin of the SOS model let us sketch the Bethe ansatz for the six-vertex model,
where d = 0. In this case we can introduce the operator Sz of ‘total spin’, which counts the signs along a
column:

Sz(vε1 ⊗ · · · ⊗ vεN ) =
1

2

N∑
i=1

εi(vε1 ⊗ · · · ⊗ vεN ).

Due to the ice condition this operator commutes with the transfer matrix

[T (u), Sz] = 0.

This is a trivial fact: the number of ‘minuses’ is conserved.
So we can easily establish at least two eigenvectors (pseudovacuums)

|Ω±〉 = v± ⊗ · · · ⊗ v±

with the eigenvalue aN+bN . But this is generally (everywhere except in the ferroelectric regions Fi) NOT the
largest one. How to find the other eigenvectors? Let us start from |Ω+〉 and flip spins one by one. Any state
with the eigenvalue of Sz being N/2− n will be called a state of n pseudoparticles. Let σ−k = (σx − iσy)/2
be the operator that turns the kth spin down.

Consider the state of one pseudoparticle. From the translational invariance we conclude, that it has the
form

|p〉 =

N∑
k=1

eipkσ−k |Ω+〉.

From cyclic boundary condition we conclude that

eipN = 1,

so that we have N states with pj = 2π
N j, j = 0, . . . , N −1. You can easily find the corresponding eigenvalues.

There are larger ones than aN + bN , but they are also do not contain the largest one.
Consider the state of 2 pseudoparticles. Substitute the following ansatz:

|p1, p2〉 =
∑
k1<k2

(A12e
ip1k1+ip2k2 +A21e

ip2k1+ip1k2)σ−k1σ
−
k2
|Ω+〉.

Apply the operator T or, simpler, H1. A miracle! This is an eigenvector if

A12

A21
= z(p1, p2)

with some given function z(p1, p2). The cyclic boundary condition imposes the restrictions

eip1N = z(p1, p2), eip2N = z(p2, p1).

In the general case of n pseudoparticles the same miracle takes place. The wave function can be made of
plane waves. The cyclic boundary conditions impose the Bethe equations

eipjN =

n∏
j′( 6=j)

z(pj , pj′), j = 1, . . . , n.

It is generally impossible to solve these equations analytically. But in the limit N →∞, n/N = const they
are reduced to an integral equation. The case n = N/2, corresponding to the largest eigenvalue, admits an
analytic solution. This is how the six-vertex model is solved.
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What is wrong with the general eight-vertex model? The obstacle is that

[Sz, T ] 6= 0 for d 6= 0.

It destroys the whole picture of pseudoparticles. There is a nice construction of the Q operator proposed
by Baxter, that makes it possible to obtain the Bethe equations without any reference to the Bethe ansatz.
Nevertheless, there is a question: is it possible to relate this model to another one that admits the whole
construction of Bethe ansatz? Is it possible to construct something similar to the six-vertex model, but
involving elliptic functions? The answer is YES.

Consider again the square lattice on the plane, but associate the variables to the vertices of the lattice
and the Boltzmann weights to the plaquet or faces. Namely, associate to each vertex a variable n ∈ Z + δ,
where the real shift δ is introduced for convenience. The partition function will be independent of this shift.
Associate to each face of the lattice a weight:

e−E(n1,n2,n3,n4)/T = W

[
n4 n3
n1 n2

∣∣∣∣u− v] =

.........

.......

.......
.

.......

.......

.......
.

..............................................

n1 n2

n3n4

u

v

The dashed lines, first, denote the orientation and, second, carry the spectral parameters. The configuration
sum is taken over all ns at all vertices such that

|ni − nj | = 1 (admissibility condition) (1)

on the neighboring vertices.
What does the admissibility condition mean? Consider the dual (dashed) lattice. Define on each edge of

this lattice a variable ε = +1 if the variable ni = nj + 1, if i denotes the vertex on the left or upper end of
the edge, while j denotes the vertex on the right or lower end of the edge:

.........

.......

.......
.

.......

.......

.......
.

..............................................

n+ ε1 n

n+ ε′2n+ ε1 + ε2

−→

.........

.......

.......
.

.......

.......

.......
.

..............................................

ε1

ε2

ε′1
ε′2 (n+ ε1 + ε2 = n+ ε′1 + ε′2)

In these notations the variables ε satisfy the ice condition by definition. But the weight W at each vertex
of the dual lattice depend not only on the variables ε1, ε2, ε

′
1, ε
′
2, but also on the value of n at e.g. the right

lower corner of the face, which is (up to δ) the sum of all εs on any path along the initial (solid) lattice from
some fixed point at the lattice to this right lower corner of the face.

The Boltzmann weights, analogous to a, b and c of the six-vertex model, are given by

a±n (u) = W

[
n± 2 n± 1
n± 1 n

∣∣∣∣u] = R0(u),

b±n (u) = W

[
n n∓ 1

n± 1 n

∣∣∣∣u] = R0(u)
[n∓ 1][u]

[n][1− u]

c±n (u) = W

[
n n± 1

n± 1 n

∣∣∣∣u] = R0(u)
[n± u][1]

[n][1− u]
,

(2)

with an arbitrary function R0(u) and

[u]i =

√
π

εr
e

1
4 εr θi

(
u

r
;

iπ

εr

)
,

[u] = [u]1 = xu
2/r−u(z; p)∞(pz−1; p)∞(p; p)∞.
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The weights W satisfy the Yang–Baxter equation of the form

∑
n

W

[
n′1 n2
n n′3

∣∣∣∣u1 − u2]W [
n n′3
n2 n1

∣∣∣∣u1 − u3]W [
n′1 n
n3 n2

∣∣∣∣u2 − u3]
=
∑
n

W

[
n′2 n′3
n n1

∣∣∣∣u2 − u3]W [
n′1 n′2
n3 n

∣∣∣∣u1 − u3]W [
n3 n
n2 n1

∣∣∣∣u1 − u2] . (3)

Graphically it looks like:
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The dashed lines here play the role of solid lines in the Yang–Baxter equation for the eight-vertex model,
while the solid lines here simply form the lattice dual to the dashed one.

If the function R0(u) satisfy the relations

R0(u)R0(−u) = 1, R0(u)[u] = R0(1− u)[1− u],

the weights satisfy the relations∑
n

W

[
n4 n
n1 n2

∣∣∣∣u]W [
n4 n3
n n2

∣∣∣∣−u] = δn1,n3
, (Unitarity), (4)

[n3]−1W

[
n4 n3
n1 n2

∣∣∣∣u] = [n4]−1W

[
n1 n4
n2 n3

∣∣∣∣1− u] (Crossing symmetry). (5)

The solution

R0(u) ≡ R0(u; ε, r) = z(r−1)/2r
g(z−1)

g(z)
(6)

makes the partition function per site equal to 1.
It is easy to define the L operator

L(u)
n′1...n

′
N+1

n1...nN+1 =

n1

n2

n3

nN

nN+1

n′1

n′2

n′3

n′N

n′N+1

= W

[
nN+1 n′N+1

nN n′N

∣∣∣∣u] . . .W [
n3 n′3
n2 n′2

∣∣∣∣u]W [
n2 n′2
n1 n′1

∣∣∣∣u] (7)

and the transfer matrix
T (u)

n′1...n
′
N

n1...nN = L(u)
n′1...n

′
Nn
′
1

n1...nNn1 . (8)

The transfer matrices form a commuting family,

T (u1)T (u2) = T (u2)T (u1),

and T (0) is again the shift operator.
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Now we formulate Baxter’s fundamental statement about the relation between two models [1]. There
exist functions tε(u)n

′

n such that∑
ε′1ε
′
2

R(u− v)
ε′1ε
′
2

ε1ε2tε′2(v − u0)ns′tε′1(u− u0)s
′

n′ =
∑
s∈Z

tε1(u− u0)ns tε2(v − u0)sn′W

[
n′ s′

s n

∣∣∣∣u− v] (9)

for arbitrary u0. This relation is referred to as the vertex–face correspondence. Explicitly, these intertwining
functions have the form

t+(u)n
′

n = (−1)(n−δ)(n
′−n−1)/2eiπ/4f(u)θ3

(
(n′ − n)u+ n′

2r
; i
π

2εr

)
,

t−(u)n
′

n = −(−1)(n−δ)(n
′−n+1)/2e−iπ/4f(u)θ4

(
(n′ − n)u+ n′

2r
; i
π

2εr

)
.

(10)

Here f(u) is an arbitrary function and δ is the shift discussed above.
To understand better the fundamental identity (9), let us represent it graphically. Introduce the graphical

representative of the intertwining functions:

tε(u− u0)n
′

n =
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n′n

ε

u

u0

With this notation the vertex–face correspondence looks like (u0 line is not depicted)
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Note that this relation looks like the Yang–Baxter equation of mixed vertex–face type!
This means that if we take a square finite SOS lattice with open boundaries and attach intertwining

functions to their left and lower boundaries summing over necessary boundary variables n, we can push the
intertwining functions up and right using the vertex–face correspondence and obtain a square lattice of the
eight-vertex model with the intertwining functions attached to the right and upper boundaries. In physics we
usually expect that the contribution of boundaries to the partition function is neglectable in a large system.
It means that the large volume limit of the partition functions per site of the eight-vertex model and of the
SOS model coincide.

Moreover, it can be rigorously derived that the spectra of eigenvalues of the transfer matrices of the
eight-vertex and SOS models with the cyclic boundary condition coincide. First, introduce the L-type
operator

λ(u0)n1...nNnN+1
ε1...εN =

.........
..........
.................................................

.........
..........
.................................................

.........
..........
.................................................

ε1

ε2

εN

n1

n2

n3

nN

nN+1

= tεN (−u0)nN−1
nN

. . . tε2(−u0)n2
n3
tε1(−u0)n1

n2
(11)

and the transfer matrix type operator

τ(u0)n1...nN
ε1...εN = λ(u0)n1...nNn1

ε1...εN .
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Then ∑
n2...nN−1

L(u)
n′1...n

′
N+1

n1...nN+1λ(u0)n1...nN+1t1(u− u0)n1

n′1
=
∑
n

λ(u0)n
′
1...n

′
N+1t1(u− u0)

n′N+1
n L1(u)

or, graphically,
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Introduce now the object ‘inverse’ to the intertwining functions:∑
ε

tε(u)nn′t
∗
ε(u)n

′′

n = δn′n′′ or
∑
n′

t∗ε′(u)n
′

n tε(u)nn′ = δεε′ . (12)

or, graphically,

t∗ε(u− u0)n
′

n = .........
.............

.........

.......

.......
.

.......
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.......
.

........................ ......................

n′ n

ε

u

u0
,

....................
..
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.............

n′

n′′ n

nt

t∗

= δn′n′′ ,
∑
n′

 ....................
...........

.............

.........

.......

.......
.

.......

.......

.......
.

n′ n

ε

ε′
 = δεε′ .

Attaching these t∗ functions to the upper boundary and imposing the cyclic boundary condition we obtain

τ(u0)T8v(u) = TSOS(u)τ(u0), (13)

where T8v and TSOS(u) are transfer matrices of the eight-vertex and SOS models respectively. Note that this
equation has been obtained in the full analogy to the derivation of commutativity of transfer matrices.

Similarly, one can introduce the matrix

τ∗(u)ε1...εNn1...nN
= t∗εN (−u0)n1

nN
. . . t∗ε1(−u0)n2

n1

with the relation
T8v(u)τ∗(u0) = τ∗(u0)TSOS(u), (14)

Let |Λ〉SOS be an eigenvector of TSOS(u) with the eigenvalue function Λ(u). Then

T8v(u)τ∗(u0)|Λ〉SOS = τ∗(u0)TSOS(u)|Λ〉SOS = Λ(u)τ∗(u0)|Λ〉SOS.

It means that |Λ〉8v = τ∗(u0)|Λ〉SOS is an eigenvector of the operator T8v(u) with the same eigenvalue
function Λ(u). It proves that the spectra of both models coincide.

To conclude, let us say something about the ground states in this theory. We shall consider the SOS
model in the so called regime III region:

ε > 0, r ≥ 1, 0 < u < 1.

In this region the ground states (the states of maximal weight) are numerated by m ∈ Z+δ and m′ = m±1,
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such that (k − 1)r < m,m′ < kr for some integer k. The ground state (m,m′) looks like

m′ m′

m′

m′ m′

m

m m

m

The conclusion is the following. There is a highly nonlocal transformation that relates the eight-vertex
model to another model, the solid-on-solid one, which can be treated by means of the Bethe ansatz approach.
Though this relation is not a direct one-to-one correspondence between configurations, it is nevertheless a
‘detailed’ correspondence that makes it possible to express any expectation value of the eight-vertex model
to an expectation value defined in terms of the SOS model. We discuss this point in the Lecture 4.
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