
Lecture 4
Free field representation: SOS model

The bosonization or free field representation appeared in conformal field theory in the works by Feigin and
Fuchs [1] and by Dotsenko and Fateev [2] in 1983. It is no use to recall these papers for our purposes. The
most important outcome of these papers for us is that some linear equations can be solved by representing
the solution in terms of expectation values of some quantum operators. The trace form of the functions
we want to obtain prompt us that it must be a thermal average. If the Hamiltonian H is quadratic in the
bosonic field and the operators Φ(u)n

′

n is expressed as exponentials of this field, the problem will be solvable.
Let me first formally introduce the construction by Lukyanov and Pugai [3] and then to explain how it

can be obtained.
Consider a Heisenberg algebra of operators ak (k ∈ Z \ {0}) and a pair of ‘zero-mode’ operators P and

Q with the commutation relations

[P,Q] = −i, [ak, al] = k
[[k]]x[[(r − 1)k]]x

[[2k]]x[[rk]]x
δk+l,0 with [[u]]x =

xu − x−u

x− x−1
. (1)

The ‘q-number’ [[u]]x here should not be confused with the ‘elliptic q-numbers’ [u]i (i = 1, . . . , 4). It is also
useful to introduce the operators

ãk =
[[rk]]x

[[(r − 1)k]]x
ak. (2)

The normal ordering operation :. . .: places P to the right of Q and ak with positive k to the right of a−k. It
will be convenient to assign

α+ =
√
a+ =

√
r

r − 1
, α− = −√a− = −

√
r − 1

r
, 2α0 = α+ + α− =

1√
r(r − 1)

. (3)

Now introduce the fields
ϕ(z) =

α−√
2

(Q− iP log z)−
∑
k 6=0

ak
ik
z−k.

ϕ̃(z) =
α+√

2
(Q− iP log z) +

∑
k 6=0

ãk
ik
z−k.

(4)

These fields enter the exponential operators

V (u) = z(r−1)/4r:eiϕ(z):, V̄ (u) = z(r−1)/r:e−iϕ(x
−1z)−iϕ(xz):,

Ṽ (u) = zr/4(r−1):eiϕ̃(z):, ˜̄V (u) = zr/(r−1):e−iϕ̃(x
−1z)−iϕ̃(xz):,

(5)

and Lukyanov’s screening operators

x(u,C) =
ε

η

∫
C

dv

iπ
V̄ (v)

[v − u+ 1
2 −

√
2r(r − 1)P]

[v − u− 1
2 ]

,

x̃(u,C) =
ε

η′

∫
C

dv

iπ
˜̄V (v)

[v − u− 1
2 +

√
2r(r − 1)P]′

[v − u+ 1
2 ]′

.

(6)

The constants η, η′ will be fixed as

η−1 = i[1]x
r−1
2r

(x2;x2r)∞
(x2r−2;x2r)∞

(x6;x4, x2r)∞(x2r+2;x4, x2r)∞
(x4;x4, x2r)∞(x2r+4;x4, x2r)∞

,

η′−1 = −2ε

π
[1]′x−

r
2(r−1)

(x2r−2;x2r−2)2∞
(x2r;x2r−2)2∞

(x4;x4, x2r−2)∞(x2r+2;x4, x2r−2)∞
(x2;x4, x2r−2)∞(x2r+4;x4, x2r−2)∞

.

(7)
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Now let us fix the contours. Let C−u and C+
u go from u − iπ

2ε to u + iπ
2ε to the left and to the right of u

respectively.
(We assume that the contours C±u go to the left of all poles in the ‘main rectangle’ related to the operators

that are to the right of the screening operator and to the right of all poles related to the operators placed
to the left of the screening operators. The ‘main rectangle’ is understood as a rectangle with sides r along
the real axis and π

ε along the imaginary axis that contains all points ui, vi etc. It is well defined for large
enough r and for points ui, vi,. . . close enough to each other. In the general case the operator products are
considered as analytic continuation from this region.)

Then
X(u) = x(u,C−u+1/2), Y (u) = x(u− 1, C+

u−1/2),

X̃(u) = x̃(u,C−u−1/2), Ỹ (u) = x̃(u+ 1, C+
u+1/2).

(8)

These operators satisfy the equations

Y (u)V (u) = V (u)X(u), Ỹ (u)Ṽ (u) = Ṽ (u)X̃(u). (9)

Define the Fock spaces Fmn generated by the operators a−k (k > 0) from the highest weight vectors
|Pmn〉 such that

ak|Pmn〉 = 0 (k > 0), P|Pmn〉 = Pmn|Pmn〉, Pmn =
1√
2

(α+m+ α−n). (10)

There are strong evidences that Fmn can be identified with Hmn for generic r.
The vertex operators are defined on Fmn as follows:

Φ(u)n+1
n =

im−n

[n]
V (u),

Φ(u)n−1n = − im−n

[n]
V (u)X(u),

Ψ∗(u)m+1
m = Ṽ (u),

Ψ∗(u)m−1m = (−1)m−nỸ (u)Ṽ (u).

(11)

The corner Hamiltonian Hmn is the restriction to Fmn of the operator

H =
P2

2
+

∞∑
k=1

[[2k]]x[[rk]]x
[[k]]x[[(r − 1)k]]x

a−kak. (12)

Ooh! This is the end at last!
The operators H and Φ(u)n

′

n satisfy the necessary algebra of commutation relations. Besides, the opera-
tors Ψ∗(u)n

′

n satisfy a similar algebra

Ψ∗(u)m
′

m x2vHmn = x2vHm′nΨ∗(u− v)m
′

m , (13)∑
s′

W̃

[
m′ s
s′ m

∣∣∣∣u1 − u2]Ψ∗(u1)m
′

s′ Ψ∗(u2)s
′

m = Ψ∗(u2)m
′

s Ψ∗(u1)sm, (14)

Ψ(u′)m
′

m′′Ψ
∗(u)m

′′

m =
1

π

δm
′

m

u′ − u
+O(1), Ψ(u)m

′

m =
1

[m]′
Ψ∗(u− 1)m

′

m . (15)

Here

W̃

[
m4 m3

m1 m2

∣∣∣∣u] = − W

[
m4 m3

m1 m2

∣∣∣∣u]∣∣∣∣
r→r−1

.

The operators Φ(u) are called the type I vertex operators, while Ψ∗(u) are called the type II vertex operators.
The difference between these operators is in their physical meaning. The type I operators are, as we already
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said, the half transfer matrices, while the type II vertex operators represent one-particle excitation states.
Both types of operators satisfy the relation

Φ(u1)n
′

n Ψ∗(u2)m
′

m = τ(u1 − u2)Ψ∗(u2)m
′

m Φ(u1)n
′

n , τ(u) = i
θ1
(
1
4 −

u
2 ; iπ

2ε

)
θ1
(
1
4 + u

2 ; iπ
2ε

) . (16)

The function
∏l
j=1 τ(u − vj) is the eigenvalue of the transfer matrix TSOS(u) on the excited states of l

particles. The functions W̃

[
m4 m3

m1 m2

∣∣∣∣v1 − v2] provide the scattering matrix of two excitations. A trace

function with a product of Ψ∗(v) and Ψ(v) inserted represents a matrix element of a local operator described
by Φs instead of its vacuum expectation value. Namely,〈

mm′1 . . .m
′
l′−1m

′

v′1, . . . , v
′
l′

∣∣∣∣O(nn1 . . . nk−1n′1 . . . n
′
k−1

n′
)∣∣∣∣mm1 . . .ml−1m

′

v1, . . . , vl

〉
=

1

χm
TrFmn

(Ψ(v′1)mm′1 . . .Ψ(v′l′)
m′

l′−1

m′ Ψ∗(vl)
m′

ml−1
. . .Ψ∗(v1)m1

m

× Φ∗(u1)nn′1 . . .Φ
∗(uk)

n′k−1

n′ Φ(uk)n
′

nk−1
. . .Φ(u1)n1

n x
4H),

where O
(
n
n1 . . . nk−1
n′1 . . . n

′
k−1

n′
)

is the operator corresponding to the picture in the last lecture. The corresponding

vacuum expectation values are just the probabilities P
(
n
n1 . . . nk−1
n′1 . . . n

′
k−1

n′
)

.

Now let us make some comments on the construction. Derivation of the construction above starts from
the following observation. Consider first the commutation relation

Φ(u1)n+2
n+1Φ(u2)n+1

n = W

[
n+ 2 n+ 1
n+ 1 n

∣∣∣∣u1 − u2]Φ(u2)n+2
n+1Φ(u1)n+1

n .

Since

W

[
n+ 2 n+ 1
n+ 1 n

∣∣∣∣u] = R0(u) = z(r−1)/2r
g(z−1)

g(z)
, z = x2u,

we can rewrite it as

(z2/z1)(r−1)/4rg−1(z2/z1)Φ(u1)n+2
n+1Φ(u2)n+1

n = (z1/z2)(r−1)/4rg−1(z1/z2)Φ(u2)n+2
n+1Φ(u1)n+1

n

This can be reproduced if Φ(u)n+1
n ∼ :eiϕ(u): with ϕ(u) has the form (4). The pairs (an, a−n) are supposed

to form independent Heisenberg algebra, but the normalization from (1) is not supposed. It is known that

:eiϕ1 ::eiϕ2 : = e−〈0|ϕ1ϕ2|0〉:eiϕ1+iϕ2 :,

where ϕ1, ϕ2 are any linear combinations of P, Q, ak. It means that if

〈0|ϕ(u1)ϕ(u2)|0〉 = − log((z2/z1)−(r−1)/4rg(z2/z1)),

we will be able to satisfy our equation.
Let us represent log g(z) in the form of a series in z. Namely, use the identity

log(z; p1, p2)∞ =

∞∑
n1,n2=0

log(1− zpn1
1 pn2

2 ) = −
∞∑

n1,n2=0

∞∑
m=1

zmpmn1
1 pmn2

2

m
= −

∞∑
m=1

zm

(1− pm1 )(1− pm2 )
.

Applying it to the definition of g(z), we obtain

log g(z) = −
∞∑
m=1

(x2m + x(2r+2)m − x4m − x2rm)zm

(1− x4m)(1− x2rm)
.
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This reproduces the normalizations in (1).
Obtaining the other relations, e.g.

Φ(u1)nn−1Φ(u2)n−1n = (something)× Φ(u2)nn−1Φ(u1)n−1n + (something)× Φ(u2)nn+1Φ(u1)n+1
n

Without the second term it could be reproduced by pure exponentials (but with a wrong coefficient!), but
the second term spoils everything. From conformal field theory it is known that such commutation relations
can by obtained by use of the screening operators, which are integral of exponentials. The particular form of
the screening operator (6) was guessed after long attempts to use a simpler form without an elliptic function
of the zero mode operator. The normalization constant η is extracted from the normalization property for
the vertex operators.

The Ψ operators appeared as a natural generalizations of some operators in the conformal field theory.
Their meaning as representatives of excited states was established by comparing with similar construction
for the six-vertex model by Jimbo and Miwa and with Lukyanov’s construction for form factors in quantum
field theory.

Similar operators Ψ∗ε(u) must exist for the eight-vertex model. The algebra of these operators was

established by Foda, Iohara, Jimbo, Miwa, and Yan in 1994 in the study of the elliptic algebra Aq,p(ŝl2) [4].
Let us write down the result:∑

ε′1ε
′
2

R̃(u1 − u2)
ε′1ε
′
2

ε1ε2Ψ∗ε′1(u1)Ψ∗ε′2(u2) = Ψ∗ε2(u2)Ψ∗ε1(u1), (17)

Ψε1(u1)Φε2(u2) = τ(u1 − u2)Φε2(u2)Ψε1(u1), (18)

Ψε1(u′)Ψ∗ε2(u) =
1

π

δε1ε2
u′ − u

+O(1), Ψε(u) = Ψ∗−ε(u− 1). (19)

Here the R̃(u) matrix is defined by the weights

ã(u) = −a(u)|r→r−1, b̃(u) = −b(u)|r→r−1, c̃(u) = −c(u)|r→r−1, d̃(u) = d(u)|r→r−1 (20)

and provides the S matrix of the eight-vertex model. This form of the S matrix was confirmed by Takebe
by means of the Bethe ansatz [5].

The function τ(u) here is the same function as in the similar commutation relation (16) for the SOS
model. It is not surprising, because we know that the spectra of transfer matrices of both models coincide.

How to calculate anything with these bosonic fields? Denote by Tr∗ the trace over oscillator modes and
by H∗ the oscillator contribution to Hmn. Besides, let

χ∗ = Tr∗(x
4H∗) =

1

(x4;x4)∞
.

Then, according to the Wick theorem,

TrFmn
(UN (uN ) . . . U1(u1)) = 〈Pmn|U0

N (uN ) . . . U0
1 (u1)|Pmn〉χ∗

N∏
i=1

ci
∏
i<j

gij(ui − uj)

with

log ci =
1

χ∗
Tr∗(φ

+
i (0)φ−i (0)x4H

∗
),

log gij(u) =
1

χ∗
Tr∗(φi(0)φj(u)x4H

∗
), φi(u) = φ+i (u) + φ−i (u).

The constants ci and functions gij are expressed in terms of the infinite products (z; p1, . . . , pk)∞ defined
above. The resulting form factors are expressed in terms of integrations of the products of these functions.
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We know the vertex–face correspondence for the weights. Is it possible to relate somehow the vertex
operator algebras? Surely, it is, but we need again a kind of ‘physical reasoning’. You remember the relation

[m′] TrH(i)(x2H) =
∑

n∈2Z+m+i

TrHmn
x4Hmn .

Analysis of the low temperature expansion really indicates the relation between ith ground state of the eight
vertex model and the n−m = i (mod 2) ground states of the SOS model. So, suppose that there exist the
operators

T (u0)mn : Hmn → H(i), T (u0)mn : H(i) → Hmn, i = n−m (mod 2), (21)

such that
[m]′x2H

(i)

=
∑

n∈2Z+m+i

T (u0)mnx
4HmnT (u0)mn (22)

and ∑
n

tε(u− u0)n
′

n Φ(u)n
′

n T (u0)mn = T (u0)mn
′
Φε(u)∑

ε

t∗ε(u− u0)nn′Φε(u)T (u0)mn = T (u0)mn′Φ(u)n
′

n ,
(23)

The operators T (u0)mn and T (u0)mn can be considered as a half of the τ(u0) transfer matrix and its
‘conjugate’ τ∗(u0) in the infinite volume limit:

T (u0)mn =

.........
..........
.................................................

.........
..........
.................................................

.........
..........
.................................................

ε1

ε2

ε3

n1

n2

n3

n4
T (u0)mn =

.........
..........
...

.........
..........
...

.........
..........
...

ε1

ε2

ε3

n1

n2

n3

n4

How the operators T (u0)mn and T (u0)mn intertwine the type II operators? In the spirit of this algebraic
approach, we can suggest that the commutation relation look like

Ψ∗ε(u)T (u0)mn =
∑
m′

T (u0)m′nΨ∗(u)m
′

m t̃∗ε(u− u0 −∆u0)mm′ ,

Ψ∗(u)m
′

m T (u0)mn =
∑
ε

T (u0)m
′nΨ∗ε(u)t̃ε(u− u0 −∆u0)m

′

m ,
(24)

where ∆u0 is some shift and t̃ε(u)m
′

m are intertwining functions after the substitution r → r − 1 and erasing
e±iπ/4:

t̃+(u)n
′

n = f̃(u)θ3

(
(n′ − n)u+ n′

2r′
; i

π

2εr′

)
,

t̃−(u)n
′

n = f̃(u)θ4

(
(n′ − n)u+ n′

2r′
; i

π

2εr′

)
, r′ = r − 1.

(25)

The normalization conditions fix the overall factors f(u) and f̃(u) to be solutions of the equations

[u]f(u)f(u− 1) = C ≡ [0]24
2θ3(0; iπ/2εr)θ4(0; iπ/2εr)

,

[u]′f̃(u)f̃(u− 1) = C ′ ≡ [0]′24
2θ3(0; iπ/2εr′)θ4(0; iπ/2εr′)

.
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The function f(u) is not essential for the answers since the type I vertex operators Φ are always accompanied
by the ‘conjugates’ Φ∗. But the particular form of f̃(u) is essential and will be fixed on the basis of the
bosonization procedure as well as the value of the shift ∆u0.

Consider any form factor from the eight-vertex model

1

χ(i)
TrH(i)(Φ∗ε′1(u1) . . .Φ∗ε′k

(uk)Φεk(uk) . . .Φε1(u1)Ψ∗αl
(vl) . . .Ψ

∗
α1

(v1)x2H
(i)

)

We can represent the operator x2H
(i)

according to (22) and push T (u0)mn to the left and T (u0)mn to the
right by use of the intertwining relations (23) and (24). We obtain an infinite liner combination of the traces

[n]

[m′]′χ(i)
TrHm′n(Φ∗(u1)nn′1 . . .Φ

∗(uk)
n′k−1

n′′ Φ(uk)n
′′

nk−1
. . .Φ(u1)n1

n′ Λ(u0)m
′n′

mn Ψ(ul)
m
ml−1

. . .Ψ(u1)m1

m′ x
4Hm′n)

with
Λ(u0)m

′n′

mn = T (u0)m
′n′T (u0)mn : Hmn → Hm′n′ . (26)

All ingredients in this trace are known from the free field representation except the operators Λ(u0)m
′n′

mn . In
the next lecture we fix the bosonic form of these operators using the commutation relations of this operator
with the vertex operators.
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