
Lecture 5
Free field representation: eight-vertex model via SOS model

At the end of the last lecture we introduced the operator Λ(u0)m
′n′

mn = T (u0)m
′n′T (u0)mn. We said

that, having a bosonization of the SOS model, this operator is the only thing to be bosonized. To obtain
bosonization for the Λ operator let us consider its commutation relations with the vertex operators. From
the commutation relations of the operators T (u0)mn and T (u0)mn we find

Λ(u0)m
′

m
n′

s Φ(u)sn =
∑
s′

L

[
n′ s′

s n

∣∣∣∣u− u0]Φ(u)n
′

s′ Λ(u0)m
′

m
s′

n , (1)

Ψ∗(u)m
′
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n′

n =
∑
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′

s′
n′
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′

m L̃
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s′ m
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]
, (2)

where
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tε(u)n4

n3
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[
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(3)
Explicitly, we have

L

[
n′ n′ ± 1
n n± 1

∣∣∣∣u] =
[u± 1

2 (n− n′)][ 12 (n+ n′)]

[u][n]
,

L

[
n′ n′ ∓ 1
n n± 1

∣∣∣∣u] =
[u± 1

2 (n+ n′)][ 12 (n− n′)]
[u][n]

(4)

for n′ − n ∈ 2Z. Note, that the number of type I vertex operators and that of type II vertex operators in
any meaningful trace is even. This means that considering the Λ operator for n′ − n ∈ 2Z and m′ −m ∈ 2Z
is natural.

Evidently,

L

[
n n′′

n n′

∣∣∣∣u] = δn′n′′ . (5)

As the Λ operator is a ‘half infinite product’ of Ls, we easily conclude that

Λ(u)m
′n

mn = δm′m. (6)

Besides,
Λ(u0)m

′

m
n′

n = 0 if m′ < m, n′ > n or m′ > m, n′ < n. (7)

Indeed, if, for example m′ ≤ m, n′ > n for nonzero Λ(u)m
′n′

mn , there must be a point j at the paths where
n(j) = n′(j). But, due to (5), it means that n(j + 1) = n′(j + 1) and, by induction n(k) = n′(k) for any
k > j. Therefore, m′ = m.

Let us start derivation from the case m′ = m. This case is sufficient for calculation of correlation
functions. Consider the commutation relation (1) in the limit u→ u0. In this limit L(s, n; s′, n|u−u0)→∞
so that

L(n± 1, n;n+ 1, n|u− u0)/L(n± 1, n;n− 1, n|u− u0)→ 1.

We obtain the relation (we omit the indices m for simplicity)

Φ(u)n
′

n′−1Λ(u)n
′−1

n = −Φ(u)n
′

n′+1Λ(u)n
′+1

n

which amounts

V (u)Λ(u)n
′−1

n =
[n′ − 1]

[n′ + 1]
V (u)X(u)Λ(u)n

′+1
n .
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We can conjecture that

Λ(u)m n−2l
m n =

[n− 2l]

[n]
X l(u) for l ≥ 0. (8)

If we substitute this solution to the commutation relation (1) in its general form, we can make sure that this
is indeed the solution to these commutation relations n′ ≤ n.

But what to do in the case n′ > n? Look at the weights of the SOS model. They are invariant with
respect to the reflection

m→ −m, n→ −n.
It means that we can identify with Hmn not only Fmn, but also F−m,−n. With this identification we have
an alternate bosonization for the vertex operators of the SOS model:

Φ(u)n+1
n =

in−m

[n]
V (u)X(u),

Φ(u)n−1n = − in−m

[n]
V (u),

Ψ∗(u)m+1
m = (−1)m−nỸ (u)Ṽ (u),

Ψ∗(u)m−1m = Ṽ (u).

(9)

In this alternate bosonization we have

Λ(u)m n+2l
m n =

[n+ 2l]

[n]
X l(u) for l ≥ 0. (10)

We use different free field representation in different cases. This fact must not embarrass you, because the
Λ operator enters the trace once. Hence, we simply need to use different bosonization for different traces.

This is sufficient for calculation of correlation functions. But the construction contains two free parameters
u0 and m. If there would be a rigorous proof of our construction, we would be sure that the answer is
independent of these parameters. But from the mathematical point of view our construction is nothing but
a conjecture. As a test we must check the u0 and m independence. The u0 independence can be proven
from periodicity properties: it turns out that the correlation function constructed from this bosonization
procedure must be periodic in u0 with two periods, 2 and 2r. As r is, generically, irrational, the answer
is a constant. We have no proof of m independence, but the simplest examples of the one- and two-point
functions demonstrate this independence. The answer for the one-point function is nothing but the famous
Baxter’s staggered spontaneous polarization:

〈σz〉(i) ≡ P (i)+
+ − P (i)−

− = (−)i
(x2;x2)2∞(−x2r;x2r)2∞
(−x2;x2)2∞(x2r;x2r)2∞

.

Now turn our attention to the case m′ 6= m. Due to the selection rule (7), we have to use the first
bosonization in the case n′ ≤ n, m′ ≤ m and the alternative bosonization in the case n′ ≥ n, m′ ≥ m. First
of all, let us try to find Λ(u)m−2m

n−2
n . Take the commutation relation (2) for s = m, m′ = m − 1. In this

case it becomes

Ψ∗(u)m−1m Λ(u0)mm
n′

n = Λ(u0)m−1m−1
n′

n Ψ∗(u)m−1m + Λ(u0)m−1m+1
n′

n Ψ∗(u)m+1
m

[u− u0 −∆u0 −m]′[1]′

[u− u0 −∆u0]′[m+ 1]′
.

For n′ = n− 2 we have

[n− 2]

[n]
Ỹ (u)X(u0)Ṽ (u) =

[n− 2]

[n]
X(u0)Ỹ (u)Ṽ (u) + (−1)n−mΛ(u0)m−1m−1

n−2
n Ṽ (u)

[u− u0 −∆u0 −m]′[1]′

[u− u0 −∆u0]′[m+ 1]′
.

Erasing Ṽ (u) we obtain

Λ(u)m−2m
n−2
n Ṽ (u0) = (−)n−m

[u− u0 −∆u0 −m+ 1]′[1]′

[u− u0 −∆u0]′[m]′
[n− 2]

[n]
[Ỹ (u), X(u0)]Ṽ (u). (11)
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What is the commutator [Ỹ (u), X(u0)]? If the contours of the commutator would not catch poles it would
be zero. But it can be proven that this commutator is a simple combinations of exponentials:

[Ỹ (u′), X(u)]|Fmn
=

ε

ηη′ sh ε

(
[m− 1]′

∂[0]′
[u′ − u+ 1

2 − n]

[u′ − u− 1
2 ]

W+(u′)

+
[n− 1]

∂[0]

[u′ − u+ 3
2 −m]′

[u′ − u+ 1
2 ]′

W−(u)

)
. (12)

Here ∂[0] = d[u]/du|u=0, ∂[0]′ = d[u]′/du|u=0 and

W+(u) = W (u+ r
2 ), W−(u) = W (u− r−1

2 ) (13)

with
W (u) = z1/r(r−1):eiϕ0(z):,

ϕ0(z) = −2
√

2α0(Q− iP log z)−
∑
k 6=0

[[2k]]x
[[(r − 1)k]]x

ak
ik
z−k.

(14)

It can be checked that
W+(u)Ṽ (u) = 0.

Therefore the first term in the commutator does not affect the operator Λ(u). But the second exponential
W− has the argument of the X screening operator. The difference u − u0 drop out of (11) with these
substitution, if we accept that

∆u0 = −1/2. (15)

Finally, we obtain

Λ(u)m−2m
n−2
n = (−)n−m

ε

ηη′ sh ε

[m]′

[1]′
[n− 1][n− 2]

∂[0] [n]
W−(u). (16)

We see that Λ(u)m−2m
n−2
n is proportional to W−(u). If we return to the commutation relation [Ỹ (u′), X(u)]

we shall see that at the point u′ = u − 1/2 the second term with W−(u) has a pole, while the first one
remains finite. Therefore,

lim
u′→u−1/2

[u′ − u+ 1/2]′[Ỹ (u′), X(u)] ∼W−(u).

One can check that this pole is appears in the product Ỹ (u′)X(u), while the product X(u)Ỹ (u′) is regular
at that point. It means that

Λ(u)m−2m
n−2
n ∼ lim

u′→u
[u′ − u]′Ỹ (u′ − 1/2)X(u).

We may conjecture that

Λ(u)m−2km
n−2l
n ∼ lim

u′→u
[u′ − u]′Ỹ k(u′ − 1/2)X l(u) for k, l > 0. (17)

It can be checked that the product in the right hand side has just a simple pole and that

lim
u′→u

[u′ − u]′Ỹ k(u′ − 1/2)X l(u) ∼ Ỹ k−1(u− 1/2)W−(u)X l−1(u).

The coefficients in (17) can be obtained from the intertwining relation (2) in the limit u→ u0 − 1/2 just in
the same way as we obtained the coefficient in (8) using the equation

Ψ∗(u)m−2k+1
m−2k Λ(u0)m−2km

n−2l
n = Ψ∗(u)m−2k+1

m−2k+2Λ(u0)m−2k+2
m

n−2l
n +O(1) as u→ u0 − 1

2

and one more equation that follows from (1) in the limit u→ u0 (but written in the form Φ(u)Λ(u0) = . . .).
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Then we have to substitute the answer into the relations (1) and (2) in the general form and to check it.
It is a very cumbersome calculation, but it was done. Now the answer is

Λ(u)m−2km
n−2l
n

∣∣
Fmn

= Cm−2k
m

n−2l
n lim

u′→u
[u′ − u]′Ỹ k(u′ − 1

2 )X l(u)

= Dm−2k
m

n−2l
n X̃k−1(u− 1

2 )W−(u)Y l−1(u), (18)

Λ(u)m+2k
m

n+2l
n

∣∣
F−m−n

= Cm+2k
m

n+2l
n lim

u′→u
[u′ − u]′Ỹ k(u′ − 1

2 )X l(u)

= Dm+2k
m

n+2l
n X̃k−1(u− 1

2 )W−(u)Y l−1(u) (19)

for k, l > 0 with

Dm−2k
m

n−2l
n = (−)(m−n+1)k+l+1 ε

ηη′ sh ε

[m]′

[1]′
[l][n− l][n− 2l]

∂[0] [1][n]
.

Cm−2k
m

n−2l
n = (−)(m−n)k

[m]′

[k]′[m− k]′
[n− 2l]

[n]
.

(20)

The two-particle form factors of any of operators σa can be obtained without integrations. Any of these
calculations (for example for σz) allows to fix the function f̃(u) from the condition of u0 independence of
the answer. The explicit (and readable) answers for these quantities can be found in the paper by Lukyanov
and Terras [1].
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