

Course Title (in English)	Methods of the theory of one-dimensional quantum systems
Course Title (in Russian)	Методы теории одномерных квантовых систем
Lead Instructor(s)	Lashkevich, Michael
Status of this Syllabus	The syllabus is a final draft waiting for form approval
Contact Person	Michael Lashkevich
Contact Person's E-mail	lashkevi@landau.ac.ru

1. Annotation

Course Description	In the framework of the course, quantum systems (field-theoretic and discrete) in one spacial dimension, and some their classical statistical mechanics counterparts are discussed. The scope of systems includes sine-Gordon and Thirring model, O(n) sigma model, Heisenberg chain and six-vertex model, Kondo problem. We consider several techniques to obtain exact results for these systems, including operator product expansions, boson-fermion correspondence, Yang-Baxter equation, different versions of Bethe Ansatz.
Course Prerequisites	Students must be familiar with basics of quantum field theory and statistical mechanics.
2. Structure and Content	
Course Academic Level	Master-level course suitable for PhD students
Number of ECTS credits	6

Торіс	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Berezinsky- Kosterlitz- Thouless (BKT) transition and sine-Gordon quantum field theory	O(2) model and BKT transition. Its description by the sine-Gordon quantum field theory. Renormalization group for the BKT transition.	2	2	
O(N) sigma models	O(N) sigma models in classical and quantum case. 1/N expansion and quantum mass generation. Calculation of the approximate S matrix. Integrals of motion and exact S matrix factorization. Yang- Baxter equation and the exact S matrix.	2	2	
Thirring model	Operator product expansions and boson-fermion correspondence between the Thirring model and the sine-Gordon model. Dirac sea and its generalization to a system with interaction. Pseudovacuum and pseudoparticles. Solution of the Thirring model by means of the Bethe Ansatz.	2	2	
Heisenberg chain and vertex models	The XYZ Heisenberg chain. Solution of the XY Heisenberg chain via fermionization. Solution of XXZ chain by means of the coordinate Bethe Ansatz. Six-vertex model as a statistical mechanics of the XXZ chain. R matrix and Yang-Baxter equation. Solution of the six-vertex model (and, hence, of the XXZ chain) by means of the algebraic Bethe Ansatz.	3	3	
Kondo problem	Kondo problem and its reduction to a system of one-dimensional electrons. Spin subsystem, transfer matrix and algebraic Bethe Ansatz. Solving Bethe equations and T=0 properties of Kondo system. Remarks on how to solve Bethe equations for nonzero temperatures.	2	2	
Solving problems and final evaluation	During the course students are proposed to solve 38 problems. At least 40% of solved problems are necessary for any positive mark, and at least 80% for the excellent mark.		4	

3. Assignments

Assignment Type	Assignment Summary
Homework	Homework consists of 38 problems to solve (see above about final evaluation).

4. Grading

Type of Assessment	Graded	
Grade Structure	Activity Type	Activity weight, %
	Homework Assignments	100%

A:	80
В:	70
C:	60
D:	50
E:	40
F:	0

5. Basic Information

Attendance Requirements Mandatory with Exceptions

		Maximum Number of Students
Maximum Number of Students	Overall:	10
	Per Group (for seminars and labs):	
Course Stream	Science, Technology and Engineering (STE	Ξ)
Course Term (in context of Academic Year)	Term 5	
Course Delivery Frequency	Every year	
Students of Which Programs do You Recommend to Consider this Course as an Elective?	Masters Programs	PhD Programs
	Mathematical and Theoretical Physics	Physics
Course Tags	Math Physics	

6. Textbooks and Internet Resources

Recommended Textbooks	ISBN-10 or ISBN- 13
A.M.Tsvelik, Quantum Field Theory in Condensed Matter Physics	0521529808
V.E.Korepin, N.M.Bogoliubov, A.G.Izergin, Quantum Inverse Scattering Method and Correlation Functions	9780511628832

Web-resources	Description
http://homepages.itp.ac.ru/~lashkevi/lectures/2d-qft/	

7. Facilities

8. Learning Outcomes

Knowledge	
Some solvable systems, their indications and features	
Boson-fermion correspondence	
Yang-Baxter equation and its applications in physics	
Bethe Ansatz and Bethe equations	

Skill	
Basic skill for analyzing and solving various models	
Do you want to specify outcomes in another framework?	Knowledge-Skill-Experience is good enough
9. Assessment Criteria	
Select Assignment 1 Type	Homework
Or Upload Example(s) of Assignment 1	https://ucarecdn.com/5b17311d-c56e-4df0-861a-d3a9d2ad02e5/
10. Additional Notes	