
Lecture 1
Boson field on a cylinder and on a plane

Consider the cylinder with the coordinates ξ0, ξ1 with the circumference L:

ξ1 ∼ ξ1 + L. (1)

We assume the metrics ds2 = (dξ0)2− (dξ1)2. Also we will consider the Wick rotation given by ξ2 = iξ0.
Define a scalar real boson field ϕ(ξ) on the cylinder

S[ϕ] =

∫
d2ξ

(
(∂µϕ)2

16π
− U(ϕ)

)
=

∫
dξ0 L[ϕ, ∂0ϕ]. (2)

According to the usual rules the conjugate momentum field is

ρ(ξ) =
δL

δ∂0ϕ(ξ)
=

1

8π
∂0ϕ(ξ) (3)

with the canonical bracket

{ρ(ξ0, ξ1), ϕ(ξ0, ξ′1)} = δ(ξ1 − ξ′1), {ρ(ξ0, ξ1), ρ(ξ0, ξ′1)} = {ϕ(ξ0, ξ1), ϕ(ξ0, ξ′1)} = 0. (4)

The Hamiltonian

H =

∫
dξ1 ρ ∂0ϕ− L =

∫
dξ1

(
4πρ2 +

1

16π
(∂1ϕ)2 + U(ϕ)

)
. (5)

On the cylinder it is convenient to use the Fourier expansion

ϕ(ξ0, ξ1) =
∑
k∈Z

qk(ξ0)e2πikξ1/L, ρ(ξ0, ξ1) =
1

L

∑
k∈Z

pk(ξ0)e2πikξ1/L. (6)

Since ϕ(ξ), ρ(ξ) ∈ R, we have
q∗k = q−k, p∗k = p−k. (7)

The Poisson bracket looks like

{pk, ql} = δkl, {pk, pl} = {qk, ql} = 0. (8)

The Hamiltonian reads

H =
4π

L
p2

0 +
1

L

∑
k>0

(
8πpkp−k +

π

2
k2qkq−k

)
+ U [q]. (9)

Define new variables

ak =
ik

2
qk − 2p−k,

āk =
ik

2
q−k − 2pk.

(10)

Their Poisson brackets read

{ak, al} = {āk, āl} = 2ikδk+l,0, {ak, āl} = 0. (11)

In terms of the a-variables the fields read

ϕ(ξ) = q0(ξ0) +
∑
k∈Z

ak(ξ0)− ā−k(ξ0)

ik
e2πikξ1/L,

ρ(ξ) =
p0(ξ0)

L
− 1

4L

∑
k∈Z

(
ak(ξ0) + ā−k(ξ0)

)
e2πikξ1/L.

(12)
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The Hamiltonian is

H =
4π

L
p2

0 +
π

L

∑
k>0

(a−kak + ā−kāk) +

∫
dξ1 U(ϕ). (13)

The equation of motion ḟ ≡ ∂0f = {H, f} reduces to

q̇0 =
8π

L
p0, ȧk = −i

2πk

L
ak − 2Fk,

ṗ0 = F0, ˙̄ak = −i
2πk

L
āk + 2Fk,

(14)

where Fk are components of the ‘force’:

Fk = −
∫
dξ1 ∂U(ϕ)

∂ϕ
e2πikξ1/L.

Now I want to discuss a free massless boson: U(ϕ) = 0. In this case the equation of motion admit a
simple solution:

p0(ξ0) = P, q0(ξ0) = Q+
8π

L
Pξ0, ak(ξ0) = αke−2πikξ0/L, āk(ξ0) = ᾱke−2πikξ0/L. (15)

In terms of the basic Lagrangian field the solution looks like

ϕ(ξ) = Q+
4π

L
P (ζ̄ − ζ) +

∑
k 6=0

(αk
ik

e2πikζ +
ᾱk
ik

e−2πikζ̄
)
, (16)

where
ζ = ξ1 − ξ0 = ξ1 + iξ2, ζ̄ = ξ1 + ξ0 = ξ1 − iξ2

are light-cone (or holomorphic in the Euclidean space) variables.
As we expected the solution splits into right- and left-moving waves:

ϕ(ξ) = ϕR(ζ) + ϕL(ζ), (17)

where

ϕR(ζ) =
Q

2
+

4π

L
Pζ +

∑
k 6=0

αk
ik

e2πikζ/L,

ϕL(ζ) =
Q

2
− 4π

L
P ζ̄ +

∑
k 6=0

ᾱk
ik

e−2πikζ̄/L.

(18)

There is an evident ambiguity in splitting Q since the constant contribution, which is neither right-
nor left-moving wave. Besides the constantly increasing term in both chiral fields depends on the same
constant p.

The action of the free field is invariant under the (pseudo)conformal transformation

ζ = f(z), ζ̄ = f̄(z̄). (19)

The functions f and f̄ are independent in the Minkowski space, while on the Euclidean plane they are
related as

f̄(z∗) = (f(z))∗.

Indeed, evidently∫
d2ξ

∂ϕ

∂ξµ
∂ϕ

∂ξµ
= −2

∫
dζ dζ̄

∂ϕ

∂ζ

∂ϕ

∂ζ̄
= −2

∫
dz dz̄ f ′(z)f̄ ′(z̄)

∂ϕ

f ′(z)∂z

∂ϕ

f̄ ′(z̄)∂z̄
=

∫
d2x

∂ϕ

∂xµ
∂ϕ

∂xµ
.

Consider the particular conformal transformation

ζ = i
L

2π
log z, ζ̄ = −i

L

2π
log z̄ (20)
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or
z = e−2πiζ/L, z̄ = e2πiζ̄/L. (21)

Evidently, this transformation only makes sense in the Euclidean field theory. It maps the Euclidean
cylinder ξµ onto the Euclidean plane xµ. In this plane the equations (16) provides the radial expansion:

ϕ(z) = Q− 2iP log(zz̄) +
∑
k 6=0

(αk
ik
z−k +

ᾱk
ik
z̄−k

)
. (22)

The Hamiltonian H is proportional to the dilation operator on the plane:

H =
2π

L
D.

Now let us quantize the system. To do it let us use the standard rule [f, g] = −i~{f, g}, if f, g are
linear in the basic oscillators. It means that

[ρ(ξ0, ξ1), ϕ(ξ0, ξ′1)] = −i~δ(ξ1 − ξ′1), [ρ(ξ0, ξ1), ρ(ξ0, ξ′1)] = [ϕ(ξ0, ξ1), ϕ(ξ0, ξ′1)] = 0 (23)

in terms of fields, or
[pk, ql] = −i~δkl, [pk, pl] = [qk, ql] = 0 (24)

in terms of modes, or

[p0, q0] = −i~, [ak, al] = [āk, āl] = 2k~δk+l,0, [ak, āl] = 0 (25)

in terms of a modes. By rescaling of the field we may set ~ = 1. We will assume it throughout the
lectures.

Now define the vacuum states |p〉 by the conditions

αk|p〉 = ᾱk|p〉 = 0 (k > 0), P |p〉 = p|p〉. (26)

We used the operators P,Q, αk, ᾱk instead of p0, q0, ak, āk since the former are time-independent. The
vacuums define the normal ordering product :· · ·: according to the following rules: 1) it puts the operators
αk (k > 0) to the right of any operator α−k; 2) it puts P to the right of Q.

We have to make a remark on the Hamiltonian. Let us define the Hamiltonian on the cylinder
according to (5) with no normal ordering. It means that in (13) we must write symmetrized products
1
2 (a−kak + aka−k) instead of a−kak. Then we have

H = :H: +
π

L

∞∑
k=1

(
1

2
[ak, a−k] +

1

2
[ak, a−k]

)
= :H: +2π

∞∑
k=0

k

L

def
= :H: +

[
−2π

∂

∂ε

∞∑
k=0

e−εk/L + const · L

]
ε→0

= :H: +

[
−2π

∂

∂ε

1

1− e−ε/L
+ const · L

]
ε→0

= :H: +

[
2πL

ε2
− π

6L
+ const · L+O(ε)

]
ε→0

= :H:− π

6L
.

We conclude that

H =
4π

L
P 2 +

π

L

∑
k>0

(α−kαk + ᾱ−kᾱk)− π

6L
=

2π

L

(
D − 1

12

)
. (27)

Here D is the dilation operator on the plane. Hence,

H|p〉 =
2π

L

(
2p2 − 1

12

)
|p〉. (28)

The Fock space is spanned on the vectors

α−k1 · · ·α−km ᾱ−l1 · · · ᾱ−ln |p〉 (29)

The pair (K, K̄) = (
∑
ki,
∑
lj) is called the level of the state. The energy and momentum of such state

are

EKK̄(p) =
2π

L

(
2p2 +K + K̄ − 1

12

)
, PKK̄(p) =

2π

L
(K − K̄). (30)
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The true vacuum of the system corresponds to p = 0. Any vacuum |p〉 can be obtained from |0〉 by
means of the q0 operator:

P eiQp|0〉 = eiQp(P + p)|0〉 = peiQp|0〉.

Hence, we may assume
|p〉 = eiQp|0〉. (31)

In what follows we will construct operators in terms of the field ϕ and, hence, we will need the pair
correlation function 〈ϕ(x′)ϕ(x)〉 (it is easier to calculate them on the plane). We have

〈ϕ(x′)ϕ(x)〉 = 〈0|ϕ(x′)ϕ(x)|0〉

= 〈0|Q2|0〉 − 2i〈0|(QP log(zz̄) + PQ log(z′z̄′)|0〉+
∑
k>0

1

k2

〈
0

∣∣∣∣αkα−k ( zz′)k + ᾱkᾱ−k

( z̄
z̄′

)k∣∣∣∣ 0〉
= 〈Q2〉 − 2 log(z′z̄′) + 2

∑
k>0

1

k

(( z
z′

)k
+
( z̄
z̄′

)k)
= 〈Q2〉 − 2 log(z′z̄′)− 2 log

(
1− z

z′

)(
1− z̄

z̄′

)
= 〈Q2〉+ 2 log

1

(z′ − z)(z̄′ − z̄)
.

The term 〈Q2〉 is strictly speaking infinite. Let us regularize it by substituting an arbitrary finite number,
which we will write in the form

〈Q2〉 = 2 logR2.

Finally, we have

〈ϕ(z′)ϕ(z)〉 = 2 log
R2

(z′ − z)(z̄′ − z̄)
. (32)

If we consider the theory on a finite scrap of a plane, the number R will be a linear scale of the scrap.
On the infinite plane the correlation function is translationally invariant, as expected. Due to the Wick
theorem the pair correlation functions determines all other correlation functions

Problems

1. Generally the scalar boson with nonconstant potential U(ϕ) is not conformally invariant. Never-
theless, in the case (Liouville theory)

U(ϕ) = µebϕ

the conformal invariance can be restored by a modification of the transformation of the field ϕ(ξ). Find
the modified transformation rule and, hence, prove the conformal invariance of the Liouville theory.

2. Suppose that the field ϕ(ξ) is periodic itself, which means the equivalence

ϕ(ξ) ∼ ϕ(ξ) + 2πR.

It can be taken into account by means of the ‘winding’ periodicity condition

ϕ(ξ0, ξ1 + L) = ϕ(ξ0, ξ1) + 2πRw, w ∈ Z.

The integer w is called the winding number.
Rewrite the equations (12) and (16) with winding taken into account. Demonstrate that the period-

icity of ϕ leads to quantization of the momentum zero mode p0 and find its allowed eigenvalues.
3. T duality. Show that the Hamiltonian of the free massless boson is invariant under the transfor-

mation R→ 4/R together with w ↔ n, where n is the momentum quantum number.
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