## Lecture 2

## Correlation functions and operator product expansions

In the last lecture we found that

$$
\begin{equation*}
|p\rangle=\mathrm{e}^{\mathrm{i} q_{0} p}|0\rangle . \tag{1}
\end{equation*}
$$

We want to use this fact to introduce a new class of operators. For this purpose rewrite (1) as follows

$$
|p\rangle=\mathrm{e}^{\mathrm{i} q_{0} p}|0\rangle=: \mathrm{e}^{\mathrm{i} p \varphi(\xi)}:\left.|0\rangle\right|_{\xi^{0} \rightarrow-\infty}=: \mathrm{e}^{\mathrm{i} p \varphi(x=0)}:|0\rangle .
$$

Indeed, the contribution of $\alpha_{k}(k>0)$ vanishes since they kill the vacuum, while the contribution of $\alpha_{-k}$ vanishes since it contains the factor $z^{k} \rightarrow 0$.

The exponential operators are very important and deserve a special notation:

$$
\begin{equation*}
V_{p}(x)=: \mathrm{e}^{\mathrm{i} p \varphi(x)}:=\mathrm{e}^{\mathrm{i} p Q}(z \bar{z})^{-2 \mathrm{i} p P} \exp \sum_{k>0} \frac{-p\left(\alpha_{-k} z^{k}+\bar{\alpha}_{-k} \bar{z}^{k}\right)}{k} \exp \sum_{k>0} \frac{p\left(\alpha_{k} z^{-k}+\bar{\alpha}_{k} \bar{z}^{-k}\right)}{k} . \tag{2}
\end{equation*}
$$

Consider the product

$$
\begin{aligned}
V_{p_{1}}\left(x^{\prime}\right) V_{p_{2}}(x)=\mathrm{e}^{\mathrm{i} p_{1} Q} & \left(\left(z^{\prime} \bar{z}^{\prime}\right)^{-2 \mathrm{i} p_{1} P} \exp \sum_{k>0} \frac{-p_{1}\left(\alpha_{-k} z^{\prime k}+\bar{\alpha}_{-k} \bar{z}^{\prime k}\right)}{k} \exp \sum_{k>0} \frac{p_{1}\left(\alpha_{k} z^{\prime-k}+\bar{\alpha}_{k} \bar{z}^{\prime-k}\right)}{k}\right. \\
& \times \mathrm{e}^{\mathrm{i} p_{2} Q}(z \bar{z})^{-2 \mathrm{i} p_{2} P} \exp \sum_{k>0} \frac{-p_{2}\left(\alpha_{-k} z^{k}+\bar{\alpha}_{-k} \bar{z}^{k}\right)}{k} \exp \sum_{k>0} \frac{p_{2}\left(\alpha_{k} z^{-k}+\bar{\alpha}_{k} \bar{z}^{-k}\right)}{k} .
\end{aligned}
$$

To render this to the normal ordered form the boxed parts must be commuted (red with red, blue with blue). By using the standard rule

$$
\mathrm{e}^{f} \mathrm{e}^{g}=\mathrm{e}^{[f, g]} \mathrm{e}^{g} \mathrm{e}^{f},
$$

if the commutator $[f, g]$ is a $c$-number, we obtain

$$
\begin{equation*}
V_{p_{1}}\left(x^{\prime}\right) V_{p_{2}}(x)=\left(z^{\prime}-z\right)^{2 p_{1} p_{2}}\left(\bar{z}^{\prime}-\bar{z}\right)^{2 p_{1} p_{2}}: \mathrm{e}^{\mathrm{i} p_{1} \varphi\left(x^{\prime}\right)+\mathrm{i} p_{2} \varphi(x)}: . \tag{3}
\end{equation*}
$$

More generally,

$$
\begin{equation*}
V_{p_{N}}\left(x_{N}\right): \mathrm{e}^{\mathrm{i} \sum_{i=1}^{N-1} p_{i} \varphi\left(x_{i}\right)}:=\prod_{i=1}^{N-1}\left(z_{N}-z_{i}\right)^{2 p_{N} p_{i}}\left(\bar{z}_{N}-\bar{z}_{i}\right)^{2 p_{N} p_{i}} \times: \mathrm{e}^{\mathrm{i} \sum_{i=1}^{N} p_{i} \varphi\left(x_{i}\right)}: . \tag{4}
\end{equation*}
$$

Hence,

$$
\left\langle\prod_{i=1}^{\overparen{N}} V_{p_{i}}\left(x_{i}\right)\right\rangle=\prod_{i>j}^{N}\left(z_{i}-z_{j}\right)^{2 p_{i} p_{j}}\left(\bar{z}_{i}-\bar{z}_{j}\right)^{2 p_{i} p_{j}} \times\left\langle\mathrm{e}^{\mathrm{i} Q \sum_{i=1}^{N} p_{i}}\right\rangle .
$$

We have nearly reached our destination, but we have to consider the last factor accurately. Let $p=\sum p_{i}$ and write

$$
\left\langle\mathrm{e}^{\mathrm{i} p Q}\right\rangle=\langle 0| \mathrm{e}^{\mathrm{i} p Q}|0\rangle=\langle 0 \mid p\rangle .
$$

The r.h.s. must be zero, if $p \neq 0$, and a nonzero constant (e.g. 1 ), if $p=0$. It is mathematically consistent, but the answer may look strange for a physicist. To advance in a more physical way, let us apply the rule

$$
\begin{equation*}
\left\langle\mathrm{e}^{f}\right\rangle=\mathrm{e}^{\frac{1}{2}\left\langle f^{2}\right\rangle}, \tag{5}
\end{equation*}
$$

if $f$ is linear in the basic oscillator operators. We have

$$
\begin{equation*}
\left\langle\mathrm{e}^{\mathrm{i} p Q}\right\rangle=\mathrm{e}^{-\frac{p^{2}}{2}\left\langle Q^{2}\right\rangle}=R^{-2 p^{2}} \tag{6}
\end{equation*}
$$

according to the assumption of the last lecture. Therefore

$$
\begin{equation*}
\left\langle\prod_{i=1}^{\overparen{N}} V_{p_{i}}\left(x_{i}\right)\right\rangle=R^{-2\left(\sum_{i=1}^{N} p_{i}\right)^{2}} \prod_{i>j}^{N}\left(z_{i}-z_{j}\right)^{2 p_{i} p_{j}}\left(\bar{z}_{i}-\bar{z}_{j}\right)^{2 p_{i} p_{j}} . \tag{7}
\end{equation*}
$$

Since physically $R$ is the scale of the scrap on which the theory lives, the infinite plane corresponds $R \rightarrow \infty$. In this limit we reproduce the mathematical answer

$$
\left\langle\prod_{i=1}^{\stackrel{\sim}{N}} V_{p_{i}}\left(x_{i}\right)\right\rangle=\prod_{i>j}^{N}\left(z_{i}-z_{j}\right)^{2 p_{i} p_{j}}\left(\bar{z}_{i}-\bar{z}_{j}\right)^{2 p_{i} p_{j}} \times \begin{cases}1, & \sum_{i=1}^{N} p_{i}=0  \tag{8}\\ 0, & \sum_{i=1}^{N} \neq 0\end{cases}
$$

Let us reproduce this answer in yet more physical (and simple) way. Calculate $\left\langle\exp \mathrm{i} \sum p_{i} \varphi\left(x_{i}\right)\right\rangle$ by means of the functional integral. In fact, the only thing we need from the functional integral is (5). We obtain

$$
\left\langle\mathrm{e}^{\mathrm{i} \sum p_{i} \varphi\left(x_{i}\right)}\right\rangle=\exp \left(-\frac{1}{2} \sum_{i, j}^{N} p_{i} p_{j}\left\langle\varphi\left(x_{i}\right) \varphi\left(x_{j}\right)\right\rangle\right)=\prod_{i, j}^{N}\left(\frac{\left(z_{i}-z_{j}\right)\left(\bar{z}_{i}-\bar{z}_{j}\right)}{R^{2}}\right)^{p_{i} p_{j}} .
$$

There are two types of terms in the exponent. For $i \neq j$ we may apply standard formula for pair correlation function, but if $i=j$ it formally gives infinity. Let us cut it at a small radius $r_{0}$ :

$$
\left\langle\varphi\left(x^{\prime}\right) \varphi(x)\right\rangle= \begin{cases}2 \log \frac{R^{2}}{\left(z^{\prime}-z\right)\left(\bar{z}^{\prime}-\bar{z}\right)}, & \text { if }\left|x^{2}\right|>r_{0}^{2}  \tag{9}\\ 2 \log \frac{R^{2}}{r_{0}^{2}}, & \text { if }\left|x^{2}\right| \leq r_{0}^{2}\end{cases}
$$

Then we have (if $\left.\left|\left(x_{i}-x_{j}\right)^{2}\right|>r_{0}^{2}\right)$

$$
\begin{aligned}
\left\langle\mathrm{e}^{\mathrm{i} \sum p_{i} \varphi\left(x_{i}\right)}\right\rangle=\left(\frac{r_{0}^{2}}{R^{2}}\right)^{\sum p_{i}^{2}} \prod_{i>j}^{N}\left(\frac{\left(z_{i}-z_{j}\right)\left(\bar{z}_{i}-\bar{z}_{j}\right)}{R^{2}}\right)^{2 p_{i} p_{j}} & \\
& =r_{0}^{2 \sum p_{i}^{2}} R^{-2\left(\sum p_{i}\right)^{2}} \prod_{i>j}^{N}\left(z_{i}-z_{j}\right)^{2 p_{i} p_{j}}\left(\bar{z}_{i}-\bar{z}_{j}\right)^{2 p_{i} p_{j}} .
\end{aligned}
$$

We see that the contribution of $r_{0}$ can be factorized between the exponents. Hence, the answer will coincide with (7), if we set

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} p \varphi(z)}=r_{0}^{2 p^{2}}: \mathrm{e}^{\mathrm{i} p \varphi(z)}: \tag{10}
\end{equation*}
$$

It means that the normal ordered exponent $: \mathrm{e}^{\mathrm{i} p \varphi(z)}$ : is a proper renormalization of the true exponent $\mathrm{e}^{\mathrm{i} p \varphi(z)}$. This argument also explains why the normal ordered exponent possesses the scaling dimension $d=2 p^{2}$ : any correlation function on an infinite plane is invariant under the substitution

$$
\begin{equation*}
V_{p}(x) \rightarrow \lambda^{2 p^{2}} V_{p}(x) \tag{11}
\end{equation*}
$$

In other words the scaling dimension $d$ is the eigenvalue of the dilation operator $D$ acting on the corresponding state $|p\rangle$.

Now we will be interested in the energy-momentum tensor. According to the usual formula in the Minkowski space

$$
T_{\nu}^{\mu}=\partial_{\nu} \varphi \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}-\delta_{\nu}^{\mu} \mathcal{L}
$$

we obtain

$$
\begin{equation*}
T_{z z} \equiv-2 \pi T=\frac{1}{8 \pi}(\partial \varphi)^{2}, \quad T_{\bar{z} \bar{z}} \equiv-2 \pi \bar{T}=\frac{1}{8 \pi}(\bar{\partial} \varphi)^{2}, \quad T_{z \bar{z}} \equiv 2 \pi \Theta=0 . \tag{12}
\end{equation*}
$$

The last equation reflects conformal invariance of the theory. The energy-momentum conservation law $\partial_{\mu} T_{\nu}^{\mu}=0$ leads to

$$
\bar{\partial} T=\partial \Theta, \quad \partial \bar{T}=\bar{\partial} \Theta
$$

Since $\Theta=0$ they reduce to

$$
\bar{\partial} T=\partial \bar{T}=0
$$

It means that the operator $T=T(z)$ is a function of the only variable $z$, while $\bar{T}=\bar{T}(\bar{z})$ is a function of the only variable $\bar{z}$. On the Euclidean plane $T(z)$ is a complex analytic (holomorphic) function of $z$, while $\bar{T}(\bar{z})$ is a holomorphic function of $\bar{z}$ (it is usually called 'antiholomorphic'). In quantum mechanics it is natural to define them as

$$
\begin{equation*}
T(z)=-\frac{1}{4}:(\partial \varphi)^{2}:, \quad \bar{T}(\bar{z})=-\frac{1}{4}:(\bar{\partial} \varphi)^{2}: . \tag{13}
\end{equation*}
$$

On the cylinder it is natural to define the quantum energy-momentum tensor components according to

$$
\begin{equation*}
T_{\mathrm{cyl}}(\zeta)=-\left(\frac{2 \pi}{L}\right)^{2}\left(z^{2} T(z)-\frac{1}{24}\right), \quad \bar{T}_{\mathrm{cyl}}(\bar{\zeta})=-\left(\frac{2 \pi}{L}\right)^{2}\left(\bar{z}^{2} \bar{T}(z)-\frac{1}{24}\right) \tag{14}
\end{equation*}
$$

The term $-1 / 24$ was added artificially to reproduce the term $-\pi / 6 L$ in the Hamiltonian $H$ being written in terms of the energy-momentum tensor:

$$
\begin{equation*}
H=\int_{0}^{L} d \xi^{1} T^{00}(\xi)=-\int_{0}^{L} \frac{d \xi^{1}}{2 \pi}\left(T_{\text {cyl }}\left(\xi^{1}\right)+\bar{T}_{\mathrm{cyl}}\left(\xi^{1}\right)\right) \tag{15}
\end{equation*}
$$

In one of the next lectures we will understand the true origin of this term.
It is convenient to introduce the Laurent components of the energy-momentum tensor:

$$
\begin{align*}
& L_{k}=\oint \frac{d z}{2 \pi \mathrm{i}} z^{k+1} T(z)=p^{2} \delta_{k 0}+\frac{1}{4} \sum_{l \in \mathbb{Z} \backslash\{0, k\}}: \alpha_{l} \alpha_{k-l}:, \\
& \bar{L}_{k}=\oint \frac{d \bar{z}}{2 \pi \mathrm{i}} \bar{z}^{k+1} T(\bar{z})=p^{2} \delta_{k 0}+\frac{1}{4} \sum_{l \in \mathbb{Z} \backslash\{0, k\}}: \bar{\alpha}_{l} \bar{\alpha}_{k-l}: . \tag{16}
\end{align*}
$$

The integration contours are defined in the Euclidean plane. They encircle coordinate origin $z=0$ $(\bar{z}=0)$ in the counter-clockwise direction of $z(\bar{z})$ and all points, where operators, which stand to the right of $T(z)(\bar{T}(\bar{z}))$, are placed. For example, in the product $T(u) L_{k} T(w)$ it will enclose $w$, but not $u$.

In these components 15 can be rewritten as

$$
\begin{equation*}
H=\frac{2 \pi}{L}\left(L_{0}+\bar{L}_{0}-\frac{1}{12}\right) \tag{17}
\end{equation*}
$$

Similarly, the momentum operator on the cylinder is given by

$$
\begin{equation*}
P=\frac{2 \pi}{L}\left(L_{0}-\bar{L}_{0}\right) \tag{18}
\end{equation*}
$$

On the plane the operator $D=L_{0}+\bar{L}_{0}$ is the dilation operator, while $S=L_{0}-\bar{L}_{0}$ is the angular momentum operator. Translations are generated by the operators $L_{-1}, \bar{L}_{-1}$. We may set

$$
\begin{equation*}
H_{\text {plane }}=-\mathrm{i}\left(L_{-1}-\bar{L}_{-1}\right), \quad P_{\text {plane }}=-\mathrm{i}\left(L_{-1}+\bar{L}_{-1}\right) \tag{19}
\end{equation*}
$$

Consider the operator product

$$
\begin{aligned}
& T\left(z^{\prime}\right) T(z)=\frac{1}{16}:\left(\partial \varphi\left(x^{\prime}\right)\right)^{2}::(\partial \varphi(x))^{2}: \\
& \quad=\frac{1}{16}:\left(\partial \varphi\left(x^{\prime}\right)\right)^{2}(\partial \varphi(x))^{2}:+\frac{1}{4}\left\langle\partial \varphi\left(x^{\prime}\right) \partial \varphi(x)\right\rangle: \partial \varphi\left(x^{\prime}\right) \partial \varphi(x):+\frac{1}{8}\left\langle\partial \varphi\left(x^{\prime}\right) \partial \varphi(x)\right\rangle^{2}
\end{aligned}
$$

We want to count singularities of the expression. The normal products are regular as $z^{\prime} \rightarrow z$. Hence, the only singularity can stem from the correlation function

$$
\left\langle\partial \varphi\left(x^{\prime}\right) \partial \varphi(x)\right\rangle=-\frac{\partial^{2}}{\partial z^{\prime 2}}\left\langle\varphi\left(x^{\prime}\right) \varphi(x)\right\rangle=\frac{2}{\left(z^{\prime}-z\right)^{2}} .
$$

By expanding everything in powers of $z^{\prime}-z$ we obtain the following operator product expansion (OPE):

$$
\begin{equation*}
T\left(z^{\prime}\right) T(z)=\frac{1 / 2}{\left(z^{\prime}-z\right)^{4}}+\frac{T(z)}{\left(z^{\prime}-z\right)^{2}}+\frac{\partial T(z)}{z^{\prime}-z}+O(1) . \tag{20}
\end{equation*}
$$

Consider now the commutator

$$
\left[L_{k}, L_{l}\right]=L_{k} L_{l}-L_{l} L_{k}=\oint_{C_{\text {out }}} \frac{d z^{\prime}}{2 \pi \mathrm{i}} \oint_{C} \frac{d z}{2 \pi \mathrm{i}} z^{\prime k-1} z^{l-1} T\left(z^{\prime}\right) T(z)-\oint_{C} \frac{d z}{2 \pi \mathrm{i}} \oint_{C_{\mathrm{in}}} \frac{d z^{\prime}}{2 \pi \mathrm{i}} z^{\prime k-1} z^{l-1} T\left(z^{\prime}\right) T(z) .
$$

The two terms differ in the order of contours. The contour $C_{\text {out }}$ encloses the contour $C$, while the contour $C_{\text {in }}$ is enclosed by $C$. Hence,

$$
\left[L_{k}, L_{l}\right]=\oint_{C} \frac{d z}{2 \pi \mathrm{i}} \oint_{C z} \frac{d z^{\prime}}{2 \pi \mathrm{i}} z^{\prime k-1} z^{l-1} T\left(z^{\prime}\right) T(z)
$$

Here $C_{z}$ is a small contour that encloses $z$ in a counter-clockwise direction. After substituting the OPE (20) and evaluating the residue we obtain

$$
\begin{equation*}
\left[L_{k}, L_{l}\right]=(k-l) L_{k+l}+\frac{1}{12} k\left(k^{2}-1\right) \delta_{k+l, 0} \tag{21}
\end{equation*}
$$

The algebra 21 is called the Virasoro algebra. The same is valid for the left (antichiral) component $\bar{T}(\bar{z})$, which produces another copy of the Virasoro algebra.

Similarly one can prove the OPE

$$
\begin{equation*}
T\left(z^{\prime}\right) V_{p}(x)=\frac{p^{2} V_{p}(x)}{\left(z^{\prime}-z\right)^{2}}+\frac{\partial V_{p}(x)}{z^{\prime}-z}+O(1) \tag{22}
\end{equation*}
$$

As a commutator one can rewrite it as

$$
\begin{equation*}
\left[L_{k}, V_{p}(x)\right]=p^{2}(k+1) z^{k} V_{p}(x)+z^{k+1} \partial V_{p}(x) \tag{23}
\end{equation*}
$$

The sense of the above equations will be clarified later, when we will study conformal field theory.

## Problems

1. Accurately prove the formulas (3), (4).
2. Let us modify the energy-momentum tensor as follows 1

$$
\begin{equation*}
T(z)=-\frac{1}{4}(\partial \varphi)^{2}+\frac{\mathrm{i} \mathcal{Q}}{2} \partial^{2} \varphi, \quad \bar{T}(\bar{z})=-\frac{1}{4}(\bar{\partial} \varphi)^{2}+\frac{\mathrm{i} \mathcal{Q}}{2} \bar{\partial}^{2} \varphi \tag{24}
\end{equation*}
$$

Prove that

$$
T\left(z^{\prime}\right) T(z)=\frac{c / 2}{\left(z^{\prime}-z\right)^{4}}+\frac{T(z)}{\left(z^{\prime}-z\right)^{2}}+\frac{\partial T(z)}{z^{\prime}-z}+O(1), \quad c=1-6 \mathcal{Q}^{2}
$$

and

$$
\left[L_{k}, L_{l}\right]=(k-l) L_{k+l}+\frac{c}{12} k\left(k^{2}-1\right) \delta_{k+l, 0}
$$

3. Prove that for $T(z)$ from (24) the Virasoro algebra generators read

$$
L_{k}=p^{2} \delta_{k 0}+\frac{1}{4} \sum_{l \in \mathbb{Z} \backslash\{0, k\}}: \alpha_{l} \alpha_{k-l}:+\frac{k+1}{2} \mathcal{Q} \alpha_{k}
$$

4. For $T(z)$ from 24$)$ prove the OPE

$$
T\left(z^{\prime}\right) V_{p}(x)=\frac{\Delta_{p} V_{p}(x)}{\left(z^{\prime}-z\right)^{2}}+\frac{\partial V_{p}(x)}{z^{\prime}-z}+O(1), \quad \Delta_{p}=p(p-\mathcal{Q})
$$

[^0]5. Define the so called correlation functions with a charge at infinity:
$$
\langle X\rangle_{\mathcal{Q}}=\lim _{x_{0} \rightarrow \infty}\left(z_{0} \bar{z}_{0}\right)^{2 \mathcal{Q}^{2}}\left\langle X V_{-\mathcal{Q}}\left(x_{0}\right)\right\rangle .
$$

Prove that for exponential operators they read

$$
\left\langle\prod_{i=1}^{\curvearrowleft} V_{p_{i}}\left(x_{i}\right)\right\rangle_{\mathcal{Q}}=\prod_{i>j}^{N}\left(z_{i}-z_{j}\right)^{2 p_{i} p_{j}}\left(\bar{z}_{i}-\bar{z}_{j}\right)^{2 p_{i} p_{j}} \times \begin{cases}1, & \sum_{i=1}^{N} p_{i}=\mathcal{Q}  \tag{25}\\ 0, & \sum_{i=1}^{N} \neq 0 .\end{cases}
$$

Show the functions (25) to be invariant under the transformation

$$
V_{p}(z, \bar{z}) \rightarrow\left(f^{\prime}(z)\right)^{\Delta_{p}}\left(\bar{f}^{\prime}(\bar{z})\right)^{\Delta_{p}} V_{p}(f(z), \bar{f}(\bar{z})),
$$

if $f(z)$ is a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$


[^0]:    ${ }^{1}$ We will see below that this form of the energy-momentum tensor is consistent with the Liouville theory, if i $\mathcal{Q}=b+b^{-1}$.

