Lecture 3

Free massless fermion on the cylinder and on the plane

Consider now a free massless Majorana fermion $\psi=\binom{\psi_{1}}{\psi_{2}}$ on the cylinder:

$$
\begin{equation*}
S[\psi]=\frac{\mathrm{i}}{2 \pi} \int d^{2} \xi \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi=\frac{\mathrm{i}}{\pi} \int d^{2} \xi\left(\psi_{1} \bar{\partial} \psi_{1}-\psi_{2} \partial \psi_{2}\right) \tag{1}
\end{equation*}
$$

Here, as usual, $\bar{\psi}=\psi^{+} \gamma^{0}$. The gamma-matrices should satisfy the conditions

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 \eta^{\mu \nu}, \quad \gamma^{0} \gamma^{\mu} \gamma^{0}=\left(\gamma^{\mu}\right)^{+} \tag{2}
\end{equation*}
$$

We choose them purely imaginary:

$$
\gamma^{0}=\left(\begin{array}{cc}
& -\mathrm{i} \tag{3}\\
\mathrm{i} &
\end{array}\right)=\sigma^{2}, \quad \gamma^{1}=\left(\begin{array}{cc}
\mathrm{i} \\
\mathrm{i} &
\end{array}\right)=\mathrm{i} \sigma^{1}, \quad \gamma^{3}=\gamma^{0} \gamma^{1}=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)=\sigma^{3} .
$$

The Majorana condition in this case is

$$
\begin{equation*}
\psi^{*}=\psi \tag{4}
\end{equation*}
$$

The variables $\psi_{\alpha}(\xi)$ should be considered Grassmann (anticommuting): $\psi_{\alpha}(\xi) \psi_{\beta}\left(\xi^{\prime}\right)=-\psi_{\beta}\left(\xi^{\prime}\right) \psi_{\alpha}(\xi)$. The Hamiltonian read\& 1

$$
\begin{equation*}
H=-\frac{\mathrm{i}}{2 \pi} \int_{0}^{L} d \xi^{1} \psi \gamma^{3} \partial_{1} \psi=-\frac{\mathrm{i}}{2 \pi} \int_{0}^{L} d \xi^{1}\left(\psi_{1} \partial_{1} \psi_{1}-\psi_{2} \partial_{1} \psi_{2}\right) \tag{5}
\end{equation*}
$$

with the Poisson bracket

$$
\begin{equation*}
\left\{\psi_{\alpha}\left(\xi^{0}, \xi^{1}\right), \psi_{\beta}\left(\xi^{0}, \xi^{\prime 1}\right)\right\}=\mathrm{i} \pi \delta_{\alpha \beta} \delta\left(\xi^{1}-\xi^{\prime 1}\right) \tag{6}
\end{equation*}
$$

Note that due to anticommutativity of the field the Poisson bracket is symmetric. The equation of motion looks like

$$
\begin{equation*}
\partial_{0} \psi=-\sigma^{3} \partial_{1} \psi \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{\partial} \psi_{1}=\partial \psi_{2}=0 \tag{8}
\end{equation*}
$$

where, as we remember, $\partial=\frac{1}{2}\left(\partial_{1}-\partial_{0}\right)=\partial_{\zeta}, \bar{\partial}=\frac{1}{2}\left(\partial_{1}+\partial_{0}\right)=\partial_{\bar{\zeta}}$. We see that $\psi_{1}=\psi_{1}(\zeta)$ is a right-moving Majorana-Weyl fermion wave, while $\psi_{2}=\psi_{2}(\bar{\zeta})$ is a left-moving Majorana-Weyl fermion wave.

Let us expand the ψ field into modes. Before doing it we have to fix the periodicity condition. There are two possibilities:

- Ramond (R) condition: $\psi\left(\xi^{0}, \xi^{1}+L\right)=\psi\left(\xi^{0}, \xi^{1}\right)$;
- Neveu-Schwarz (NS) condition: $\psi\left(\xi^{0}, \xi^{1}+L\right)=-\psi\left(\xi^{0}, \xi^{1}\right)$.

We have

$$
\begin{align*}
& \psi_{1}(\xi)=\sqrt{\frac{\pi}{L}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} b_{k}\left(\xi^{0}\right) \mathrm{e}^{2 \pi \mathrm{i} k \xi^{1} / L} \\
& \psi_{2}(\xi)=\sqrt{\frac{\pi}{L}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} \bar{b}_{k}\left(\xi^{0}\right) \mathrm{e}^{-2 \pi \mathrm{i} k \xi^{1} / L} \tag{9}
\end{align*}
$$

Here

$$
\begin{array}{ll}
\delta=0 & \text { in the } \mathrm{R} \text { case; } \\
\delta=1 & \text { in the NS case. } \tag{10}
\end{array}
$$

Evidently, due to the Majorana condition we have

$$
\begin{equation*}
b_{-k}=\left(b_{k}\right)^{*}, \quad \bar{b}_{-k}=\left(\bar{b}_{k}\right)^{*} . \tag{11}
\end{equation*}
$$

[^0]The Hamiltonian and momentum are

$$
\begin{equation*}
H=\frac{2 \pi}{L} \sum_{k \in \mathbb{Z}_{\geq 0}+\frac{\delta}{2}} k\left(b_{-k} b_{k}+\bar{b}_{-k} \bar{b}_{k}\right), \quad P=\frac{2 \pi}{L} \sum_{k \in \mathbb{Z}_{\geq 0}+\frac{\delta}{2}} k\left(b_{-k} b_{k}-\bar{b}_{-k} \bar{b}_{k}\right) . \tag{12}
\end{equation*}
$$

The Poisson bracket is

$$
\begin{equation*}
\left\{b_{k}, b_{l}\right\}=\left\{\bar{b}_{k}, \bar{b}_{l}\right\}=\mathrm{i} \delta_{k+l, 0}, \quad\left\{b_{k}, \bar{b}_{l}\right\}=0 . \tag{13}
\end{equation*}
$$

It is easy to check that the equations of motion for the modes b_{k}, \bar{b}_{k} in both cases read

$$
\begin{equation*}
\partial_{0} b_{k}=-\mathrm{i} \frac{2 \pi}{L} k b_{k}, \quad \partial_{0} \bar{b}_{k}=-\mathrm{i} \frac{2 \pi}{L} k b_{k} . \tag{14}
\end{equation*}
$$

and have the following solution

$$
\begin{equation*}
b_{k}^{+}=\beta_{k} \mathrm{e}^{-2 \pi \mathrm{i} k \xi^{0} / L}, \quad b_{k}^{-}=\bar{\beta}_{k} \mathrm{e}^{2 \pi \mathrm{i} k \xi^{0} / L} \tag{15}
\end{equation*}
$$

We finally have

$$
\begin{align*}
& \psi_{1}(\zeta)=\sqrt{\frac{\pi}{L}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} \beta_{k} \mathrm{e}^{2 \pi \mathrm{i} k \zeta / L} \\
& \psi_{2}(\bar{\zeta})=\sqrt{\frac{\pi}{L}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} \bar{\beta}_{k} \mathrm{e}^{-2 \pi \mathrm{i} k \bar{\zeta} / L} \tag{16}
\end{align*}
$$

Now let us quantize the system. The Poisson bracket is substituted by the anticommutator:

$$
\begin{equation*}
\left[\psi_{\alpha}\left(\xi^{0}, \xi^{1}\right), \psi_{\beta}\left(\xi^{0}, \xi^{\prime 1}\right)\right]_{+}=\pi \delta_{\alpha \beta} \delta\left(x-x^{\prime}\right) \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\beta_{k}, \beta_{l}\right]_{+}=\left[\bar{\beta}_{k}, \bar{\beta}_{l}\right]_{+}=\delta_{k+l, 0}, \quad\left[\beta_{k}, \bar{\beta}_{l}\right]_{+}=0 \tag{18}
\end{equation*}
$$

We changed to constant operators $\beta_{k}, \bar{\beta}_{k}$. Define the vacuums by the conditions $\beta_{k}|0\rangle_{\mathrm{NS}}=\bar{\beta}_{k}|0\rangle_{\mathrm{R}}=$ $\beta_{k}|0\rangle_{\mathrm{R}}=\bar{\beta}_{k}|0\rangle_{\mathrm{NS}}=0$ for $k>$. But there will be some difference between the NS and R vacuums, which we specify later.

Let us write the Hamiltonian in terms of β-modes. As in the boson case we consider the products of operators as symmetrized ones:

$$
\beta_{-k} \beta_{k} \mapsto \frac{1}{2}\left(\beta_{-k} \beta_{k}-\beta_{k} \beta_{-k}\right)=\beta_{-k} \beta_{k}-\frac{1}{2}
$$

In the R sector we obtain for the vacuum energy

$$
E_{0}^{\mathrm{R}}=-2 \pi \sum_{k=0}^{\infty} \frac{k}{L}=\frac{\pi}{6 L}
$$

In the R sector we have

$$
\begin{aligned}
E_{0}^{\mathrm{NS}}=-2 \pi \sum_{k=0}^{\infty} \frac{k+1 / 2}{L} & =\left[2 \pi \frac{\partial}{\partial \varepsilon} \sum_{k=0}^{\infty} \mathrm{e}^{-\varepsilon(k+1 / 2) / L}+\text { const } \cdot L\right]_{\varepsilon \rightarrow 0} \\
& =\left[\frac{\partial}{\partial \varepsilon} \frac{\pi}{\operatorname{sh} \frac{\varepsilon}{2 L}}+\text { const } \cdot L\right]_{\varepsilon \rightarrow 0}=\left[-\frac{2 \pi L}{\varepsilon^{2}}-\frac{\pi}{12 L}+\mathrm{const} \cdot L\right]_{\varepsilon \rightarrow 0}=-\frac{\pi}{12 L}
\end{aligned}
$$

The Hamiltonians read

$$
\begin{align*}
H^{\mathrm{R}} & =\frac{2 \pi}{L} \sum_{k \in \mathbb{Z}_{>0}} k\left(\beta_{-k} \beta_{k}+\bar{\beta}_{-k} \bar{\beta}_{k}\right)+\frac{\pi}{6 L} \\
H^{\mathrm{NS}} & =\frac{2 \pi}{L} \sum_{k \in \mathbb{Z}_{\geq 0}+\frac{1}{2}} k\left(\beta_{-k} \beta_{k}+\bar{\beta}_{-k} \bar{\beta}_{k}\right)-\frac{\pi}{12 L} . \tag{19}
\end{align*}
$$

The expressions for the momentum remain unchanged.

Note that the energy of the NS vacuum is larger than that of the R vacuum:

$$
\begin{equation*}
E_{0}^{\mathrm{R}}-E_{0}^{\mathrm{NS}}=\frac{\pi}{4 L} \tag{20}
\end{equation*}
$$

It means that the R vacuum is an excited state. Moreover, since $\left[b_{0}, H^{\mathrm{R}}\right]=\left[\bar{b}_{0}, H^{\mathrm{R}}\right]=0$ and $b_{0}^{2}=\bar{b}_{0}^{2}=\frac{1}{2}$, if $|v\rangle_{\mathrm{R}}$ is any eigenvector, we immediately obtain a quadruplet

$$
\begin{equation*}
|v\rangle_{\mathrm{R}}, \quad \beta_{0}|v\rangle_{\mathrm{R}}, \quad \bar{\beta}_{0}|v\rangle_{\mathrm{R}}, \quad \beta_{0} \bar{\beta}_{0}|v\rangle_{\mathrm{R}} \tag{21}
\end{equation*}
$$

Nevertheless, this representation is reducible. It splits into two equivalent irreducible representation, one of which we will associate with the fermion. Introduce two fermion operators

$$
\begin{equation*}
c_{0}=\frac{\mathrm{i}^{-1 / 2} \beta_{0}+\mathrm{i}^{1 / 2} \bar{\beta}_{0}}{\sqrt{2}}, \quad c_{0}^{+}=\frac{\mathrm{i}^{1 / 2} \beta_{0}+\mathrm{i}^{-1 / 2} \bar{\beta}_{0}}{\sqrt{2}} \tag{22}
\end{equation*}
$$

They are mutually conjugate and satisfy the standard fermion relations

$$
\begin{equation*}
\left[c_{0}, c_{0}^{+}\right]_{+}=1, \quad c_{0}^{2}=\left(c_{0}^{+}\right)^{2}=0 \tag{23}
\end{equation*}
$$

It is natural to construct any representation from the c_{0}-vacuum $|u\rangle: c_{0}|u\rangle=0$. The representation is evidently two-dimensional: $\operatorname{span}\left\{|u\rangle, c_{0}^{+}|u\rangle\right\}$. It is easy to construct two such vectors in the representation (21):

$$
\left|u_{1}\right\rangle=c_{0} \beta_{0}|v\rangle_{\mathrm{R}}, \quad\left|u_{2}\right\rangle=c_{0}|v\rangle_{\mathrm{R}} .
$$

We may remove doubling by choosing any of these representations.
Finally, define the vacuum vector $|0\rangle_{\mathrm{R}}$ by the conditions

$$
\begin{equation*}
\beta_{k}|0\rangle_{\mathrm{R}}=\bar{\beta}_{k}|0\rangle_{\mathrm{R}}=0 \quad(k>0), \quad c_{0}|0\rangle_{\mathrm{R}}=0 \tag{24}
\end{equation*}
$$

The second orthogonal vector is

$$
\begin{equation*}
|1\rangle_{\mathrm{R}}=c_{0}^{+}|0\rangle_{\mathrm{R}} \tag{25}
\end{equation*}
$$

satisfy the 'dual' condition: $c_{0}^{+}|1\rangle_{R}=0$.
The NS vacuum is nondegenerate and corresponds to the lowest energy in both sectors. The condition

$$
\begin{equation*}
\beta_{k}|0\rangle_{\mathrm{NS}}=\bar{\beta}_{k}|0\rangle_{\mathrm{NS}}=0 \quad(k>0) \tag{26}
\end{equation*}
$$

defines it uniquely.
To understand this picture better, let us make the transformation to the plane $z=\mathrm{e}^{-2 \pi \mathrm{i} \zeta / L}, \bar{z}=$ $\mathrm{e}^{2 \pi \mathrm{i} \bar{\zeta} / L}$. The action (1) is consistent with a conformal transformation, if the spinor field transforms as

$$
\begin{equation*}
\psi_{1}(\zeta, \bar{\zeta}) \rightarrow\left(f^{\prime}(\zeta)\right)^{1 / 2} \psi_{1}(f(\zeta), \bar{f}(\bar{\zeta})), \quad \psi_{2}(\zeta, \bar{\zeta}) \rightarrow\left(\bar{f}^{\prime}(\bar{\zeta})\right)^{1 / 2} \psi_{2}(f(\zeta), \bar{f}(\bar{\zeta})) \tag{27}
\end{equation*}
$$

Hence on the plane we have

$$
\begin{align*}
& \psi_{1}(z)=\frac{\mathrm{i}^{1 / 2}}{\sqrt{2}} \Psi(z)=\frac{\mathrm{i}^{1 / 2}}{\sqrt{2}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} \beta_{k} z^{-1 / 2-k} \tag{28}\\
& \psi_{2}(\bar{z})=\frac{\mathrm{i}^{-1 / 2}}{\sqrt{2}} \bar{\Psi}(\bar{z})=\frac{\mathrm{i}^{-1 / 2}}{\sqrt{2}} \sum_{k \in \mathbb{Z}+\frac{\delta}{2}} \bar{\beta}_{k} \bar{z}^{-1 / 2-k}
\end{align*}
$$

Note that the periodicity conditions on the plane are opposite to those on the cylinder:

$$
\begin{array}{ll}
\text { R sector: } & \psi\left(\mathrm{e}^{2 \pi \mathrm{i}} z, \mathrm{e}^{-2 \pi \mathrm{i}} \bar{z}\right)=-\psi(z, \bar{z}), \tag{29}\\
\text { NS sector: } & \psi\left(\mathrm{e}^{2 \pi \mathrm{i}} z, \mathrm{e}^{-2 \pi \mathrm{i}} \bar{z}\right)=\psi(z, \bar{z}) .
\end{array}
$$

In the NS sector the fermion is well-defined in the vicinity of the origin, while in the R sector there is a singularity. The singularity is described by a special operator depending on the R vacuum:

$$
\begin{equation*}
|0\rangle_{\mathrm{R}}=\sigma(0)|0\rangle_{\mathrm{NS}}, \quad|1\rangle_{\mathrm{R}}=\mu(0)|0\rangle_{\mathrm{NS}} \tag{30}
\end{equation*}
$$

The operator $\sigma(x)$ is called spin operator or order parameter, while the operator $\mu(x)$ is called dual spin operator or disorder parameter ${ }^{2}$

From (19) we may conclude that the Hamiltonian on the cylinder H is related to the dilation operator D on the plane:

$$
\begin{equation*}
H=\frac{2 \pi}{L} D-\frac{\pi}{12 L} . \tag{31}
\end{equation*}
$$

The vacuum energy term is twice smaller than in the boson case. From we conclude that

$$
\begin{equation*}
D \sigma(z)=\frac{1}{8} \sigma(z), \quad D \mu(z)=\frac{1}{8} \mu(z) \tag{32}
\end{equation*}
$$

which means that their scaling dimensions $d_{\sigma}=d_{\mu}=\frac{1}{8}$.

Problems

1. Compute the correlation functions:
2. $\left\langle\Psi\left(z^{\prime}\right) \Psi(z)\right\rangle \stackrel{\text { def }}{=}{ }_{\mathrm{NS}}\langle 0| \Psi\left(z^{\prime}\right) \Psi(z)|0\rangle_{\mathrm{NS}} ;$
3. $\langle\mu(\infty) \Psi(z) \sigma(0)\rangle \stackrel{\text { def }}{=}{ }_{\mathrm{R}}\langle 1| \Psi(z)|0\rangle_{\mathrm{R}}$;
4. $\left\langle\sigma(\infty) \Psi\left(z^{\prime}\right) \Psi(z) \sigma(0)\right\rangle \stackrel{\text { def }}{=}{ }_{\mathrm{R}}\langle 0| \Psi\left(z^{\prime}\right) \Psi(z)|0\rangle_{\mathrm{R}}$.
5. The matrix element ${ }_{R}\langle 0 \mid 0\rangle_{R}$ defines a pair correlation function on the plane:

$$
{ }_{\mathrm{R}}\langle 0 \mid 0\rangle_{\mathrm{R}}=\langle\sigma(\infty) \sigma(0)\rangle=\lim _{z, \bar{z} \rightarrow \infty} z^{1 / 16} \bar{z}^{1 / 16}\langle\sigma(z, \bar{z}) \sigma(0)\rangle .
$$

By means of a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

calculate the correlation function

$$
\left\langle\sigma\left(x^{\prime}\right) \sigma(x)\right\rangle=\mathrm{NS}\langle 0| \sigma\left(x^{\prime}\right) \sigma(x)|0\rangle_{\mathrm{NS}} .
$$

3. By applying a Möbius transformation to the second matrix element of Problem 1 find the correlation function

$$
\left\langle\mu\left(z_{1}\right) \Psi\left(z_{2}\right) \sigma\left(z_{3}\right)\right\rangle .
$$

[^1]
[^0]: ${ }^{1}$ Accurate derivation of $\sqrt[51]{ }$ and $\sqrt{6}$ demands careful taking into account constraints, but we omit these subtleties.

[^1]: ${ }^{2}$ Their names are related to their role in the Ising model as the operators corresponding to the spin variable in two dual representations of the Ising model. The parameter σ becomes nonzero at low temperature $T<T_{c}$, while μ is only nonzero at high temperatures $T>T_{c}$. The free massless fermion describes the Ising model at the critical point, where there is no principal difference between these two objects.

