
Lecture 7
Operator product expansions, crossing symmetry and conformal blocks

Return for a while to a general field theory. Let {OI} be a complete system of mutually local linearly
independent operators. The completeness will be understood in the sense of operator product expansions
(OPE) in the Euclidean theory:1

OI(x′)OJ(x) =
∑
K

DK
IJ(x′, x)OK(x). (1)

We will assume the series ∑
K

DK
IJ(x′, x)〈OK(x)OM1

(x1) . . .OMN
(xN )〉

converge for small enough |x′−x|. The functions DK
IJ(x′, x) are called structure functions. Consider the

product of three operators OI3(x3)OI2(x2)OI1(x1). We may do it in several ways. We will consider two
of them. We may first fuse OI2 with OI1 and then the result with OI3 . Alternatively, we may first fuse
OI3 with OI2 and then with OI1 . Let us decompose about the point x2. In the first manner we have

︷ ︸︸ ︷
OI3(x3)

︷ ︸︸ ︷
OI2(x2)OI1(x1) = (−)(I1,I2)

︷ ︸︸ ︷
OI3(x3)

︷ ︸︸ ︷
OI1(x1)OI2(x2)

= (−)(I1,I2)
∑
J

DJ
I1I2(x1, x2)OI3(x3)OJ(x2) = (−)(I1,I2)

∑
J,I4

DI4
I3J

(x3, x2)DJ
I1I2(x1, x2)OI4(x2).

Here (−)(I,J) = (−1)4sIsJ (sI being the spin of OI) is −1, if both operators are fermionic and 1 otherwise.
Alternatively, we have

︷ ︸︸ ︷︷ ︸︸ ︷
OI3(x3)OI2(x2)OI1(x1) = (−)(I1,I2)+(I1,I3)

︷ ︸︸ ︷
OI1(x1)

︷ ︸︸ ︷
OI3(x3)OI2(x2)

= (−)(I1,I2)+(I1,I3)
∑
J

DJ
I3I2(x3, x2)OI1(x1)OJ(x2) = (−)(I1,I2)+(I1,I3)

∑
J,I4

DI4
I1J

(x1, x2)DJ
I3I2(x3, x2)OI4(x2).

Comparison of these two expansions provides the crossing symmetry equation∑
J

DI4
I3J

(x3, x2)DJ
I1I2(x1, x2) = (−)(I1,I3)

∑
J

DI4
I1J

(x1, x2)DJ
I3I2(x3, x2), (2)

which can be illustrated graphically as

∑
J

I3

I4

I2

I1

J
= (−)(I1,I3)

∑
J

I3

I4

I2

I1

J

The correlation function are expressed in terms of operator product expansions and vacuum expectation
values 〈OI(x)〉. For example, the two-, three- and four-point correlation functions read

〈OI2(x2)OI1(x1)〉 =
∑
J

DJ
I1I2(x2, x1)〈OJ(x1)〉, (3)

〈OI3(x3)OI2(x2)OI1(x1)〉 =
∑
JK

DK
I3J(x3, x1)DJ

I2I1(x2, x1)〈OK(x1)〉, (4)

〈OI4(x4)OI3(x3)OI2(x2)OI1(x1)〉 =
∑
JKL

DL
I4K(x4, x1)DK

I3J(x3, x1)DJ
I2I1(x2, x1)〈OL(x1)〉. (5)

1In the Minkowski space we shall consider their analytic continuations.
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Now consider a conformal field theory with a set of local operators {OI} of fixed conformal dimensions
(∆I , ∆̄I). Stress that the operators OI are not necessarily primary. They are simply eigenvectors of the
operators L0, L̄0. From the translation, rotation and dilatation invariance we immediately conclude that

DK
IJ(x′, x) = CKIJ(z′ − z)∆K−∆I−∆J (z̄′ − z̄)∆̄K−∆̄I−∆̄J . (6)

Another simplification of CFT is that (see Problem 2 to the last lecture)

〈OI(x)〉 = 0, if ∆I 6= 0 or ∆̄I 6= 0, (7)

for any field OI , and
〈OI(x′)OJ(x)〉 = 0, if ∆I 6= ∆J or ∆̄I 6= ∆̄J , (8)

and if the fields OI(x),OJ(x) are Möbius invariant.
Consider for simplicity a model of CFT that possesses the only field of zero dimension O0 = 1. In

this case the formulas (3)–(5) simplify:

〈OI2(x2)OI1(x1)〉 = C0
I2I2(z′ − z)−∆I1

−∆I2 (z̄′ − z̄)−∆̄I1
−∆̄I2 , (9)

〈OI3(x3)OI2(x2)OI1(x1)〉 =
∑
J

C0
I3JC

J
I2I1(z3 − z1)−∆I3

−∆J (z2 − z1)∆J−∆I2
−∆I1

× (z̄3 − z̄1)−∆̄I3
−∆̄J (z̄2 − z̄1)∆̄J−∆̄I2

−∆̄I1 , (10)

〈OI4(x4)OI3(x3)OI2(x2)OI1(x1)〉 =
∑
JK

C0
I4KC

K
I3JC

J
I2I1

× (z4 − z1)−∆I4
−∆K (z3 − z1)∆K−∆I3

−∆J (z2 − z1)∆J−∆I2
−∆I1

× (z̄4 − z̄1)−∆̄I4
−∆̄K (z̄3 − z̄1)∆̄K−∆̄I3

−∆̄J (z̄2 − z̄1)∆̄J−∆̄I2
−∆̄I1 .

(11)

Now let us recall two important facts. First, the operators in CFT are classified by highest weight
representations of the Virasoro algebra:

OI(x) = (L−k1 · · ·L−kr L̄−l1 · · · L̄−lsΦi)(x), k1 ≤ · · · ≤ kr, l1 ≤ · · · ≤ ls, I = (i,~k,~l). (12)

Such set is generally linearly dependent, since the Verma modules are, in general, degenerated and must
be reduced to irreducible representations by factorization over submodules. Nevertheless, keeping in
mind this fact, we continue.

For the sake of simplicity we will write Φ1,Φ2, . . . instead of Φi1 ,Φi2 , . . . from now on. The same

simplified notation will be used for ∆i, C
k
ij = C

(k,∅,∅)
(i,∅,∅)(j,∅,∅).

Second, the operators L−k, L̄−k act on correlation functions as differential operators. Hence, if we
only find the correlation functions of primary operators, we are able to compute any correlation function.
Thus consider the functions

〈Φ2(x2)Φ1(x1)〉 =
g21

(z2 − z1)2∆1(z̄2 − z̄1)2∆̄1
, g12 =

{
C0

21, if ∆1 = ∆2, ∆̄1 = ∆̄2;

0 otherwise.
(13)

Here g21 is a matrix, which plays the role of metrics on the space of primary fields of a given dimension. In
principle, by taking appropriate linear transformations we can make it any fixed non-degenerate matrix,
e.g. the unit matrix. But for some time we retain it for generality. Nevertheless, we must remember that
this matrix is given and fixed, it is not something we mean to compute.

Now consider three-point functions. Now we have an infinite sum

〈Φi3(x3)Φi2(x2)Φi1(x1)〉 =
∑
j,~k,~l

C0
i3(j,~k,~l)

C
(j,~k,~l)
i2i1

(z3 − z1)−2∆i3 (z2 − z1)∆i3−∆i1−∆i2

(
z2 − z1

z3 − z1

)‖~k‖

× (z̄3 − z̄1)−2∆̄i3 (z̄2 − z̄1)∆̄i3
−∆̄i1

−∆̄i2

(
z̄2 − z̄1

z̄3 − z̄1

)‖~l‖
.
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Here ‖~k‖ =
∑
i ki. Now consider the limit x3 →∞ or, more precisely, |z3 − z1| � |z2 − z1|. In this limit

the leading contribution comes from the primary intermediate operator: ‖~k‖ = ‖~l‖ = 0. Hence,

〈Φ3(x3)Φ2(x2)Φ1(x1)〉 =
∑
j

gi3jC
j
i2i1

(z3 − z1)−2∆3(z2 − z1)∆3−∆1−∆2

× (z̄3 − z̄1)−2∆̄3(z̄2 − z̄1)∆̄3−∆̄1−∆̄2 as |z3 − z1| � |z2 − z1|.

By comparing with the formula from Problem 3 of the last lecture, we obtain

〈Φ3(x3)Φ2(x2)Φ1(x1)〉 = C321(z3 − z2)∆1−∆2−∆3(z3 − z1)∆2−∆1−∆3(z2 − z1)∆3−∆1−∆2

× (z̄3 − z̄2)∆̄1−∆̄2−∆̄3(z̄3 − z̄1)∆̄2−∆̄1−∆̄3(z̄2 − z̄1)∆̄3−∆̄1−∆̄2 , (14)

where
C321 =

∑
j

g3jC
j
21. (15)

We see that the knowledge of all structure constants related to primary operators in a conformal field
theory is equivalent to the knowledge of all three-point correlation functions. This provides an evident
symmetry property

C321 = (−1)(2,3)C231 = (−1)(1,2)C312. (16)

Now turn to the most complicated case: the four-point function. Without loss of generality we will
consider the limit x4 →∞ and fix z3 = 1, z1 = 0. Indeed, consider the Möbius transformation

w = f(z) ≡ z3 − z4

z3 − z1

z − z1

z − z4
. (17)

This transformation maps points z = z1, z2, z4 to w = 0, 1,∞. If we define

〈Φi(∞)X〉 = 〈Φi|X|0〉 = lim
z,z̄→∞

z2∆i z̄2∆̄i〈Φi(z, z̄)X〉, (18)

we obtain

〈Φ4(x4)Φ3(x3)Φ2(x2)Φ1(x1)〉 = K(~z, ~∆)K(~̄z, ~̄∆)〈Φ4(∞)Φ3(1)Φ2(w, w̄)Φ1(0)〉,

K(~z, ~∆) =
(z1 − z3)

∑
∆i(z4 − z2)2∆2

(z4 − z1)
∑

∆i−2∆1(z4 − z3)
∑

∆i−2∆3
.

(19)

For brevity we wrote here Φ(0) instead of Φ(0, 0) etc.
From (11) we obtain

〈Φ4(∞)Φ3(1)Φ2(z, z̄)Φ1(0)〉 =
∑

J≡(j,~k,~l)

C43JC
J
21z

∆j−∆1−∆2+‖~k‖z̄∆̄j−∆̄1−∆̄2+‖~l‖.

Now I want to show you that the structure constants C43J and CJ21 factorize as follows

C43J = C43jγ
~k
43j γ̄

~l
43j ,

CJ21 = Cj21β
~k
j21β̄

~l
j21,

(20)

so that the constants γ, γ̄, β, β̄ are uniquely defined by the conformal dimensions of the corresponding
primary fields. For the constants C43J it is rather easy. Indeed,

C43J = 〈Φ4|Φ3(z, z̄)L−k1 · · ·L−kr L̄−l1 · · · L̄−ks |Φj〉|z=z̄=1

= (−1)r+sC43j(L−k1 · · · L−krz∆4−∆3−∆j )(L̄−l1 · · · L̄−ls z̄∆̄4−∆̄3−∆̄j )
∣∣∣
z=z̄=1

,

where
Lk = (k + 1)zk∆3 + zk+1∂, L̄k = (k + 1)zk∆̄3 + z̄k+1∂
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Evidently,

γ
~k
43j = (−1)r L−k1 · · · L−krz∆4−∆3−∆j

∣∣
z=1

,

γ̄
~k
43j = (−1)s L̄−k1 · · · L̄−kr z̄∆̄4−∆̄3−∆̄j

∣∣∣
z̄=1

.

The situation with CJ21 is more complicated. Consider the product Φ2(z, z̄)|Φ1〉 and act on it by Lk
with k > 0:

LkΦ2(z, z̄)|Φ1〉 = ((k + 1)zk∆2 + zk+1∂)Φ2(z, z̄)|Φ1〉.

Now apply the operator product expansion to both sides:∑
J

CJ21z
∆j+‖~k‖−∆1−∆2 z̄∆̄j+‖~l‖−∆̄1−∆̄2LkL−k1 · · ·L−kr L̄−l1 · · · L̄−ls |Φj〉

=
∑
J

CJ21(k∆2 −∆1 + ∆j + ‖~k‖)z∆j+‖~k‖+k−∆1−∆2 z̄∆̄j+‖~l‖−∆̄1−∆̄2L−k1 · · ·L−kr L̄−l1 · · · L̄−ls |Φj〉.

We see that these equations do not involve the z̄ variable and cannot fix the overall normalization. Let

|βj21,K〉 =
∑

~k, ‖~k‖=K

β
~k
j21L−k1 · · ·L−kr |∆j〉,

|β̄j21,K〉 =
∑

~k, ‖~k‖=K

β̄
~k
j21L̄−k1 · · · L̄−kr |∆̄j〉

(21)

Then we have
Lk|βj21,K〉 = (k∆2 −∆1 + ∆j +K − k)|βj21,K − k〉,
L̄k|β̄j21,K〉 = (k∆̄2 − ∆̄1 + ∆̄j +K − k)|β̄j21,K − k〉.

(22)

In fact, it is sufficient to only impose these equations for k = 1, 2. All other equations follow from
these two due to the commutation relations. The number of equations on each level is greater than
the number of variables so that the system is overdetermined. It can be shown that for generic values
of ∆j the coefficients are uniquely determined by the system. For degenerate values ∆j = ∆mn for
K ≥ mn the solution exists only if the fusion rule holds, and the vectors |βj21,K〉 are defined modulo
the corresponding submodule.

Define the function

F

(
∆1 ∆4

∆2 ∆3
∆j

∣∣∣∣ z) =
∑
~k

γ
~k
43jβ

~k
j21z

∆j+‖~k‖−∆1−∆2 , (23)

which is called the (4-point) conformal block. I wand to stress that the conformal block is uniquely defined
in the representation theory of the Virasoro algebra, and does not involve any details of the field theory. It
means that it is a well-defined mathematical object. In fact, there exist several approaches for calculating
it, such as free field representation (for some special values of dimensions), Al. Zamolodchikov’s recurrence
relations and, the most recent, the AGT construction.

The four-point correlation function is expressed in terms of the conformal blocks as follows:

〈Φ4(∞)Φ3(1)Φ2(z, z̄)Φ1(0)〉 =
∑
j

C43jC
j
21F

(
∆1 ∆4

∆2 ∆3
∆j

∣∣∣∣ z)F (∆̄1 ∆̄4

∆̄2 ∆̄3
∆̄j

∣∣∣∣ z̄) . (24)

Analogously,

〈Φ4(∞)Φ1(0)Φ2(z, z̄)Φ3(1)〉 =
∑
j

C41jC
j
23F

(
∆1 ∆4

∆2 ∆3
∆j

∣∣∣∣ 1− z)F (∆̄1 ∆̄4

∆̄2 ∆̄3
∆̄j

∣∣∣∣ 1− z̄) . (25)
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Comparing them, we obtain the crossing symmetry equation [1]2

∑
j

C43jC
j
21F

(
∆1 ∆4

∆2 ∆3
∆j

∣∣∣∣ z)F (∆̄1 ∆̄4

∆̄2 ∆̄3
∆̄j

∣∣∣∣ z̄)

=
∑
j

C14jC
j
23F

(
∆3 ∆4

∆2 ∆1
∆j

∣∣∣∣ 1− z)F (∆̄3 ∆̄4

∆̄2 ∆̄1
∆̄j

∣∣∣∣ 1− z̄) . (26)

(We used the fact that
∑
si = 0 and (16).) This is an equation for the structure constants Cijk. Generally,

it has multiple solutions, but in the case of minimal and rational minimal models with spinless fields the
solution turns out to be unique. The structure constants in this case were calculated by Vl. Dotsenko
and V. Fateev [2–4]. There solution was based on the fact that the correlation functions of minimal
conformal models can be represented in terms of the free field theory:〈

N∏
i=1

Φmini
(xi)

〉
= const×

×

〈
:e−(b+b−1)ϕ(∞): :eα−mN,−nN

ϕ(xN ):

N−1∏
i=1

:eαmini
ϕ(xi):

(∫
d2u :eb

−1ϕ(u):

)r (∫
d2v :ebϕ(v):

)s〉
,

(27)

where

r =
1

2

(
N−1∑
i=1

mi −mN

)
, s =

1

2

(
N−1∑
i=1

ni − nN

)
.

The surface integrals can be calculated by reducing to products of pairs of contour integrals in complex
variables, and this decomposition turns out to be just decomposition of the form (24). It is very interesting
subject, but I have to omit it due to the lack of time.

Nevertheless, I want to explain one important point. Let ∆2 = ∆mn, while other dimension will be left
arbitrary. Then the correlation function (24) satisfies a linear differential equation of the order mn. Since

this equation is analytic in z, the conformal block F

(
∆1 ∆4

∆mn ∆3
∆j

∣∣∣∣ z) satisfies the same equation.

This equation possesses just mn independent solution. On the other hand according to the fusion rule
we know that

αj = α1 + b−1k + bl, k = −m,−m+ 2, . . . ,m, l = −n,−n+ 2, . . . , n.

We have mn independent conformal blocks with different monodromy properties. Indeed, if we take z
and move them around 0 we get

F

(
∆1 ∆4

∆mn ∆3
∆j

∣∣∣∣ e2πiz

)
= e2πi(∆j−∆mn−∆1)F

(
∆1 ∆4

∆mn ∆3
∆j

∣∣∣∣ z) . (28)

These conformal blocks form a basis in the space of solution to the differential equation. The expression
(24) guarantees us that the correlation functions is invariant under this monodromy, if z̄ = z∗. But to
be sure that it is unique-valued we have to guarantee that the monodromy invariant if we mode the
variable z around 1. This is not clear, because the monodromy properties of conformal blocks may
be given by a non-diagonal matrix about z = 1. And at this point the crossing symmetry plays role.
Indeed, the r.h.s. of the crossing equation (26) is invariant under such monodromy. The conformal blocks

F

(
∆3 ∆4

∆mn ∆1
∆j

∣∣∣∣ 1− z) form another basis in the space of solution to the differential equation with

diagonal monodromy about z = 1. The two basis are related by a linear transformation:

F

(
∆1 ∆4

∆mn ∆3
∆j

∣∣∣∣ z) = X

(
∆1 ∆4

∆mn ∆3

∣∣∣∣∆j′

∆j

)
F

(
∆3 ∆4

∆mn ∆1
∆j′

∣∣∣∣ 1− z) . (29)

2In the derivation here we used slightly different expansion: we expanded the four-point functions about x1 = (0, 0) in
the l.h.s. and about x3 = (1, 1) rather than about x2 = (z, z̄) in both side, and used the translation invariance. We have
done it to get rid of numerous extra minus signs in the intermediate formulas. You can easily check that it is completely
equivalent to (2) in the conformal case.
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The structure constants then satisfy a system of bilinear algebraic equations∑
j

C43jC
j
21X

(
∆1 ∆4

∆mn ∆3

∣∣∣∣∆j′

∆j

)
X

(
∆1 ∆4

∆mn ∆3

∣∣∣∣∆j′′

∆j

)
= C14j′C

j′

23δj′j′′ . (30)

Together with the normalization, e.g. C0
ij = gij = δij it gives the structure constants, if we know the X

constants. Just the X constants can be fixed by means of the free field representation.
It is conjectured that the linear transformation like (29) holds for arbitrary values of ∆2, where there

is no differential equation. In the case of the Liouville theory c > 25 it was conjectured to be an integral
transformation. Nevertheless, no method other than the free field representation makes it possible to
compute the X coefficients precisely. But the free field representation only works for special values of
∆i since the numbers r and s must be integer. Thus it is an open question.
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Problems

1. Find the coefficients β1
j21, β2

j21 and β1,1
j21 by solving equations (22) explicitly. Show that for

∆j = ∆11,∆21,∆12 the corresponding fusion rules follow from the equations.
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