
Lecture 9
Sine-Gordon model and Thirring model

Consider the action of the sine-Gordon model in the general form

SsG[ϕ] =

∫
d2x

(
(∂µϕ)2

16π
+ 2µ cosβϕ

)
. (1)

Here the action depends on two parameters: β and µ. The parameter β is dimensionless. We may
consider it as the square root of the Planck constant: β =

√
~. Indeed, let u(x) = βϕ(x). Then the

action is

SsG =
1

β2

∫
d2x

(
(∂µu)2

16π
+ 2µβ2 cosu

)
.

For β � 1 the square of mass of the lightest excitation is m2 = 16πµβ2. If we keep it finite, the only
place β enters is the prefactor, which must be ~−1 in the quantum case.

We will consider the sine-Gordon theory as a perturbation of a free massless boson. The perturbation
operator :cosβϕ: has the scaling dimension 2β2. Hence, the dimension of the parameter µ is 2 − 2β2.
Since this is the only dimensional parameter, masses of all particles in the theory must be proportional
to µ1/(2−2β2). In the limit β → 0 we have m ∝ µ1/2 as expected. The behavior of the model depends of
the value of β. There are three cases

1. β2 < 1. The dimension of µ is positive, the perturbation is relevant. It means that the interaction
decreases with decreasing scale. The short-range correlation functions behave like those in the
massless free field theory. It makes the sine-Gordon theory well-defined and superrenormalizable.
But the large-distance behavior strikingly differs from the short-distance one. It is described by a
system of massive particles, whose mass spectrum essentially depends on the parameter β. Another
interpretations comes from the fact that the sine-Gordon model describes a free massless boson
(which corresponds to the dual boson ϕ̃) with a periodicity condition. The cosine term comes from
the plasma of vortexes and massive excitation marks the Debye screening phenomenon.

2. β2 > 1. The dimension of µ is negative and the perturbation is irrelevant. The interaction
decreases with increasing scale, but grows indefinitely when scale decreases. The field theory in
nonrenormalizable and ill-defined. The perturbation theory is effective and cannot be used beyond
the first correction. In the vortex interpretation, in this region vortexes couple into neutral pairs,
the Debye screening effect disappears, and the system remains massless.

3. β2 = 1. This is the marginal case, where the parameter µ is dimensionless. The precise behavior at
this point can be studied by means of the renormalization group method. In the case of the sine-
Gordon theory this case is renormalizable, but there is no conformal field theory at short distances.
The theory is massive, and its properties can be obtained by analytic continuation from the relevant
perturbation region. At this point the system exhibits a Berezinsky–Kosterlitz–Thouless (BKT)
transition from the vortex plasma to the vortex gas.

Let us try to find a fermion counterpart of this model. To do it, first of all, note that the topological
charge

q =

∫ ∞
−∞

dx1 ∂1ϕ(x) = ϕ(+∞)− ϕ(−∞) (2)

is quantized as

q ∈ 2π

β
Z. (3)

The soliton and antisoliton possess the topological charges ±2π/β. With the conjecture that the fermion
is the same as quantum soliton, we get

jµtop =
2π

β
jµ =

2

β
ψ̄γµψ. (4)

Another conjecture is that the cosine term will correspond to the mass term of the fermion model:

η1η2 :cosβϕ: ∝ ψ+
1 ψ2 − ψ+

2 ψ1. (5)
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We will search ψi, ψ
+
i in the form

ψj(x) = Ajηj :eiajϕ(z)+ibj ϕ̄(z̄): , ψ+
j (x) = Ajηj :e−iajϕ(z)−ibjϕ(z̄): . (6)

The condition that the component ψ1 has spin 1
2 and ψ2 has spin − 1

2 reads

a2
1 − b21 = b22 − a2

2 = 1
2 . (7)

The anticommutativity of fermion fields adds

a1a2 − b1b2 ∈ Z. (8)

We demand that
a1a2 − b1b2 = 0 (9)

so that the β = 1/
√

2 case was included in the construction continuously. At last, the conjecture (5)
means that

a1 − a2 = b1 − b2 = β. (10)

The equations (7), (9) and (10) can be solved and have the unique condition

a1 = −b2 =
β

2
+

1

4β
, b1 = −a2 =

β

2
− 1

4β
. (11)

In other words, the definition (6) with these values can be rewritten as

ψ1(x) = A1η1 :ei β2 ϕ(x)+ i
4β ϕ̃(x): , ψ+

1 (x) = A1η1 :e−i β2 ϕ(x)− i
4β ϕ̃(x): ,

ψ2(x) = A2η2 :e−i β2 ϕ(x)+ i
4β ϕ̃(x): , ψ+

2 (x) = A2η2 :ei β2 ϕ(x)− i
4β ϕ̃(x): ,

(12)

Now study the products

ψ+
1 (x′)ψ1(x) =

A2
1

|z′ − z|4b21

(
1

z′ − z
− ia1 ∂ϕ(z)− ib1

z̄′ − z̄
z′ − z

∂̄ϕ̄(z) +O
(
|z′ − z|2

))
,

ψ+
2 (x′)ψ2(x) =

A2
2

|z′ − z|4b21

(
1

z̄′ − z̄
+ ib1

z′ − z
z̄′ − z̄

∂ϕ(z) + ia1 ∂̄ϕ̄(z) +O
(
|z′ − z|2

))
.

(13)

First, let us look at the first terms. The factor (z′ − z)−1 should produce a delta-function of the
anticommutator [ψ+

j , ψj ]+. But the prefactor spoils this interpretation. We could introduce a cut-
off and reduce it to delta-functional form, but the result would depend on the particular method of
regularization. Thus, this term is unusable for normalization of fermions. To normalize the fermions, let
us use the next two terms. Let us define the product (ψ+

j ψj)(x) as follows

(ψ+
j ψj)(x) = lim

r→0

∫ 2π

0

dθ

2π
ψ+
j (z + reiθ, z̄ + re−iθ)ψj(z, z̄). (14)

For ψ+
1 ψ1 the first and third terms in (13) give zero contribution due to angular averaging, while the

second term survives, but it is formally infinite. As usual, we may assume that the constant A1 depends
on the regularization cut-off r as A2

1 ∝ r(β−1/2β)2 . Similarly, in ψ+
2 ψ2 only the third term survives.

Assuming (4), which reads in components

ψ+
1 ψ1 =

β

2
∂ϕ, ψ+

2 ψ2 =
β

2
∂̄ϕ̄,

we obtain

A2
1 = −A2

2 =
i

1 + 1/2β2
r4b21 . (15)

We also need the operator product expansions

ψ1(x′)ψ+
2 (x) = A1A2η1η2|z′ − z|4a1b1

(
:eiβϕ(z,z̄): +O(|z′ − z|)

)
,

ψ+
1 (x′)ψ2(x) = A1A2η1η2|z′ − z|4a1b1

(
:e−iβϕ(z,z̄): +O(|z′ − z|)

)
.

(16)
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It means that

ψ1ψ
+
2 = A1A2r

β2− 1
4β2 :eiβϕ: =

(
1 +

1

2β2

)−1

r2β2−1 :eiβϕ: ,

ψ+
1 ψ2 = A1A2r

β2− 1
4β2 :e−iβϕ: =

(
1 +

1

2β2

)−1

r2β2−1 :e−iβϕ: .

(17)

We finally obtain for the cosine term

η1η2 :cosβϕ: =
i

2

(
1 +

1

2β2

)
r1−2β2

ψ̄ψ. (18)

Now we want to find the Lagrangian corresponding to the fermion theory. The easiest way to do it
is to reconstruct the equation of motion without the mass term. Let us find the derivative ∂̄ψ1:

∂̄ψ1 = ib1A1η1 :∂̄ϕ̄ eia1ϕ(z)+ib1ϕ̄(z̄): = i
2b1
β

lim
r→0

(ψ+
2 ψ2)(z̄ + re−iθ)ψ1(z, z̄) = i

2b1
β
ψ+

2 ψ2ψ1.

After calculating in a similar way the derivative ∂ψ2 we obtain the equation of motion

∂̄ψ1 = −igψ+
2 ψ2ψ1,

∂ψ2 = igψ+
1 ψ1ψ2,

(19)

where

g =
1

2β2
− 1. (20)

In the invariant form this equation reads

iγµ∂µψ − gγµψ(ψ̄γµψ) = 0. (21)

It corresponds to the action of the Thirring model :

STM =
1

π

∫
d2x

(
ψ̄iγµ∂µψ −

g

2
(ψ̄γµψ)2

)
. (22)

Following W. E. Thirring [1] we conclude that the Thirring model is equivalent to an extension of the
free massless boson theory. Moreover, according to (18) the perturbation theory with respect to the
mass term in the Thirring model is equivalent to the perturbation theory of a free boson with respect to
the cosine term. Hence, the massive Thirring model

SMTM =
1

π

∫
d2x

(
ψ̄(iγµ∂µ −m0)ψ − g

2
(ψ̄γµψ)2

)
(23)

is perturbatively exactly equivalent to the (extended) sine-Gordon model with β related to g according
to (20) and the bare mass m0 is related to the parameter µ as

µ =
m0

π

2

1 + 1/2β2
r2β2−1. (24)

This is the boson–fermion correspondence established by S. Coleman [2] and S. Mandelstam [3].
Formally, the bare mass m0 has the dimension of mass, but in fact it has an anomalous dimension

1− 2β2:

m0 ∼ µr1−2β2

∼ m2−2β2

phys r1−2β2

= mphys(mphysr)
1−2β2

. (25)

The exact relation (with coefficients) between the physical masses and the parameter µ was found by
Al. Zamolodchikov in [4].

We may divide admissible values of the parameter g (or β) into two regions:

1. − 1
2 ≤ g ≤ 0, 1

2 ≥ β2 ≤ 1. This region corresponds to repulsion of fermions. There is no bound
states and the spectrum consists of a fermion–antifermion (soliton–antisoliton) pair. At the BKT
point g < − 1

2 (β2 > 1) the vacuum loses stability.
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2. g > 0, 0 < β2 < 1
2 . This is the attraction region. There bound states of fermion and antifermion

(or soliton and antisoliton), which correspond to breathers. The spectrum of breathers if discrete,
and it is condensed in the classical limit β2 → 0 (g →∞). It is important to understand that the
free fermion has no classical limit (except a formal one), and the real classical limit corresponds to
a large interaction.

There is no phase transition between these two regions. At the point g = 0 the coupling energy of
the lightest bound state simply reaches zero.
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Problems

1. Show that in the massless Thirring model the current

jµ3 = ψ̄γ3γµψ = εµνjν

is conserved.
2. Prove that in the massive Thirring model in the one-loop approximation of the perturbation theory

in the parameter g the physical and bare mass are related as

mphys = m0

(
1 + g log

Λ

m0

)
,

where Λ is the ultraviolet momentum cut-off. Show that this formula is consistent with (25).
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