
Lecture 10
Solving massive Thirring model by Bethe Ansatz: Bethe equation

Consider the massive Thirring model

SMTM =
1

π

∫
d2ξ

(
ψ̄(iγµ∂µ −m0)ψ +

g

2
(ψ̄γµψ)2

)
(1)

on the cylinder of circumference L. Since in this lecture we will discuss the theory in the Hamiltonian
form only, let us use the notation t = ξ0, x = ξ1. The Hamiltonian reads

H =
1

π

∫ L

0

dx (−iψ+σ3∂xψ +m0ψ
+σ2ψ + 2gψ+

1 ψ
+
2 ψ2ψ1). (2)

The commutation relations are

[ψ+
β (t, x′), ψα(t, x)]+ = πδαβδ(x

′ − x). (3)

Here we will not be interested in the vacuum energy, so that we omit the corresponding terms. There
are two conserved charges in this theory: the number of particles Q and the momentum P :

Q =
1

π

∫ L

0

dxψ+ψ, P = − i

π

∫ L

0

dxψ+∂xψ. (4)

Our aim is to reduce the problem to finding a wave function in the primary quantization scheme. The
problem here is that if we consider excitations over the true vacuum, the Hamiltonian contains matrix
elements that relate N and N + 2 particle wave function, where two extra particles are fermion and
antifermion. To simplify the situation return to the old idea of the Dirac sea, where antifermions are
interpreted as holes in the infinite sea of particles, which fill the band with negative energies. More
precisely, define the pseudovacuums |Ω〉 and 〈Ω|:

ψ(x)|Ω〉 = 0, 〈Ω|ψ+(x) = 0 (∀x). (5)

The pseudovacuum |Ω〉 satisfies the relations

Q|Ω〉 = P |Ω〉 = H|Ω〉 = 0, (6)

if we define Q,P and H just according to (2) and (4), without any additional normal ordering. Hence,
this vector is stationary and its particle number is zero. Any state of the form

ψ+
αN (xN ) · · ·ψ+

α1
(x1)|Ω〉

is the eigenvector of Q with the eigenvalue N . It means that Q measures in this picture the number
of ‘particles’ (we will call them pseudoparticles) rather the difference between numbers of particles and
antiparticles, as in the usual picture. The Hamiltonian commutes with Q and does not change N .
It allows us to introduce an N -particle wave function χα1...αN (x1, . . . , xN ) of the N -particle state χN
according to

|χN 〉 =

∫
dNxχα1...αN (x1, . . . , xN )ψ+

αN (xN ) · · ·ψ+
α1

(x1)|Ω〉. (7)

The action of the Hamiltonian H on states can be rewritten as the action of a differential operator ĤN

on the corresponding wave function:

H|χN 〉 =

∫
d2x (ĤNχ)α1...αN (x1, . . . , xN )ψ+

αN (xN ) · · ·ψ+
α1

(x1)|Ω〉. (8)

It is not difficult to check that

ĤN =

N∑
k=1

(−iσ3
k∂xk +m0σ

2
k) + πg

N∑
k<l

δ(xk − xl)(1− σ3
kσ

3
l ). (9)
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Consider first the case of a free fermion g = 0. In this case the wave function is given by the Slater
determinant

χα1...αN
λ1...λN

(x1, . . . , xN ) =
∑
σ∈SN

(−)σ
N∏
k=1

χ
ασk
λk

(xσk), (10)

where the sum is taken over all transpositions of N numbers. The function χαλ(x) is a solution to the
one-particle equation

(Ĥ1χλ)α(x) = ε0(λ)χαλ(x), ε0(λ) = m0 chλ. (11)

The solution to this equation is

χλ(x) =

(
eλ/2

ie−λ/2

)
eip0(λ)x, p0(λ) = m0 shλ. (12)

The periodicity condition

χα1α2...αN (x1 + L, x2, . . . , xN ) = ∓χα1α2...αN (x1, x2, . . . , xN ), (13)

where the upper sign corresponds to the NS sector, while the lower one to the R sector, is satisfied, if

eip0(λk)L = ∓1, k = 1, . . . , N. (14)

The solution to these equation is straightforward. By taking logarithm we obtain

p0(λk) =
2πnk
L

, nk ∈ Z +
δ

2
, (15)

where again δ = 1 in the NS sector and δ = 0 in the R sector.
The solutions to these equations for λk maybe either real or lie on the line R + iπ. In the first case

the energies of pseudoparticles are positive, while in the second case they are negative. The total energy
and momentum of the system are

E(λ1, . . . , λN ) =

N∑
k=1

ε0(λk), P (λ1, . . . , λN ) =

N∑
k=1

p0(λk). (16)

Due to the Pauli principle each admissible value of λk can be occupied by no more than one particle.
Thus, if we introduce a cut-off Λ � m0, the true vacuum correspond to the N -particle state with
N = ΛL/π. An elementary excitation over this vacuum is either a pseudoparticle of positive energy or
a hole, i.e. a vacancy in the negative energy band.

Since this picture is elementary since 1930, let us turn to the case g 6= 0. If all particles are situated
at different points, the Hamiltonian does not differ from the Hamiltonian of free particles, and the wave
functions are linear combinations of products of χαλ(x). Consider for simplicity the two-particle function.
Due to the energy-momentum conservation the scattering of two pseudoparticles is reflectionless and we
have

χα1α2

λ1λ2
(x1, x2) =

{
A12χ

α1

λ1
(x1)χα2

λ2
(x2)−A21χ

α1

λ2
(x1)χα2

λ1
(x2), if x1 < x2;

A21χ
α1

λ1
(x1)χα2

λ2
(x2)−A12χ

α1

λ2
(x1)χα2

λ1
(x2), if x1 > x2.

(17)

This is the only admissible antisymmetric with respect to (α1, x1) ↔ (α2, x2) function. Up to normal-
ization it depends on the ratio A12/A21. The two-particle Hamiltonian contains the interaction term

πgδ(x1 − x2)(1− σ3
1σ

3
2) = πgδ(x1 − x2)

++ +− −+ −−


0 + +
2 +−

2 −+
0 −−
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Hence, the delta-functional term acts diagonally, and only on χ+− and χ−+ components. Let us write
the Schrödinger equation in the vicinity of the discontinuity line x1 = x2. Here we may neglect the mass
term and write

i(∂1 + ∂2)χ++ = 0,

i(∂1 − ∂2)χ+− = 2πgδ(x1 − x2)χ+−,

i(∂2 − ∂1)χ−+ = 2πgδ(x1 − x2)χ−+,

i(∂1 + ∂2)χ−− = 0.

(18)

The first and last equations does not fix the x1 − x2 dependance of the function at al. Hence, they are
consistent with any discontinuity. The second and third equations are equivalent due to the antisymmetry
of the wave function. Hence, we have the only equation. If we take x = x1 − x2, we obtain

2i∂xχ
+− = 2πgδ(x)χ+−. (19)

This is an equation of the form
f ′(x) = cδ(x)f(x). (20)

There is a difficulty in this equation. Indeed, the function f(x) must have a discontinuity at x = 0. The
discontinuity is proportional to the coefficient at δ(x). But it is cf(0), which is undefined due to the
very discontinuity. What to do? To solve the problem let us substitute the function δ(x) by a smooth
function δε(x), which is equal to zero for |x| > ε and has the property

∫ ε
−ε dx δε(x) = 1. We have

(log f(x))′ =
f ′(x)

f(x)
= cδε(x).

Hence

log
f(+ε)

f(−ε)
=

∫ ε

−ε
dx (log f(x))′ = c

∫ ε

−ε
dx δε(x) = c.

After taking the limit ε→ 0 we obtain

f(+0) = ecf(−0). (21)

Hence,
χ+−
λ1λ2

(x2 + 0, x2) = e−iπgχ+−
λ1λ2

(x2 − 0, x2).

After substituting (17) we obtain

A12

A21
= R(λ1 − λ2), R(λ) = e−iΦ(λ) =

ch λ+iπg
2

ch λ−iπg
2

. (22)

Below we will need the function Φ(λ) defined so that

Φ(−λ) = −Φ(λ)

and the cuts lie on the rays (iπg, i∞) and (−iπg,−i∞).
Note that all functions are periodic in g with the period 2. Since we expect that our consideration is

correct for small g we will assume
− 1 < g < 1. (23)

This periodicity contradicts the results of the boson–fermion correspondence. We will discuss this con-
tradiction later.

For the N -particle wave function we have the following expression

χα1...αN
λ1...λN

(x1, . . . , xN ) =
∑
τ∈SN

(−1)στAτ

N∏
k=1

χ
ασk
λτk

(xσk), if xσ1
< . . . < xσN . (24)

This form of solution is called the coordinate Bethe Ansatz. It turns out that the discontinuity equations
for all these functions have the same form and result in

A...ij... = R(λi − λj)A...ji.... (25)
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Now impose the periodicity condition (13). It is convenient to assume that x1 < xk < x1 + L (∀k 6= 1).
By comparing the two wave functions of the form (24) we obtain the Bethe equation:

eip0(λk)L = ∓
N∏
k=1

(k 6=l)

R(λk − λl). (26)

Again, two signs correspond to the NS and R sectors. Since R(0) = 1 we may omit the additional
condition for the product variable. By taking logarithm of the Bethe equation we get

p0(λk)L+

N∑
l=1

Φ(λk − λl) = 2πnk, nk ∈ Z +
δ

2
. (27)

If {λk}Nk=1 is a solution to the Bethe equation, then {λσk}Nk=1 is physically equivalent solution for any
transposition σ. Hence a solution can be considered as a set. Its elements are called roots of the Bethe
equation (the terminology here differs from the standard mathematical terminology). It can be shown
that for any solution to the Bethe equation all value λk and all values nk are different. Moreover, there
is a one-to-one correspondence between the sets {λk} and {nk}. It follows from the fact that the Bethe
equation provides a minimum of a convex function.

In the next lecture we will discuss how to solve the Bethe equation in the thermodynamic limit
L→∞, N →∞.

Problems

1. By using (8) prove (9).
2. Prove (12).
3. Derive (22).
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