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Abstract.

We integrate numerically the incompressible 3D Euler equations,

starting from generic large-scale initial conditions. We observe that a number of regions of 

high vorticity

develop with time, for each initial condition. Our main result is that, as we found, all of 

these regions are described with a novel exact solution of the 3D Euler equations. 

Contrary to the previously known solutions, our solution accurately reproduces the main 

characteristics of the high-vorticity regions. 

For all initial conditions that we studied, there exists a universal Kolmogorov-type power 

law between the vorticity maximum and the pancake thickness,

Some of the initial flows demonstrate with time emergence of the Kolmogorov-like energy 

spectrum Ek ~ k-5/3. The emergence of this spectrum can be influenced by specific choice 

of initial conditions. 
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1. Introduction.

We study numerically the incompressible 3D Euler equations,

 these are one of the most important equations in mathematical physics;

 the question of existence and uniqueness for their solutions at infinite time is yet to be 

discovered; the same question for the Navier-Stokes equations is one of the 

Millennium Prize Problems. 

The question of existence and uniqueness is directly related to the problem of weather the 

Euler equations can develop a singularity in a finite time, i.e. collapse. 

According to the Beale-Kato-Majda theorem, at the time of the collapse t0 (if it exists), the 

time integral of vorticity must explode,

so that the vorticity must turn to infinity too. 

As was demonstrated by the early numerical studies, the vorticity maximum indeed tends 

to grow with time. If we start from generic initial conditions, this growth is exponential and 

the regions of high vorticity represent exponentially compressing pancake-like structures, 

see Brachet el al (1992). 

( · ) , div 0.p
t


    



v
v v v

0

max
0

( ) ,
t

t dt  



1. Introduction.

Since the tendency toward a vortex sheet should suppress three-dimensionality of the 

flow, formation of a finite-time singularity is not expected; recall that the dynamics of the 

2D Euler equations is known to be regular. Thus, further numerical studies were mainly 

concentrated on carefully designed initial conditions providing enhanced vorticity growth.

Despite the large effort we are still far from the reliable answer of whether the blow-up 

scenario is possible. And from the point of view of numerical simulations, there is no much 

hope that we will achieve this answer anytime soon. 

This is why in our recent study D.S. Agafontsev, E.A. Kuznetsov, A.A. Mailybaev, 

Development of high vorticity structures in incompressible 3D Euler equations, Phys. 

Fluids 27, 085102 (2015), we decided to move in a different direction. 

First, in the collapse studies, authors usually test carefully designed initial conditions. We 

decided to test rather generic initial flows.

Second, usually, only evolution of the global vorticity maximum is considered. We track 

down all the remaining local maximums as well. This allows us to examine other regions 

of high vorticity, test different distributions of local maximums, connect evolution of the 

high-vorticity structures with development of the energy spectrum. 



1. Introduction.

We solve 3D Euler equations in the periodic box [-π, π]3 in the vorticity formulation:

Inverse rotor is uniquely defined under the conditions of zeroth average velocity and 

incompressibility,

and has a simple representation in Fourier space as

We implement Runge-Kutta 4th order scheme combined with the cut-off function 

suggested by Hou & Li (2007) to deal with the bottle-neck instability, 

We also performed comparison with the standard 2/3 dealiasing rule,

and found no difference in our results. Here Kj = Nj / 2 is the maximal wavenumber along 

j = x,y,z dimension.
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1. Introduction.

We start from initial shear flow (exact solution),

plus periodic perturbation.

The simulations are started on 1283 grid. At every time step we analyze the spectrum of 

our solution, and if we determine that the spectrum starts to excite near 

we immediately increase the number of points in this particular direction. The solution 

from the old grid is transferred to the new grid with the help of Fourier interpolation which 

has error comparable to round-off for periodic boundary conditions.

The Fourier interpolation is based on the fact that the distance between the subsequent 

harmonics is fixed,

and the range of the spectrum depends on the number of points Nj along j-dimension as 

Therefore, we simply transfer the spectrum of our solution to the new Fourier space, and 

set all the newly added harmonics to zero.

sin( ), cos( ), 0,x y zz z    

(2 / 3) / 3,i iK N

2 / 1,k L  

[ / , / ] [ / 2, / 2].i i i i ik x x N N        



1. Introduction.



2/3

max 1( ) ~ ( ) .t t 

1. Introduction.

During evolution of the pancake structures, there exists a Kolmogorov-type power-law 

between the vorticity maximum and the pancake thickness:



1. Introduction.

Tendency of the energy spectrum toward the Kolmogorov k-5/3 spectrum: for 

wavenumbers 2 ≤ k ≤ 30, we observe
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2. Exact solution of the Euler equations.

Following the numerical results, we suggest an analytical model for the vorticity growth.  

Assuming that in Cartesian coordinates a = a1 n1 + a2 n2 + a3 n3 the vorticity changes only 

along a1-axis and is oriented along a2-axis, we write 

where Ω(t) is the characteristic vorticity amplitude and l1(t) is the pancake thickness. The 

ansatz contains a derivative (denoted by prime) of an arbitrary function f(ξ) taken at 

ξ = a1/l1(t). Together with the velocity field

this is exact solution of the 3D Euler equations (in the vorticity formulation)

The functions β1(t), β2(t) and β3(t) are given by
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2. Exact solution of the Euler equations.

The velocity satisfies the Euler equations with the pressure

Main properties of the presented solution:

 It has infinite energy, so that in numerical simulations it can only be valid in a finite 

space;

 it allows for any time-dependency of vorticity Ω(t) and pancake thickness l1(t), including 

the one leading to blowup; 

 it shows that the Cauchy initial-value problem does not have unique solution if the 

energy is unlimited;

 it can be extended for the Navier-Stokes equations with kinematic viscocity ν if function 

f(ξ,t) changes with time as
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2. Exact solution of the Euler equations.

The simplest form of the presented solution is when both the vorticity amplitude and 

pancake thickness behave exponentially like Ω(t) ~ exp(β2t) and l1(t) ~ exp(-β1t). In this 

case they are connected with the power-law

and the pressure does not explicitly depend on time. 

The asymmetry of the straining flow is described with dimensionless parameter

The velocity jump at the scale of the pancake thickness vanishes with time for σ<1 (ζ<1), 

i.e. no Kelvin-Helmholtz instability for our case σ = 1/3 and ζ = 2/3:
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3. Comparison with numerical simulations.

The first test is related to self-similarity of the transversal vorticity profile, which should be 

kept as

Two relations should also be valid:  
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3. Comparison with numerical simulations.

Checking the velocity field directly is difficult, since the solution can be modified by adding 

a uniform velocity field (0,vb2(t),vb3(t)) with arbitrary time dependency. This is why we 

examine its gradients. According to the solution, 

At the final time and at the global vorticity maximum we have 

confirming the single large (3,1)-component ∂v3/∂a1 ≈ -ωmax. The diagonal components 

are in very good agreement with coefficients –β1= -0.74, β2= 0.53 and β3= 0.21; all other 

components are small.
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3. Comparison with numerical simulations.



4. Simulations of different initial conditions.

We repeated our experiments for other initial conditions, starting from the shear flow,

plus periodic perturbation. We examined 3 groups of initial conditions: the 1st group – fully 

random periodic flow (now shear flow), the 2nd group – shear flow plus random flow in 

combination close to 1:1, and the 3rd group – shear flow plus small periodic perturbation. 

We studied 10 initial conditions for each group and used grids of up to 10243 total number 

of nodes. 

We observed that 

(1) all the high-vorticity regions that we checked are very well described by the exact 

solution, with exponential vorticity growth and pancake compression. 

(2) Fully random initial conditions lead to pancakes oriented randomly in space, and this 

leads to final grids like 1000 x 1000 x 1000. If the shear flow is present, then the 

pancakes’ normal directions are oriented mainly around OZ-axis, and this leads to final 

grids like 600 x 600 x 3000. 

(3) The 2/3 scaling between the vorticity maximum and the pancake thickness is held 

universally, 
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4. Simulations of different initial conditions.

During evolution of the pancake structures, there exists a Kolmogorov-type power-law 

between the vorticity maximum and the pancake thickness:



4. Simulations of different initial conditions.

(4) The 1st group (fully random flows) does not show the Kolmogorov region k-5/3 in the 

energy spectrum. 

5 out of 10 simulations of the 2nd group demonstrated the power-law region in the energy 

spectrum for wavenumbers 2 ≤ k ≤ 10. The exponent of the power-law is close to -5/3. 

Most of the 10 simulations of the 3rd group demonstrated the power-law region in the for 

wavenumbers 2 ≤ k ≤ 20. The exponent of the power-law is close to -5/3. 

The difference between these groups of simulations is not attributed to different final 

resolution (the results would be almost the same if the final resolution if z-axis would be 

1000 points)!
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5. Conclusions.

1. We found that the pancake-like regions of high vorticity are described asymptotically 

with the novel exact solution of the 3D Euler equations. The proposed solution combines 

a shear flow aligned with an asymmetric irrotational straining flow, and is characterized by 

a single asymmetry parameter and an arbitrary transversal vorticity profile. 

2. A pancake structure is not completely flat with deviations much larger than the pancake 

thickness. It is remarkable that the proposed analytical model describes locally an every 

nearly flat pancake segment, while the model parameters may change from one segment 

to another.

3. In simulations, we observe exponential evolution of the vorticity maximum and pancake 

thickness, with the Kolmogorov-like relation between the two

This behavior is not required by the suggested model, and presumably relates to nonlocal 

effects. 

4. The emergence of the Kolmogorov energy spectrum can be influenced by the 

appropriate choice of initial conditions, which also leads to the specific orientation of the 

developing pancake structures. The nature this relation is yet to be discovered, and 

presumably is connected with the pancakes distribution. 
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