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Introduction

Discrete Shrodinger equation
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Corresponding Lagrangian is
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Variational approach (1D case)

Let consider Gaussian wave packets
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Then truncated Lagrangian is
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That give the equations
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1D collapse

These equations have the integral

=
< S
_ 1 2.2 P i
C—exp(f@fﬂa)Jr‘lma. ol
and can be reduced to: °r
(@ <
da c 1 H
E:iw(lf%‘)\/fln C-)— L~ [
2C O’\\\\1\\\\1\\\\1\\\\1\\\\
%:I:?\/InC\/(ao—a)(a—az), 0 10 20 30 40 50
z
_ _P _ V2=mC P
where a1 = ;77— a2 = Y5 —gom. Shi araasy =
I 3 S et N
This give wave field “collapse” to the ok 7—53)}?9 |
only one light-guide for 0 Y
b | G
487 -né : \"/ i
P>Po = C~3.7C. St
11 b
0 10 20 30 40 50
z

Numerics give P, =~ 3.3 C.



Introduction 1D collapse 2D collapse

Self-compression

Numerical simulation of 1D collapse

Dynamics of the beam amplitude |u(z, n)| for: (a) P = 1.6 < P,
(b) P — 1.8 < Pcr, (C) 7) == 3-6 > Pcr and (d) 73 — 10 > Pcr.
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Stability analysis
Dynamics of the beam amplitude |u(z, n)| for different noise levels:
(a) = 0.001, (b) p = 0.01, and (c) p = 0.1.
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Filamentation instability in discrete media

The increment of filamentation
instability for perturbations
o exp(ikn) has the form
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It is maximal at the lattice period
Ly =n/k=1 for |up|>2.
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Conclusion
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2D set of light-guides

Lets extend dimensions

OUm.n

)

0z
+ Umnt1 — 2Um,n + Un.p—1+

a2um,n
or?

i

+ Unt1,n — 2Um,n + Um—1,nt

+ Y + |um,n’2Um’n - 0.

It conserve the power

P = Z/ |Umn|2dT = const.

Corresponding Lagrangian is

i ou’,, « OUmn OUmn
5225 (Umn 0z ~ mn 0z >+7’ or

* * * s
— Umn+1Ump = Up pr1Umn — Um+1,nUmp — Upy1 pUmn-

2

1
_ Eyumn"l_




Introduction 1D collapse 2D collapse Self-compression Conclusion

Variational approach (3D case)
Let consider Gaussian wave packets

w 2 X<+ .
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Then truncated Lagrangian is (o = 47v/27)
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2D collapse

Discrete collapse in 2D case
. . — W
For long pulses 79 > a, these equations have integral (P = \/ﬂm)
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and can be reduced to:
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For a > amin, the wave field collapse
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At the final stage, the wave beam width decrease to the minimum
size amin by the asymptotic law
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Numerical simulation (2D case)

The amplitude |u| < /27 is
® o =] limited by phase synchronism
B . : \ . Lgdw ~ 3|u[? < 7. But
' nonlinearity “focus” wave beam at

' t i i edges. So, dynamics become
o . stochastic for P /47 >> 1.
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2D collapse

Collapse characteristics
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The collapse is possible for powers about the critical one.

The field amplitude is the limited and very non-regular for
higher P.
The width of strong field area a; /5 is larger for higher powers.

The noticeable part of power is contained in strong field area.



Self-compression

Laser pulse self-compression
For short pulses 79 < a, the “slow” motion law is

o a*(z
To(z)zwaz(z)z () ac =+ Wj/o.
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As result, the equations have the integral

_ 1 2.2 w2
C—exp(—@—a a)+m.
For wide beams a > a, it looks as in continuous media: the
collapse occur for W > W, = /20ag. At the final stage, the wave
packet width and duration decrease by the asymptotic law
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So, radiation self-focusing is accompanied by the noticeable
shortening of the duration of 3D wave packets with a soliton-like
distribution along the longitudinal coordinate.
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Numerical simulation of Gaussian pulse
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Indeed, the numerical simulation ™" _~T " °A 4
confirm the qualitative study at 28
the beginning. el Jk
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Numerical simulation of hollow pulse

We suggest to use hollow wave

packets for avoiding modulation. 3
There is region on the plane of ;
field amplitudes and ring radius,
where transverse filamentation is San
dominant. Thereat, a set of light
bullets is formed in the same :
transverse plane. Moreover some R
of them a coherent.
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Integral characteristics
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Conclusion

e The “collapse” in one-dimensional discrete media is shown.

e There is limitation for field amplitude both in 1D and 2D
cases due to the filamentation instability in discrete media.

e The analogue of continuous self-compression mode is
found for discrete media too.

e It is shown that self-compression of hollow laser pulses will
produce the coherent set of light bullets.
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