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Korteweg-de Vries Equation (1895)

Discovered

for water waves,
KdV equation
describes weakly
nonlinear and
weakly dispersive
waves in many
physical systems

Diederik Johannes Korteweg Gustav de Vries
(1848-1941) (1866-1934 )

Canonical form for unidirectional propagation
in reference system x—ct




Modified Korteweg-de Vries Equation

- is well-known in nonlinear mathematics (fully integrable model),
- less in nonlinear physics

T.L. Perelman, A.Kh. Fridman, M.M. Yelyashevich, Modified KdV equation in electro-
dynamics. Sov. Phys. JETP, 1974, vol. 39, 643-646.

Pelinovskii E.N., and Sokolov V.V. Nonlinear theory for the propagation of electromagnetic
waves in size-quantized films. Radiophysics and Quantum Electronics, 1976, vol. 19, N. 4, 378
-382.
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KdV Equation for waves in 2-layer flow
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mKdV Equation for waves in 3-layer flow
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Grimshaw, R., Pelinovsky, E., and Talipova, T. The modified Korteweg - de Vries equation
in the theory of large-amplitude internal waves. Nonlinear Processes in Geophysics, 1997,
vol. 4, N. 4, 237 - 350



5th KdV Equation for waves in 3-layer flow

Kurkina O.E., Kurkin A.A., Soomere, T. Pelinovsky E.N., Ruvinskaya E.A. Higher-order (2+4)
Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid. Physics
Fluids. 2011, vol. 23, 116602.

Kurkina O. E., Kurkin A.A., Ruvinshaya E.A., Pelinovsky E.N., Soomere T. Dynamics of solitons
in @ nonintegrable version of the modified Korteweg — de Vries equation. JETP Letters, 2012,
vol. 95, No. 2, 91-95.



General Scheme for KdV-like equations for stratified flow
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m Lagrange coordinate:
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Inhomogeneous Eigenvalue Problems
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Vertical displacement:

-Linear Mode

[ch C?y[ﬂo(c U(y)y ﬂwoN (y)O = 0}

-Nonlinear Correction

-Dispersive Correction




KdV A +CA, +saAA, + 1A =0
A; +CA, +eaAA, + LA +
T ‘92051A2 A + ﬁzﬂlexxxx T 5/7(7/1AAxxx + 7, Ax Ak ) =0

KdV2

KdV3 Koop & Butler, 1981; lLamb & Yan, 1996
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Korteweg-de Vries equation: (G




COEFFICIENTS

0 9
d =3[ pyfe-U)(de/dysy A = [ py(e-U) dy
—H —-H
wl =", Podly B(c ~U)2[3(dT, /dy) - 2(dd /)20 I dy)? +ar(c —U)[5(d /dy)? -~ 4(dT, /dy)|dd /dy) - o (d> /)2

0
Bil = [ pottyRB(c~U)0? - (0 1 dy)(dT, /dy)]-F2(d 1dy)? + (¢ ~U)? 0T
yil = - jOH podyi2(c -U)[e(dTy /dy) +24(dT, /dy)[(d® / dy) +2a(dD / dy)* - 2a(c —U)D? + (¢ -U)* D4 (dd / dy) -
~45(c-U)(dD/ dy)® - (c—U)2[3(dT, /dy)(dd /dy)? + 2T, @ |

= jOH pody{(c—U)[Z,B(dCI)/dy)3 +6ad)2]—3aﬁ(dd)/dy)2 —2(C—U)2[6D2(dd>/dy)—3TncD]—

~6a(c-U)(dTy /dy)(dd/dy) +3(c ~U)2dT, /dy)(dd/dy)?|

0
| = 2j_H po(c—U)(dD / dy)?dy

U(y) - horizontal shear stable flow
po(y) - density stratification



MODAL STRUCTURE

Brunt-Vaisala frequency, sec? modal function
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Nonlinear Correction to Mode Structure
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GARDNER EQUATION
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Cubic nonlinear coefficient for stratified
water may be both signs



Linear Long Internal Wave Speed, c

Grimshaw, R., Pelinovsky, E., and Talipova, T. Modeling internal solitary waves in the coastal
ocean. Survey in Geophysics, 2007, vol. 28, No. 4, 273-298



Dispersion Coefficient



Quadratic Nonlinear Term

Varied Sign!



Cubic Nonlinear Term

Varied Sign!



Gardner’s Solitons sign of a,
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Two branches of solitons of both polarities,
algebraic soliton a;, =-2a/ 0,4



cubic, a,
Positive and Nepative Solitons

Positive
algebraic
soliton

Negative
algebraic
soliton

“guadratic
o
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Negative Solitons Positive Solitons
Sign of the cubic term is principal!



N — Soliton Solutions

JOUBRNAL OF EXPEEIMENTAL AND THEOEETICAL PHYSICS WVOLUME 39, NUMBEE. 1

Dynamics of large-amplitude solitons
A. V. Slyunyaev*
Nizhnit Novgorod State University, 603600 Nizhnii Novgorod, Russia

E. N. Pelinovskii®

Cauchy Problem ((11 < 0)

VOLUME 12, NUMEBEE. 4

Generation of large-amplitude solitons in the extended
Korteweg—de Vries equation

Roger Grimshaw?®

Department of Mathemartical Sciences, Loughborough University,
Loughborough, LEI] 3TU, United Kingdom

Dmitry Pelinovsky®
Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Efim Pelinovsky and Alexey Slunyaev

Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, Nizhny Novgored, Russia

JULY 1999

DECEMBEE. 2002



N — Solitons and Cauchy Problem
positive cubic term

CHAOS VOLUME 10, NUMBEE. 2

On the generation of solitons and breathers in the modified
Korteweg—de Vries equation

Simon Clarke, Roger Grimshaw, and Peter Miller
Department of Mathematics and Statistics, Monash University, Clayton, Victoria, Australia

Efim Pelinovsky and Tatiana Talipova
Institute of Applied Physics and Nizhny Novgorod Technical University, Nizhny Novgorod, Russia
Jowrnal of Experimental and Theorerical Plysics, Vol 22, No. 3, 2001, pp. 520-334.

Tranzlated frem Zhurnal Ekspevimental novr' i Teoveticheskot Fiziki, Vol 119, No. 3, 2001, pp. 600-812.
Original Ruzsian Texr Copyrighe € 2001 by Shunpaer

MISCELLANEOUS

Dynamics of Localized Waves with Large Amplitude
in a Weakly Dispersive Medium with a Quadratic
and Positive Cubic Nonlinearity
A, V. Slyunyaev

JUME 2000

Grimshaw, R., Slunyaey, A., and Pelinovsky, E. Generation of solitons and breathers in the
extended Korteweg-de Vries equation with positive cubic nonlinearity, Chaos, 2010, vol. 20,

013102



Again High-Order KdV Equation for stratified flow

For steady-state waves moved with constant speed, ¢
the Euler equations can be reduced to 2D
Dubreil-Jacotin-Long equation

N*(z—1n)

2

An+ n=0

If N = const, a wave of any amplitude is linear!



2 —_—
An+ N (22 77)7720
C

If N = const, a wave of any amplitude is linear!
If stratification is weak N?(z) = N? [1 + &P (Z)]

P is polynomial, all terms are the same order

2
d?n S
As a result —-—Ccn+P (77) =0 f,,,
dx? m A
| 70
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M. Dunphy, C. Subich, and M. Stastna. Spectral methods for internal waves: indistinguishable
density profiles and double-humped solitary waves. Nonlinear Processes in Geophysics, 2011,
vol. 18, 351-358

Derzho O. Multi-scaled solitary waves. Nonlinear Processes in Geophysics, 2017, Discussion



Elastic Waves in Bimodular Media

) ) 4
pd€_00,,d0 g:%(mgw G —stress
dx ¢ - deformation

different response to tensile and compressive stresses

“Modular” KdV Equation

Rudenko O.V. Modular solitons, Doklady Mathematics, 2016, vol. 94, 708-711

Nazarov V., Kiashko S., Radostin A. Wave processes in bimodular media. Radiophysics and
Quantum Electronics, 2016, vol. 59, 275-285



Journal of the Mechanics and Physics of Solids 78 (2015) 231-248

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

Cnoidal waves in solids

@ CrossMark

E. Veveakis, K. Regenauer-Lieb*

The University of New South Wales, School of Petroleum Engineering Australia

ARTICLE INFO ABSTRACT

Article history: Cnoidal waves are nonlinear and exact periodic stationary waves, well known in the
RECEFved 25 May 2014 shallow water theory of fluid mechanics. In this study we retrieve such periodic stationary
Received in revised form wave solutions as singularities of the problem of homogeneous volumetric deformation of
12 January 2015

a rate-dependent, heterogeneous solid material. In accordance to the classical Hill sta-
tionary wave localization instability, which provides velodty gradient discontinuities in
shear failure, cnoidal waves are dilational and compactional manifestations of volumetric
localization along lines of stress discontinuities. They therefore emerge along the volu-
metric component of the classical slip line field theory, with their regular distance being a
tell tale indication of rate-dependent volumetric deformation. We discuss applications for
the dominant mode of 11 compaction in geomaterials where distinct cnoidal wave in-
stabilities appear as localisation features in compaction. We also discuss the case of lo-
calisation features in a classical (]2 plastic) material where a small but important cnoidal
contribution may trigger equidistant bands of localisation known as Liiders lines. We
therefore postulate that cnoidal waves constitute fundamental material instabilities
stemming from the propagation of elasto-plastic P-waves.

Accepted 9 February 2015
Available online 24 February 2015

Dedicated to Professor loannis Vardoulakisl



Plasma Waves and KdV-like equations

Schamel, H. A modified Korteweg-de Vries equation for ion acoustic waves due
to resonant electrons. J. Plasma Phys. 9, 377-387 (1973)

Schamel Equation

Gardner equation [— + (ol + o, U

Ruderman M.S., Talipova T., Pelinovsky, E. Dynamics of modulationally unstable ion-acoustic
wave packets in plasmas with negative ions. J. Plasma Physics, 2008, vol. 74, No. 5, 639-656

S.A. El-Tantawy, E.l. EI-Awady, R. Schlickeiser. Freak waves in a plasma having Cairns
particles. Astrophys Space Sci 2015, vol. 360, 49.

S.A. El-Tantawy. Rogue waves in electronegative space plasmas: The link between the family
of the KdV equations and the nonlinear Schrodinger equation. Astrophys Space Sci, 2016,
vol. 361. 164



Logarithmic KdV equation

Granular chains with Hertzian interaction forces

Gaussian soliton [U(X —Ct) = exp

R. Carles and D. Pelinovsky. On the orbital stability of Gaussian solitary waves in the log-
KdV equation, Nonlinearity, 2014, vol. 27, 3185 -3202.

E. Dumas and D.E. Pelinovsky. Justification of the log-KdV equation in granular chains:
the case of precompression, SIAM J. Math. Anal., 2014, vol. 46, 4075 -4103.

G. James and D. Pelinovsky. Gaussian solitary waves and compactons in Fermi-Pasta-Ulam
lattices with Hertzian potentials, Proc. Roy. Soc. A, 2014, vol. 470, 20130465.



Summary of “physical” KdV-like models

a7 53
T (u)+
a’ «

m = 2 (KdV), 3 (mKdV), 5
f(u)=ul" m = 1 (modular), 3/2 (Schamel)
f(u)y=ulog|u| Gaussian solitons
Gardner equation

f(u)= ou’ + 0(1U3 + 0(2U4 + 053U5 +...| Multi-humped solitary waves




Soliton (M+1)(m+2)

c esech?

\

1 1

Mass M:judx~cm 2

m<2(m>2) Mincreases (decreases) with amplitude, c

m=2 (mKdv) M does not depend from ¢



2 1

Momentum (Energy) E = [ufdx~cn 2

m <4 (m >4) Eincreases (decreases) with amplitude, c

m=4 M does not depend from ¢

Solitons in critical and supercritical cases are unstable and blow-up



Physica D 304-305 {2015) 52-78

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd —_ — |

Numerical study of blow-up and dispersive shocks in solutions to @cmsm
generalized Korteweg-de Vries equations

C. Klein*, R. Peter

Institut de Mathématigues de Bourgogne, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon Cedex, France

HIGHLIGHTS

e Numerical study of soliton stability in critical and supercritical generalized KdV equations.
o Numerical identification of the blow-up mechanism.
e Numerical study of the small dispersion limit and the e-dependence of the blow-up time.

ARTICLE INFO ABSTRACT

Article history: We present a detailed numerical study of solutions to general Korteweg—de Vries equations with critical

Received 14 November 2014 and supercritical nonlinearity, both in the context of dispersive shocks and blow-up. We study the stability

29:9":';‘330':15”‘”59'“ form of solitons and show that they are unstable against being radiated away and blow-up. In the L; critical case,
pri

the blow-up mechanism hy Martel, Merle and Raphaél can be numerically identified. In the limit of small

AQCEDtaL: 12 Ami 4015 dispersion, it is shown that a dispersive shock always appears before an eventual blow-up. In the latter

Available online 4 May 2015

Communicated by P. D, Miller case, always the first soliton to appear will blow up. It is shown that the same type of blow-up as for the

perturbations of the soliton can be observed which indicates that the theory by Martel, Merle and Raphaél
Keywards: is also applicable to initial data with a mass much larger than the soliton mass. We study the scaling of the
Generalized Korteweg-de Viies equations blow-up time t* in dependence of the small dispersion parameter ¢ and find an exponential dependence
Blow-up t* (e ) and that there is a minimal blow-up time {; greater than the critical time of the carresponding Hopf
Dynamic rescaling solution for ¢ — 0. To study the cases with blow-up in detail, we apply the first dynamic rescaling for
Small dispersion limit generalized Korteweg-de Vries equations. This allows to identify the type of the singularity.

In our 3-layer flow a sign “minus” if m > 3




Modulational Instability of weakly nonlinear group

A 0 o°u

—+e(<<])—f(U)+—==0
~ el = TU)+—

Asymptotic series

U(0) = A(ex, st) cos @ + eu, (0, ex, et) + &°...

0 = w,t — K X + @(ex, &) w, = —K;

Deriving NLS  [;9A, O°A (1 a a—g
ot ox°

= -1 stable s =+ 1 unstable



KdV weakly nonlinear group

Al Al A
= +ou Py + Py =0 Any sign of nonlinearity

V.E. Zakharov, E.A. Kuznetsov, Multi-scale expansions in the theory of systems integrable
by the inverse scattering transform, Physica D, 1986, vol. 18, 455—-463.

Happy Birthday, Eugene!

aA 0°A

NLS | AR A=O

Sign “minus” for any sign of nonlinearity

KdV groups are stable!



Frontiers in Nonlinear Physics, Volga River, 2004




mKdV weakly nonlinear group

Grimshaw R., Pelinovsky E., Talipova, T., Ruderman M.
and Erdelyi R. Short-lived large-amplitude pulses in the
nonlinear long-wave model described by the modified
Korteweg—de Vries equation. Studied Applied
Mathematics, 2005, vol. 114, No. 2, 189-210




Gardner weakly nonlinear group

Gardner groups are unstable if o; >0and k > k_,

Gardner breather at o, > 0

y—2 0 atan lcosh(¥)cos(@) - kcos(@)sinh(x)

OX Isinh (%) sin(@) + k sin(®)cosh(x)



Rogue Waves in KdV-like systems due to modulational
instability, soliton focusing and dispersive focusing

ADVANCES IN GEOPHYSICAL AND ENVIRONMENTAL MECHANICS AND MATHEMATICS

Extreme
Ocean Wav;:t.---...

Second Edition

Springer




High-order KdV weakly nonlinear group

A m Al O°U

—+ SU + 3 = O S = il
X X
: OA  O°A .
High-order NLS +sB_|AP" A=0
8t 8x
(2m +1)! E. Tobish (Kartashova) and E. Pelinovsky

in preparation

"7 22 (m + Ymi(m + 1)!

Wave packets are unstable!

Increment ['=,/3A, K\/ZmBm M _3K*



Envelope Soliton

. 2m
exp{'BmA‘) t}
m+ 2

A(Xx, 1) = A 2
cosh [n\/g(m 1 2) A, x}

Soliton Energy i
E = j\AF dx ~ AZ"

Critical regime m = 2 is the same for KdV and NLS equations



Wave Motion 72 (2017) 101-112

Contents lists available at ScienceDirect

Wave Motion

journal homepage: www.elsevier.com/locate/wavemoti

Collision of N-solitons in a fifth-order nonlinear Schrodinger
equation

@ CrosshMark

Emmanuel Yomba, Gholam-Ali Zakeri™*

Department of Mathemarics. California State University - Northridee Northridge, CA 91330-831 3. US4
Interdisciplinary Research Institute for the Sciences [IRIS), California Stace Universicy - Northridge, Northridge, CA 9133008313 USA

HIGHLIGHTS

« N-solitons in a fifth-order nonlinear Schridinger equation are presented.
« Developed bilinear forms via minimal use of auxiliary functions.

» Analyzed of gain and loss of amplitudes phenomena.

» Investigated the elastic and non-elastic collisions.

ARTICLE INFO ABSTRACT

Article history: The existence of N-solitons in a fifth-order nonlinear quintic Schridinger equation is
Received 29 July 2016 investigated through the use of a Hirota's differential operator, which utilizes only one
Received in revised form 15 January 2017 auxiliary function. This minimal use of auxiliary functions is a novel modification of the
Accepted 20 January 2017 bilinear forms that allow us to obtain a larger and a more general class of N-solitons. As the

Available online 26 January 2017 number of auxiliary functions increases, the obtained solutions are more restricted and may

not @xhibit some of the important behaviors, thus the novel solutions given here are more
Fifth-order nanlinear Schrisdinger ceneral. Several classes of 4-solitons exhibiting elastic collisions, and non-elastic collisions
Breather and beating solitons that lead to the gain and the loss of amplitudes after collision in a conservative system are
N-solitons presented. Various plots to support the analytic results are presented with propagations
Elastic and nonelastic collision illustrated along the x-axis. The explicit expressions for the solitons turn out to be the same
as those given by Hirota for the third-order case, but the dispersion relation is different.

Keywords;



Summary of “physical” KdV-like models
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m = 2 (KdV), 3 (mKdV), 5
f(u)=ul" m = 1 (modular), 3/2 (Schamel)
f(u)y=ulog|u| Gaussian solitons
Gardner equation

f(u)= ou’ + 0(1U3 + 0(2U4 + 053U5 +...| Multi-humped solitary waves
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