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Motivation: Collapse and the Kolmogorov-Obukhov theory

According to the Kolmogorov-Obukhov theory (1941)
velocity fluctuations at spatial scales l from the inertial
range obey the power-law 〈|δv|〉 ∝ ε1/3l1/3, where ε is the
mean energy flux from large to small scales. This formula
is easily obtained from the dimensional analysis.

Similarly, fluctuations for the vorticity field ω = ∇× v

diverge at small scales as 〈|δω|〉 ∝ ε1/3l−2/3, while the
time of energy transfer from the energy-contained scale
lE to the viscous ones is finite and estimated as
T ∼ l

2/3
E ε−1/3.

These two relations allow to link the Kolmogorov
spectrum formation with the blowup in the vorticity field
(collapse).
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Motivation: Collapse and the Kolmogorov-Obukhov theory

Kolmogorov’s arguments assume locality of interaction
and isotropy of the turbulence in the inertial interval. This
implies that the dynamics at these scales can be
described by the Euler equations and the emergence of
the Kolmogorov energy spectrum can be expected before
the viscous scales are excited, i.e., in a fully inviscid flow.

This conjecture was verified numerically in our previous
papers (2015, 2016, 2017), where we showed that the
Kolmogorov spectrum is developed through the formation
of pancake-like structures of enhanced vorticity. Such
pancakes can be treated as coherent structures.

At the stage of turbulence onset turbulenceis far from
isotropic, its spectrum contains a few number of jets.
Each jet corresponds to its own pancake.Towards developed hydrodynamic turbulence – p. 4



Motivation: Collapse and the Kolmogorov-Obukhov theory

We also established numerically the asymptotic
Kolmogorov-type scaling,

ωmax(t) ∝ ℓ(t)−2/3,

between the vorticity maximum on the pancake and the
pancake thickness.

No tendency to finite-time blowup was observed for
generic initial conditions, with nearly exponential growth
of vorticity in time.

In the present paper we develop a new concept of folding
for continuously distributed vortex lines.
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Motivation: Collapse and the Kolmogorov-Obukhov theory

The underlying idea that enables the folding phenomenon
is that the “flow” of continuously distributed vortex lines is
compressible, despite the incompressibility of the fluid:
the vortex lines representation (VLR), E.K.& V. Ruban,
1998. Our new theory based on the VLR explains the
2/3-law as a result of the classical fold catastrophe.

The discussed approach is applicable for a larger class of
“frozen-in-fluid” fields advected by incompressible fluid,
for instance, the magnetic field in MHD or the di-vorticity
field for 2D Euler.

By means of a new adaptive numerical scheme based on
the VLR we observed numerically the compressible
character of continuously distributed vortex lines and
verified the details of the folding phenomenon.Towards developed hydrodynamic turbulence – p. 6



Vortex line representation (VLR)

Consider a frozen-in-fluid divergence-free field B, defined
from the following equation:

∂B

∂t
= rot(v ×B), div v = 0.

Examples of such fields are the vorticity ω = ∇× v for the 3D
Euler equations, the magnetic field in (ideal) MHD and the
divorticity field B = ∇× ω for 2D Euler hydrodynamics.
Such a B-field line can only be changed by the velocity
component vn perpendicular to B. Now we introduce a new
type of trajectories given by the normal velocity component as

dx

dt
= vn(x, t), x|t=0 = a.
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Vortex line representation (VLR)

Because of frozenness of the field B a solution x = x(a, t)

describes the motion of field lines. In terms of this mapping,
Eq. for B admits explicit integration

B(x, t) =
Ĵ B0(a)

J
, Ĵ(a, t) =

[
∂xi

∂aj

]
, J = det Ĵ ,

where B0(a) is the initial field at t = 0 (analogous to the
Cauchy invariant) and Ĵ is the Jacobi matrix of the mapping.
The inverse of the Jacobian, n = 1/J , has the meaning of a
density which satisfies the continuity equation

∂n

∂t
+ div(nvn) = 0.
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Vortex line representation (VLR)

In case of the 3D hydrodynamics, Eqs. written for the vorticity
B = ω together with the relation ω = ∇× v are called the
vortex lines representation (VLR), and form a complete set of
equations equivalent to the Euler equations. However, these
equations are written in mixed Eulerian (x-space) and
Lagrangian (a-space) variables. For numerical study, we now
rewrite all the equations using the Eulerian variables.
Let a = a(x, t) be the inverse mapping. This mapping obeys
the equation

∂a

∂t
+ (vn · ∇)a = 0.

Towards developed hydrodynamic turbulence – p. 9



Vortex line representation (VLR)

Eq. for the vorticity B = ω can be rewritten in the form

ωi(x, t) =
1

2
εijk εαβγ ω0α(a)

∂aβ
∂xj

∂aγ
∂xk

.

Here ω0(a) is the initial vorticity at t = 0 . The two equations
together with the relations

v = rot−1ω = −∆−1 (∇× ω), vn = v −
(v · ω)

ω2
ω

for the velocity and the normal velocity represent complete
VLR system of equations written in the Eulerian coordinates
(x, t).
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Folding of vortex lines

REMARK 1: Wave breaking, as blowup, is well known for
compressible flows resulting in appearance of shocks, which
can be considered as the formation of folds. Breaking in
gasdynamics is possible due to compressible character of the
mapping.
REMARK 2: Breaking/folding of vortex lines is impossible in
2D and for cylindrically symmetric flows without swirl (Majda,
1990) because ω ⊥ v and divvn = 0, and consequently J = 1.
Thus, breaking/folding of vortex lines is 3D phenomenon.
Up to now it has not been known whether this process
happens in a finite or infinite time.
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Folding of vortex lines

In our numerics exponential increasing of the vorticity
maximum and formation around this maximum a structure of
the pancake type with exponential decreasing of its width
wereobserved, instead of blow-up. Such structures appear
around each vorticity maximum and are shown to have
self-similar behavior. (First numerics by M. Brachet, et. el.
(1992).)
Geometrically breaking results in touching of vortex lines (in a
finite or infinite time).
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Folding of vortex lines

Let us assume that breaking/folding takes place. Consider the
equation J(a, t) = 0 and find its positive roots t = t̃(a) > 0.
Then the collapse (or touching) time will be

t0 = mina t̃(a).

Near the minimal point a = a0 as the expansion of J takes

J

aa0

t 0

3

t

t

t

1

2

3

t 0 > t > t > t1 2

the form:
J(a, t) = ατ(t) + γij∆ai∆aj

- concavity condition
α > 0, τ(t) → 0 as t → t0,
γij is positive definite (non-
degenerate) time independent
matrix,
∆a = a− a0.
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Self-similar asymptotics

REMARK: The assumption about linear dependence of Jmin

on τ(t) is familiar to the Landau assumption in his theory of
the second-order phase transitions.
This expansion results in the self-similar asymptotics for
vorticity:

ω(r, t) =
(ω0(a) · ∇a)r|a0
τ(α + γijηiηj)

, η =
∆a

τ 1/2
.

Now the main problem is
to transform from the auxiliary a-space to the physical r-space.
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Self-similar asymptotics

Consider first the 1D case when

J =
∂x

∂a
= ατ + γa2 → x = ατa+

1

3
γa3.

Thus, a ∼ τ 1/2, x ∼ τ 3/2, i.e. in the physical space
compression happens more rapidly than in the space of
Lagrangian markers !! At distances γa2 ≫ ατ we have the
time-independent asymptotics,

J ∼ x2/3.

Thus, any changes happen at the region γa2 ≤ ατ .
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Self-similar asymptotics

3D case
The Jacobian J = λ1λ2λ3 → 0 means that one eigenvalue,
say, λ1 → 0 and λ2, λ3 → const as t → t0 and a → a0. Hence it
follows that near singular point there are two different self
similarities:
along "soft" (λ1 ) direction x1 ∼ τ 3/2 (like in 1D);
along "hard" (λ2, λ3) directions x2,3 ∼ τ 1/2,
so that

ω =
1

τ
g
( x1

τ 3/2
,
x⊥

τ 1/2

)
.

(compare with Zeldovich)
∼ τ 1/2

∼ τ 3/2

This results in formation

of pancake structure
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Self-similar asymptotics

As τ → 0 when γij∆ai∆aj ≫ ατ the vorticity has a
time-independent, very anisotropic distribution. The main
dependence of ω is connected with x1-direction:

ω ≈
b

x
2/3
1

with b = const and KOLMOGOROV index 2/3!.
This dependence is realized everywhere except regions
between two cubic paraboloids −cx3

⊥
< x1 < cx3

⊥
In this

narrow region vorticity at τ = 0 behaves like

ω ≈
b1

x2
⊥

.
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Self-similar asymptotics

REGION x

x

2

1

x ~ x1 2

3

KOLMOGOROV

In Kolmogorov region the vorticity can be estimated as

ω ∼
P 1/3

x
2/3
1

where P ∼ ω3
0L

2, L ∼ γ−1/2.

Towards developed hydrodynamic turbulence – p. 18



VLR for exact solution

As it was reported by D. Agafontsev 3D Euler has exact
solution which in Cartesian coordinates has the form

v(x, t) = −ωmax(t) ℓ1(t) f

(
x1

ℓ1(t)

)
n3 +




−β1(t) x1

β2(t) x2

β3(t) x3


 ,

ω(x, t) = ωmax(t)f
′

(
x1

ℓ1(t)

)
n2.

Here ωmax(t) and ℓ1(t) are the vorticity maximum and the
pancake thickness, f(x1) is arbitrary smooth function.
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VLR for exact solution

β1(t), β2(t) and β3(t) are given by

β1 = −ℓ̇1/ℓ1, β2 = ω̇max/ωmax, −β1 + β2 + β3 = 0.

Comparison of this solution with the simulations gives a good
agreement at the pancake region for ωmax(t) ∝ et/Tω and
ℓ1(t) ∝ e−t/Tℓ .
The velocity component normal to vorticity:

vn(x, t) = −ωmax(t) ℓ1(t) f

(
x1

ℓ1(t)

)
n3 +




−β1x1

0

β3x3


 .
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VLR for exact solution

For exponential pancake development the VLR mapping is
written as

x1 = a1 e
−β1t, x2 = a2, x3 = a3 e

β3t − f(a1)
sinh(β3t)

β3

,

with the corresponding Jacobi matrix,

Ĵ(a, t) =

[
∂xi

∂aj

]
=




e−β1t 0 0

0 1 0

−f ′(a1)
sinh(β3t)

β3

0 eβ3t


 , J(a, t) = det Ĵ = e−β2t.
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VLR for exact solution

Respectively, for vorticity we have

ω(x, t) =
Ĵ ω0(a)

J
,

that coincides with our solution.
Hence the Jacobian is inverse-proportional to the vorticity
J(t) ∝ 1/ωmax(t), and does not depend on spatial coordinates.
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Numerical experiment

We use two numerical schemes based on direct integration of
the Euler equations for ω and in the VLR formulation in the
periodic box r = (x, y, z) ∈ [−π, π]3 using the pseudo-spectral
method with high-order Fourier filtering. During simulations,
the number of nodes is adapted independently along each
coordinate providing an optimal anisotropic rectangular grid.
We tested several large-scale initial conditions in the form of
random truncated (up to second harmonics) Fourier series
considered as a perturbation of the shear flow
ωx = sin z, ωy = cos z, ωz = 0. This paper is based on one
selected simulation with the final grid 486× 1024× 2048.
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Numerical experiment

By means of the VLR scheme it was demonstrated
decreasing of the Jacobian. This means that formation of
the pancake structures can be considered as folding
(breaking) of the vorticity lines.

By use of the direct integration we found that at the
maximal vorticity point

1

ωmax

dωmax

dt
≃ −divvn.

This means that the main contribution into the vorticity
maximum comes from the denominator,

ω(r, t) =
(ω0(a) · ∇a)r(a, t)

J(a, t)
.
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Numerical experiment: compressibility
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Numerical experiment: compressibility
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Decreasing of the Jacobian (VLR scheme)
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Numerical experiment: compressibility

Iso-surfaces for vorticity and Jacobian (main pancake).
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Numerical experiment: compressibility
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Behavior of γij with time.
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Numerical experiment

Evolution of local vorticity maximums (logarithmic vertical
scale). Green line shows the global maximum, dashed red
line indicates the slope ∝ et/Tω with Tω = 2.
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Numerical experiment

Evolution of characteristic spatial scales ℓ1 (black), ℓ2 (blue)
and ℓ3 (red) for the global vorticity maximum. Dashed red line
indicates the slope ∝ e−t/Tℓ with Tℓ = 1.4.

3 4 5 6
10

−2

10
−1

10
0

10
1

t

l 1,  
l 2,  

l 3

(b)

Towards developed hydrodynamic turbulence – p. 30



Numerical experiments

Vorticity local maximumsωmax(t) vs. lengths ℓ1(t) during the
evolution of the pancake structures. Green line shows the
global maximum, red circles mark local maximums at the final
time. Dashed red line indicates the power-law ωmax ∝ ℓ

−2/3
1 .

10
−2

10
−1

10
010

0

10
1

l
1
(t)

ω
m

ax
(t

)

(d)

Towards developed hydrodynamic turbulence – p. 31



Numerical experiments

Components of the vorticity vector ω = (ω1, ω2, ω3) as
functions of a1 perpendicular to the pancake, at the final time.
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Numerical experiment

Vorticity component ω2/ωmax vs. coordinate a1/ℓ1 at different
times, demonstrating the self-similarity from ℓ1(5) = 0.064 to
ℓ1(6.89) = 0.018.
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Numerical experiment

Energy spectrum at different times demonstrating the
Kolmogorov power-law.
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Numerical experiment: spectrum

JETS: Isosurface |ω̃(k)| = 0.2 of the normalized vorticity field
in k- space at the final time. Solid lines show maximal
k-vectors for all jets (normalized by 1/ℓ1).
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Conclusion

In this talk, based on both VLR and direct numerical
integration of 3D Euler, we show:

At the stage of turbulence arising the spectrum is very far
from isotropic (in the inertial interval).

The main contribution in the spectrum in 3D is connected
with appearance of coherent structures of the pancake
type which in the turbulent spectrum are responsible for
jets with growing in time anisotropy. (First time such
structures were observed by M. Brachet, et.al. (1992).)

The maximal pancake vorticity and its width ℓ are
connected by means of the Kolmogorov type relation:

ωmax ∼ ℓ−2/3.

Towards developed hydrodynamic turbulence – p. 36



Conclusion

Appearance of the pancake structures is a consequence
of compressibility of the vorticity lines as it follows from
the vortex line representation (K. & Ruban, 1998, K.
2002). These structures develop in time exponentially.

Increasing with time number of such structures leads to
formation of the Kolmogorov energy spectrum observed
numerically in a fully inviscid flow, with no tendency
towards finite-time blowup.
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