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Let us place an uncharged 
cylindrical jet of a conducting liquid in 
a transverse electric field       .  

In the absence of the electric field, 
the jet has a circular cross section.

When         , the jet is deformed 
under the action of electrostatic 
forces: its cross section is stretched 
along the lines of force of the field.

Our aim is to find a new equilibrium 
state of the system, where the 
electrostatic forces are counterba-
lanced by capillary forces at the 
deformed surface of the jet. Also, we 
will find the conditions under which 
equilibrium solutions do not exist and 
the jet splits into two. 
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From the applied point of view, interest in this electrostatic problem is 
associated with the possibility of controlled splitting of jets by an applied 
transverse electric field. This phenomenon is possible to use for the 
production of polymer microfibers [1]. Longitudinal splitting of jets under an 
electric field was observed in the experiments [2–5].
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Geometry of the problem
Аn uncharged cylindrical jet of a 

conducting liquid is placed 
between two planar electrodes to 
which a potential difference  U is 
applied. The electrodes are 
situated at a distance  D from 
each other. 

The liquid is at rest in the 
system of coordinates moving 
together with the jet.

The problem has plane symmetry – the surface of the jet is invariant with 
respect to the translation along its axis (as a result of the action of 
electrostatic forces, only the cross section of the jet is deformed). In this 
situation, all the quantities depend only on the pair of coordinates x and y
that correspond to the plane of the jet cross section.



The problem of finding possible 
equilibrium configurations of the jet is 
difficult to solve analytically. This is 
associated with the necessity to 
determine the electric field distribution 
around a jet whose shape is unknown 
and is determined by the essentially 
nonlinear condition of balance between 
electrostatic and capillary forces.

1. Original equations

The electric field potential       satisfies the 2D Laplace equation:ϕ
0.xx yyϕ ϕ+ =

E yϕ ∞→ −

= 0ϕ

= / 2Uϕ m 2,y D= ±on the electrodes

on the free surface,

It should be solved together with the following conditions (    ):/E U D∞ =

at infinity | | .x →∞

0ϕΔ =



2. Original equations

2 2
0 ( ) / 2 = 0.x y T Pε ϕ ϕ κ+ + + Δ

The equilibrium shape of the free surface is determined by the pressure 
balance condition:

The first term corresponds to the electrostatic pressure, and the second, to 
the capillary pressure (    is the dielectric constant, κ is the curvature, T is 
the surface tension coefficient, ΔP has the meaning of the pressure 
difference between the inside and outside of the liquid). 

It should be noted that this electrostatic problem is analogous to the 
problem of the shape of a two-dimensional gas bubble moving in an ideal 
liquid for which a particular zero-parameter solution has been found earlier 
[E.B. McLeod, 1955].
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Dimensionless notations

max max max max, , ,x x x y y x E xϕ ϕ→ ⋅ → ⋅ → ⋅
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r R x d D x e E E

ε

∞

Δ Δ

=

( )2 2 1 0.E x y Sp pϕ ϕ κ+ + + =

Let us pass to dimensionless variables by the substitutions

where         is the maximum value of the electric field that is attained on 
the surface of the jet at the points                       , and are the 
distances from the axis of the jet to its boundary in the directions  x and y.

maxE
max{ , } = {0, }x y y± max max,x y

We introduce, for convenience, the following dimensionless 
combinations:

The pressure balance condition rewrites as

The conditions on the electrodes and at infinity take the form
2 , 2,

, .
d e y d

y e x
ϕ
ϕ
= = ±

→ − →∞
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1. Conformal variables
We introduce the complex potential                      of the electric field, which 

is an analytic function of a complex variable z = x + iy.  The function is 
harmonically conjugated to the potential      ; the condition   defines 
the electric field force lines.  In addition, we introduce a complex strength 
of the field,                                       Let us represent it as

= iϕ ψΦ −

( )2 2

= ,

, arg arctan .

i

x y y x

W Ee

E W W

θ

ϕ ϕ θ ϕ ϕ

−−

= = + = =

It is convenient to take the complex electric field strength  W as the 
unknown function and the complex potential       as an independent variable. 
The latter corresponds to the conformal mapping of the domain bounded by 
the electrodes and by the free surface of the jet into the strip

/ 2 / 2 , < < .d e d eϕ ψ− ≤ ≤ −∞ ∞

The surface of the jet is mapped onto the segment | |< 1, = 0.ψ ϕ

= .x yW d dz iϕ ϕΦ = −

ψ
ϕ constψ =

Φ



The analytic function  W should be found. The boundary conditions for 

W take the form:

2 1 = 0, 0, 1,

2 , 0, 1,
2 , 2 ,

, | | .

E Sp E p E

d e
W i e

ψθ ϕ ψ

θ π ϕ ψ
θ π ϕ

ψ

− + = ≤

= = >

= = −
→ →∞

2. Conformal variables

Thus, the original problem with unknown boundary is reduced to a much 
simpler problem on a strip.



Construction of exact solutions

Its solution has the form

In the simplest case of a perfectly conducting circular cylinder placed in 
a uniform external field (            ), the following relation between the electric 
field strength and its inclination angle holds on its surface:

2sin sin 1 = 0.E Sp p ψθ θ θ− +

( )( ) = / 2 arcsin tanh( / ) / .S EB B p pθ ψ π ψ+

Then we get for the complex field strength on the free surface:
( )sin ( ) .iW e θ ψθ ψ −= − ⋅

D →∞

Suppose that this relation remains valid in the situation where the jet is 
deformed by the electrostatic pressure and  D is arbitrary (see also the 
magnetic shaping problem [J.A. Shercliff, 1981]). In his situation the force 
balance condition takes the form of an ordinary differential equation

sin .E θ=



The sought distribution of the electric field in space, as well as the shape 
of the free surface of the liquid, can be found by solving a simple ordinary 
differential equation

2( ) = arctan ( 1) tan ( / ),S
E E S

E

ip
z i p p B p

p
Φ − Φ+ + + Φ

/ ( ).d dz WΦ = Φ

Integrating this equation, we finally obtain:

The construction of the analytic continuation of  W from the free surface 
to the domain outside the liquid yields

( ) ( )
1

2 2 2( ) 1 tan / tan / .S E SW i B B p p B B p
−
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( ) ( ) ( ) ( )
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This solution (and, hence, the relation         ) is compatible with the 
boundary conditions for

sinE θ=



Exact solution

2= arctan ( 1)th ( / ), 1 1.S
E E S

E

p
y p p Bx p x

p
± − + − ≤ ≤

The equilibrium shape of the jet is given by the following expression:

The cross-section area of 
the jet is given by the 
formula

( ) ( )
( )2

ln 1 1
= .

arsinh
E E

E

E

p p
s p

p

π + +

0 = / .r s π
Then the radius of the jet is 
the following:

The obtained solution 
depend on a single control 
parameter       .Ep



The size of the jet in the  y direction is defined by 

( ) ( ) ( )arctan 1 arsinh .E E E Eh p p p p= +

The cross section of the jet is unboundedly stretched in the direction of 
the applied field: as/ 1h d → .e →∞

0.18K =



It is convenient to introduce (instead of D and U ) two dimensionless 
parameters, the ratio of the scales K and the electric Bond number         : BoE

It is clear from general considerations that the equilibrium configuration of 
a jet of given radius     is defined by two parameters, the interelectrode
distance  D and the potential difference  U. 
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The values of the 
parameters  K and          for  
the obtained exact solutions 
are shown in the figure.

The point

corresponds to the only 
previously known exact 
solution of the problem 
considered.

0, Bo 0.247EK = ≈

BoE
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Approximate solutions;  two-point method
Let us construct the general two-parameter family of solutions using the 

following approximation for the shape of a boundary:

( ) ( )2
max max1 arctan 1 tanh arsinh arsinh .y x c a a a x a x a= ± ⋅ + ⋅ − + ⋅ ⋅

where  a and  c are the parameters which define the shape of the jet. This 
formula gives the exact one-parameter solution (with the parameter a) in 
the particular case where  c = 1. 

The field distribution in the interelectrode space is given by

( ) ( )( )2
max max max max( ) = 1atan 1 tan arsinh arsinh .z w iw E icx a a a w a E x a− + + + +

We require  that the force balance condition be satisfied only at the points
. As a result, we obtain the relation between the solution 

parameters,  c and  a, and the problem parameters,           and  K :
{ } { }max max0, , ,0y x± ±

BoE

( )( )
( )

( ) ( )
( )

3

23

1 1 ln 1 1ln 1
Bo = , = .

1 1 11 1
E

c a c a ac a
K

a a ac c a π

+ − + ++

+ + ++ +



The domain of existence of the solutions is shown. Also, the families of 
solutions for c = 0.5, 1, 2 are presented. The corresponding curves are 
intersected. So, two different solutions with different degrees of 
deformation coexist for each           and   K .  BoE

Let us determine which of two solutions is realized. To this end, we will 
estimate the free energy of the system.
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0 2.L EW W W TL E ksε ∞Δ = Δ + Δ = −

The energy analysis
The change of the total energy of the system (per unit length) before and 

after introduction of the jet into the interelectrode space is the following:

where                     and                                   .   The  first  term 
corresponds to the energy of the surface tension and the second term    
is responsible for the electric field energy. The perimeter  L of the jet is
calculated using the formula

( )
( ) ( ) ( )

( )
( )

4 3 2
max arctan 161 268 366 268 61

, .
16 1 3 3 1 arsinh

a c ax h h h h
L h

h h h a

π ++ + + +
= =

+ + +

The change of  the electric field energy is defined by
2 2

20 max max
2 2

1 .
2E

V

E x sW E dxdy
k k

ε ⎛ ⎞⎛ ⎞Δ = − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∫

In the conformal variables, this expression can be rewritten as

( ) 2= ln 1 1 arsinhs c a a aπ + += 1 1k c a+ +

( )
( )

( ) ( )
2 20
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22 2 22
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E
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∫ ∫



The dependence of the change of free energy ΔW  on the electric 
Bond number for  K = 0.2.  Two different solutions with different 
degrees of deformation can coexist. The solution with lower energy is 
stable. It corresponds to a less deformed jet.
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One-parameter family of exact solutions is obtained for the problem of 
an equilibrium configuration of an uncharged cylindrical jet of a conducting 
liquid in a transverse electric field [1]. The cross section of the jet is 
significantly (formally, unboundedly) stretched along the lines of forces of 
the field, and the boundaries of the jet asymptotically approach the 
electrodes. The only previously known, zero-parameter solution of the 
problem [2] does not belong to the obtained family of solutions. 

Using the approximate solutions for the stationary shape of the jet, we 
find the range of the parameters (the applied potential difference and the 
interelectrode distance), where the problem of finding the equilibrium 
configurations of the jet has solutions. Also we obtain the conditions under 
which the solutions do not exist and, consequently, the jet splits.
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for attention!


