Ground State of Ferromagnetic Josephson Jonctions

Marco Aprili

CSNSM-CNRS Bât.108 Université Paris-Sud 91405 ORSAY

Meso 2003

Co-workers: **T. Kontos**, **W. Guichard**, **ML. Della Rocca** J. Lesueur, F. Genêt, R. Boursier, X.Grison & P. Gandit.

Many Thanks to: D. Estève, H. Poitier, W. Belzig, Y. Nazarov, A.
Golubov, P.Monod, J. Ferré, V. Ryazanov,
J. Aarts, C. Stunk, B. Leridon, L. Dumoulin, A.
Leggett, D. Van Harlingen, M. Salez, T. Carrington,
H. Sellier, H. Bernas, A. Buzdin

Motivation

Superconductivity **p?0 l=0**

Analogy : D-wave p=0 l=2 q

Ferromagnetic proximity effect

Since only phase coherence is required in F :

But

We need the spin to be a good quantum number :

1.
$$\xi_{\rm F}$$
 < domain size
2. $h/\tau_{\rm so}$ << $E_{\rm ex}$

The superconducting Density of States

Coherent superposition

$$\Psi = \Psi_e + \Psi_h \propto \cos(E/E_{Th})$$

$$\downarrow$$
For E << E_{ex}

$$E_{ex}$$

FIG. 1. Solid lines show measured densities of states for two junctions with silver film thicknesses of 1000 Å (upper) and 470 Å (lower) and lead thickness of 850 Å. Dashed lines show the calculated variation of density of states. The value $N_{Ag}(\omega)/N(0) = 1$ has been shifted vertically by 0.04 (left-hand scale) for the upper curves. Inserts (a) and (b) show the E_{k} -vs-k diagrams for a superconducting and normal metal, respectively.

Rowell & MacMillan PRL 16, 453 (1966)

Planar Tunnel Junctions

 $Pd_{1-x}Ni_x \propto 10\% T_c \approx 100 K$ Small exchange energy $\approx 10 \text{ meV}$ High energy and amplitude resolution

PdNi

Indirect exchange

 $m \sim 2.4 m_B \text{ per Ni}$ $m_{Ni} = 0.6 m_B$

Itinerant ferromagnetism

Curie's Temperature

Tunneling Spectroscopy

Measure of the exchange energy

Kontos et al. preprint

Tunneling Spectroscopy

Density of States at Zero Energy

Josephson Coupling

?????????? Pattern 140 120 100 (WIII 80 60 40 20 0 d_F (Å) Φ/Φ_{o} 60 $I=I_c sin \Delta \phi$ $I = -I_c \sin \Delta \phi$ 50 0-junction **π**-junction 40) 30 20 10 Kontos et al. PRL 89, 137007 (2002) 0 Φ/Φ_{o}

Temperature dependence

V. Ryazanov et al., PRL 86 2427 (2001)

Kontos et al. PRL 89, 137007 (2002)

In collaboration with W. Guichard & P. Gandit, CRTBT-Grenoble,

Diffraction :
$$I=2I_c \left| \cos \left(\pi \Phi / \Phi_o + \delta_{ab} / 2 \right) \right|$$

W. Guichard et al. PRL (2003)

D. Van Harlingen Rev. Mod. Phys. 67, 515 (1995)

p-Rings

π -Junction

Majer et al. Submitted APL

Spontaneous currents

H (mGauss)

Shift in the detection SQUID

Conclusions

The exchange field modifies the superconducting wave function :

i) Spectroscopy of a oscillating Order Parameter ("0-state" and " π -state").

ii) Negative Josephson coupling: π -Junctions.

iii) π -SQUIDs.

iv) π -rings and spontenous supercurrents.

Direct measurement of the exchange energy.