Mean-Field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

Igor S. Burmistrov^{1,2} and Mikhail A. Baranov³

¹Landau Institute for Theoretical Physics, Russia ²Institute for Theoretical Physics, University of Amsterdam, The Netherlands ³Institute for Theoretical Physics, University of Hannover, Germany

discussions with M.A. Skvortsov and M.V. Feigelman are greatly acknowledged.

Outline

1. Introduction

2. The Landau expansion of free energy of the triangular and unidirectional charge density wave states

- 3. Mean-field phase diagram
- 4. Weak crystallization corrections to the mean-field results
- 5. Comparison with experiment

6. Conclusions

The system considered is

• 2D interacting electrons in a weak perpendicular magnetic field with the filling factor $\nu \gg 1$ and in the presence of the quenched disorder.

The problem discussed is

• the mean-field phase diagram for the partially filled highest N-th Landau level where $N = \left[\frac{\nu}{2}\right] \gg 1$.

A clean case was considered in

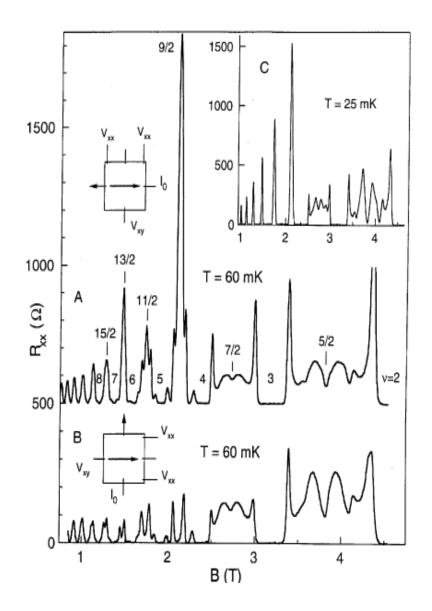
• A.A. Koulakov, M.M. Fogler, and B.I. Shklovskii, Phys. Rev. Lett. **76**, 499 (1996), Phys. Rev. B. **54**, 1853 (1996)

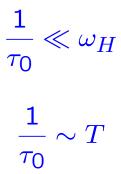
• R. Moessner and J.T. Chalker, Phys. Rev. B 54, 5006 (1996)

A possible manifestation of CDW state was observed by

- M.P. Lilly et.al., Phys. Rev. Lett. 82, 394 (1999)
- R.R. Du et.al., Solid State Commun. **109**, 389 (1999)

R.R. Du et al. / Solid State Cc





• We assume disorder potential to be short-range

$$\langle V_{dis}(\vec{r_1})V_{dis}(\vec{r_2})\rangle = \frac{1}{2\pi\rho\tau_0}\delta(\vec{r_1}-\vec{r_1})$$

Here ρ is thermodynamical density of states and τ_0 is the elastic collision time in the absence of magnetic field.

• The broadening of the N-th Landau level in the presence of magnetic field is given by

$$\frac{1}{\tau} = \frac{1}{\tau_0} \sqrt{\frac{\omega_H \tau_0}{\pi}} \ll \omega_H, \qquad \omega_H \tau_0 \gg 1$$

where $\omega_H = \frac{eH}{m}$ is the cyclotron frequency.

Lengths in the problem

is Bohr radius
is magnetic field length
is cyclotron radius
is the mean free path

we assume $a_B \ll l_H \ll R_c \ll l_{el}$

Energies in the problem

is cyclotron frequency
is chemical potential
is broadening of Landau level
is characteristic scale of e-e interaction
is temperature

we assume $e^2/R_c\,,\,\mathbf{1}/\tau\,,\,T\,,\,\mu_N\ll\omega_H$

• The screened electron-electron interaction on the $N-{\rm th}$ Landau level

$$U(q) = \frac{2\pi e^2}{\varepsilon q} \frac{1}{1 + \frac{2}{qa_B} \left(1 - \frac{\pi}{6\omega_H \tau}\right) \left(1 - \mathcal{J}_0^2(qR_c)\right)},$$
$$\frac{1}{\omega_H \tau} \ll 1, \qquad N^{-1} \ll r_s \ll 1$$

takes into account the effects of interactions with electrons on the other Landau levels. $\mathcal{J}_0(x)$ stands for the Bessel function of the first kind.

the clean case $[1/\tau = 0]$

I.V. Kukushkin, S.V. Meshkov, and V.B. Timofeev, Usp. Fiz. Nauk **155**, 219 (1988)

I.L. Aleiner and L.I. Glazman, Phys. Rev. B 52, 11296 (1995)

```
the weakly disordered case [\omega_H \tau \gg 1]
```

I.S. Burmistrov, JETP **95**, 132 (2002)

•The action is given by

$$S = - \int_{\mathbf{r}} \sum_{\alpha=1}^{N_r} \sum_{\omega_n} \left\{ \overline{\psi_{\omega_n}^{\alpha}}(\mathbf{r}) \left[i \,\omega_n + \mu - \mathcal{H}_0 - V_{dis}(\mathbf{r}) \right] \psi_{\omega_n}^{\alpha}(\mathbf{r}) - \frac{T}{2} \sum_{\omega_m,\nu_l} \int_{\mathbf{r}'} \overline{\psi_{\omega_n}^{\alpha}}(\mathbf{r}) \psi_{\omega_n-\nu_l}^{\alpha}(\mathbf{r}) U(\mathbf{r},\mathbf{r}') \overline{\psi_{\omega_m}^{\alpha}}(\mathbf{r}) \psi_{\omega_m+\nu_l}^{\alpha}(\mathbf{r}') \right\}.$$

• The CDW ground state is characterized by the order parameter $\Delta(q)$ that is related to the electron density as

$$\rho(\mathbf{q}) = L_x L_y n_L F_N(q) \Delta(\mathbf{q}).$$

Here $n_L = 1/2\pi l_H^2$, and the form-factor $F_N(q)$ is

$$F_N(q) = L_N\left(\frac{q^2 l_H^2}{2}\right) \exp\left(-\frac{q^2 l_H^2}{4}\right) \approx \mathcal{J}_0(qR_c), \qquad N \gg 1$$

where $L_N(x)$ is the Laguerre polynomial.

•After the Hartree-Fock decoupling of e-e interaction term and the average over disorder, the thermodynamic potential is given by

$$\Omega = \Omega_{\Delta} - \frac{T}{N_r} \ln \int \mathcal{D}[\hat{Q}] \exp(-\mathcal{S}[\hat{Q}]),$$

where

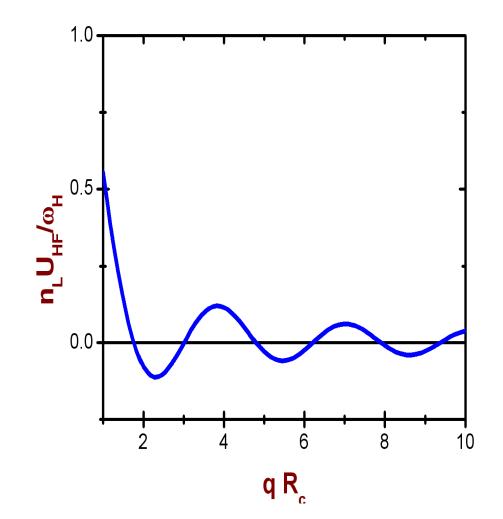
$$\Omega_{\Delta} = -\frac{(L_x L_y)^2 n_L^2}{2} \int_q U_{HF}(q) \Delta(\mathbf{q}) \Delta(-\mathbf{q}),$$

$$\mathcal{S} = -\frac{\pi\rho\tau_0}{2}\int_r \operatorname{tr}\hat{Q}^2 + \int_r \operatorname{tr}\ln\left(i\widehat{\omega} + \mu - \mathcal{H}_0 + \lambda + i\widehat{Q}\right),$$

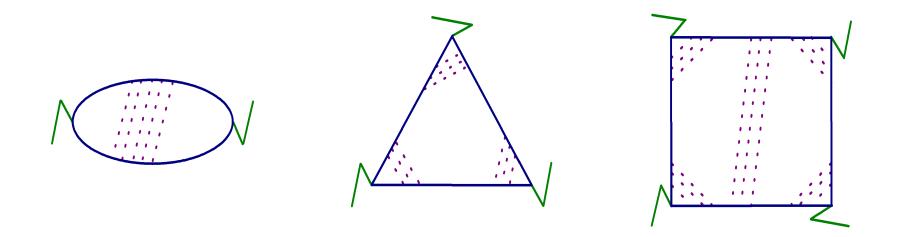
$$\lambda(\mathbf{q}) = -L_x L_y n_L U_{HF}(q) F_N^{-1}(q) \Delta(\mathbf{q}).$$

The Hartree-Fock potential is as follows

$$U_{HF}(q) = U(q)F_N^2(q) - l_H^2 \int \frac{d^2p}{2\pi} U(\mathbf{p})F_N^2(\mathbf{p}) \exp[-i\mathbf{q}\mathbf{p} l_H^2].$$



• Expansion of Ω to the forth order in $\Delta(\mathbf{q})$ and integration over \hat{Q} correspond to the following diagrams in the standard diagrammatic technique



Here solid blue line denotes averaged electron Green function, red dashes are impurity lines and solid green vertex stands for $\lambda(q)$.

• Crossed impurity lines $\Rightarrow \ln N/N \ll 1$

Free energy of the triangular CDW state

$$\mathcal{F}_t = \mathcal{F}_0 + 4L_x L_y n_L T_0(Q) \left[a_t \Delta^2(Q) + b_t \Delta^3(Q) + c_t \Delta^4(Q) \right]$$

where $T_0(Q) = -n_L U_{HF}(Q)/4$, and

$$a_t = 3 \left[1 - \frac{T_0(Q)}{\pi^2 T} \sum_n \frac{1}{\xi_n^2 + \gamma^2(Q)} \right], \ b_t = i \, 8 \frac{T_0^2(Q)}{\pi^3 T^2} \cos\left(\frac{\sqrt{3}Q^2}{4}\right) \sum_n \frac{\xi_n^3}{\left[\xi_n^2 + \gamma^2(Q)\right]^3},$$

$$c_{t} = \frac{24T_{0}^{3}(Q)}{\pi^{4}T^{3}} \Biggl\{ \frac{1}{2} \sum_{n} \frac{\xi_{n}^{4}}{\left[\xi_{n}^{2} + \gamma^{2}(Q)\right]^{4}} \Biggl[3D_{n}(0) + \left(1 + \cos\frac{\sqrt{3}Q^{2}}{2}\right) \Biggl(D_{n}(Q) + D_{n}(\sqrt{3}Q) \Biggr) + \frac{1}{2}D_{n}(2Q) \Biggr] + 3\Biggl[\sum_{n} \frac{\xi_{n}}{\left[\xi_{n}^{2} + \gamma^{2}(Q)\right]^{2}} \Biggr]^{2} \Biggl[\sum_{n} \xi_{n}^{-2} \Biggr]^{-1} \Biggr\},$$

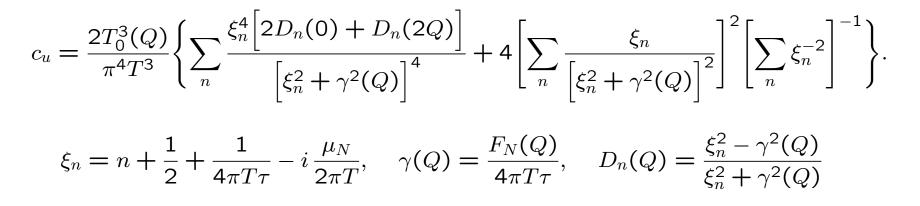
$$\xi_n = n + \frac{1}{2} + \frac{1}{4\pi T\tau} - i\frac{\mu_N}{2\pi T}, \quad \gamma(Q) = \frac{F_N(Q)}{4\pi T\tau}, \quad D_n(Q) = \frac{\xi_n^2 - \gamma^2(Q)}{\xi_n^2 + \gamma^2(Q)}.$$

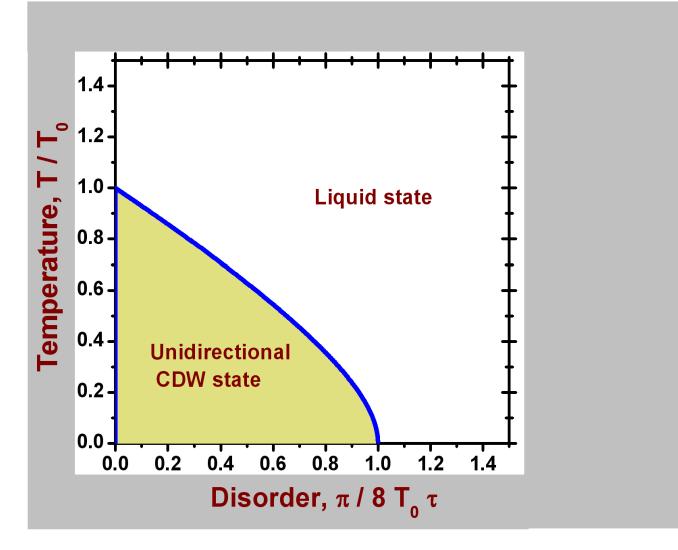
Free energy of the unidirectional CDW state

$$\mathcal{F}_u = \mathcal{F}_0 + 4L_x L_y n_L T_0(Q) \left[a_u \Delta^2(Q) + c_u \Delta^4(Q) \right]$$

where $T_0(Q) = -n_L U_{HF}(Q)/4$, and

$$a_u = \left[1 - \frac{T_0(Q)}{\pi^2 T} \sum_n \frac{1}{\xi_n^2 + \gamma^2(Q)}\right],$$





Phase diagram at half-filled Landau level ($\mu_N = 0$)

• The unidirectional CDW is created at the wave vector

$$Q_{0}pprox 2.4 R_{c}^{-1}$$

which is independent on $1/\tau$.

• The temperature T of the second order phase transition (spinodal line) can be found from the equation

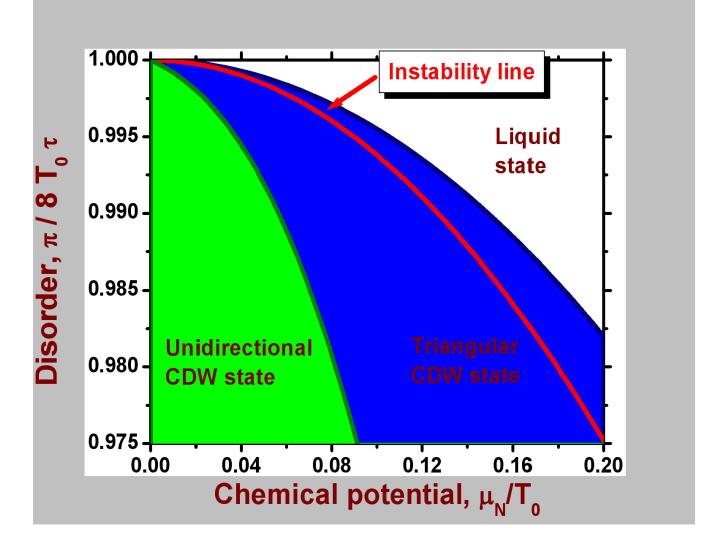
$$\frac{T}{T_0} = \frac{2}{\pi^2} \zeta \left(2, \frac{1}{2} + \frac{1}{4\pi T \tau} \right),$$

where $T_0 = T_0(Q_0)$ is the transition temperature in the clean case $1/\tau = 0$ and $\zeta(a, z)$ is generalized Riemann zeta function.

• The unidirectional CDW state exists only if disorder is rather weak

$$\frac{1}{\tau} \le \frac{1}{\tau_c} = \frac{8T_0}{\pi}$$

Phase diagram at T = 0 near half-filling $\mu_N = 0$



Phase diagram at T = 0 near half-filling $\mu_N = 0$

The first order phase transition from the liquid state to the triangular CDW state occurs on the line

$$\frac{\pi}{8T_0\tau} = 1 - 0.45 \frac{\mu_N^2}{T_0^2}, \qquad \mu_N \ll T_0,$$

the instability line is given by

$$\frac{\pi}{8T_0\tau} = 1 - 0.62 \frac{\mu_N^2}{T_0^2}, \qquad \mu_N \ll T_0,$$

the first order transition from the triangular CDW state to the unidirectional CDW state occurs on the line

$$\frac{\pi}{8T_0\tau} = 1 - 2.84 \frac{\mu_N^2}{T_0^2}, \qquad \mu_N \ll T_0.$$

NOTE: The triangular CDW state is created at the shifted wave vector

$$Q = Q_0 - 0.02(\mu_N \tau)^2 R_c^{-1}.$$

Weak crystallization corrections

Following S.A. Brazovskii [JETP 41, 85 (1975)], we perform the following shift

$$\Delta \to \Delta + \delta$$

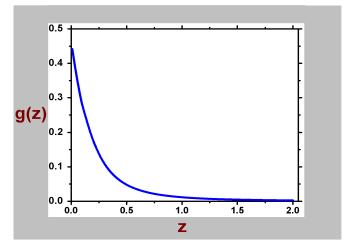
and integrate out the fluctuations δ . This leads to the change in coefficients a_t, b_t, c_t and a_u, c_u . Now the transition temperature T at half-filling $\mu_N = 0$ can be found from the equation

$$\frac{T}{T_0} = \frac{2}{\pi^2} \zeta \left(2, \frac{1}{2} + \frac{1}{4\pi T \tau} \right) \left[1 - g \left(\frac{1}{4\pi T \tau} \right) N^{-2/3} \right],$$

Therefore, shift of the transition tem-

perature

$$rac{\delta T}{T} \propto \left(rac{1}{N}
ight)^{2/3} \ll 1$$



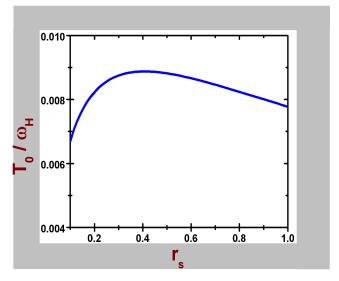
Comparison with experiment

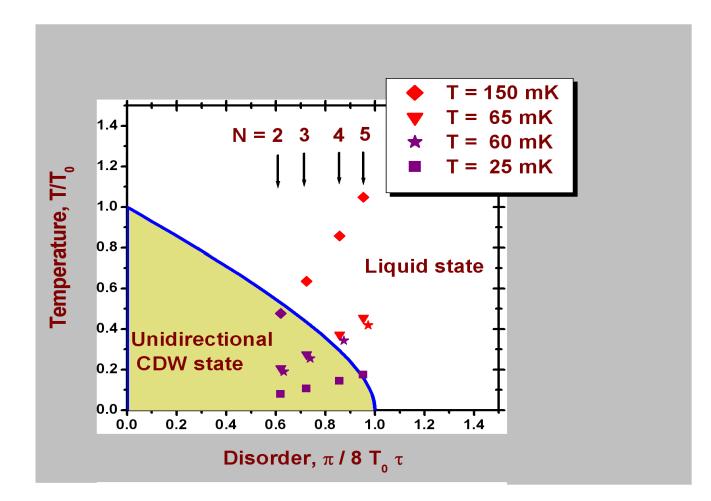
According to Koulakov, Fogler, and Shklovskii, temperature of instability in the clean case

$$T_0 = \frac{r_s \omega_H}{4\pi\sqrt{2}} \left[\ln\left(1 + \frac{0.3}{r_s}\right) - \frac{0.3}{\sqrt{2} + r_s} \right], \qquad N^{-1} \ll r_s \ll 1,$$

where $r_s = \sqrt{2}e^2/R_c\omega_H$. We can estimate T_0 and $1/\tau$ through mobility μ_0 and electron density n_e as follows

$$T_0 \simeq 0.008 \,\omega_H, \, \frac{1}{\tau} \simeq \frac{\sqrt{2N}}{\pi} \sqrt{\frac{e}{\mu_0 n_e}} \,\omega_H$$





The triangles, rhombi, and squares are extracted from the experimental data of M.P. Lilly et.al., where as stars after R.R. Du et.al.

Conclusions

• The mean-field CDW instability exists if the Landau level broadening $1/\tau \le 1/\tau_c = 8T_0/\pi$.

• At half-filling $\mu_N = 0$ the unidirectional CDW state appears, and the presence of disorder does not change the vector of the CDW state.

• Near half-filling $\mu_N = 0$, the unidirectional CDW state is energetically more favorable than the triangular one.

• The weak crystallization corrections to the mean-field result are of the order of $(1/N)^{2/3} \ll 1$.