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lifetime  >>  cooling time        TX~Tlattice

how to get cold exciton gas?
Tlattice << 1 K in He refrigerators
finite lifetime of excitons could result to high exciton temperature:  TX > Tlattice
TX is determined by the ratio of the exciton lifetime and cooling time

why it's interesting?
exciton condensate is a new form of matter
high Tc for exciton BEC due to light exciton mass: Tc 

exciton ~ 1 K
possibility to study crossover from BEC to BCS-like state
possibility of manipulating condensate in microscopic semiconductor devices

dense electron-hole system (naB
d >>1)

excitons are formed at Fermi level like Cooper pairs
exciton condensate called excitonic insulator 
is analogous to BCS superconductor state

dilute exciton gas (naB
d <<1)

excitons are weakly interacting Bose particles
exciton condensation is analogous to 
Bose-Einstein condensation

exciton condensation

L.V. Keldysh, Yu.E. Kopaev (1964)
L.V. Keldysh, A.N. Kozlov (1968)

naB
d ~1 n

Tc matched electron and 
hole Fermi surfaces
mismatched

Kelvin for excitons

microKelvin for atoms



Why indirect excitons in CQWs?
GaAs

AlxGa1-xAs

z
E

K
E

exciton
dispersion effective cooling of 2D excitons by bulk phonons

2D: coupling of E=0 state to continuum of 
energy states E > E0

3D: coupling of E=0 state to single state E=E0

exciton energy relaxation
by LA-phonon emission

E0=2Mxvs
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potential candidate for realization of exciton condensation

long exciton lifetime due to separation
between electron and hole layers
103 times shorter exciton cooling time
than that in bulk semiconductors

coldest exciton gas: TX << 1K < Tc



How to get cold exciton gas?

excitons are generated hot and cool 
down to Tlattice via phonon emission

TX drops down 
to 400 mK in 5 ns

< Tc << lifetime

ways to overcome the obstacle of hot generation and 
study cold gases of indirect excitons with TX ~Tlattice

discrimination in spacediscrimination in time
study indirect excitons 
a few ns after the end of
photoexcitation pulse

study indirect excitons
excitons beyond  
photoexcitation spot



Repulsive interaction between indirect excitons
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indirect excitons are oriented dipoles

dipole-dipole repulsive interaction
stabilizes exciton state against formation of metallic electron-hole droplets

results in effective screening of in-plane disorder
A.L. Ivanov, EPL (2002)

D. Yoshioka, A.H. MacDonald, J. Phys. Soc. Jpn. 59, 4211 (1990)
X. Zhu, P.B. Littlewood, M. Hybertsen, T. Rice, PRL 74, 1633 (1995) the ground state 

of the system 
is excitonic



Experiments on exciton condensation in CQW nanostructures

effects indicating exciton condensate 
superradiance (macroscopic dipole), 
onset of exciton superfluidity, and 
fluctuations near phase transition

Butov et al.  J. de Physique 3, 167 (1993)
PRL 73, 304 (1994) 
PRB 58, 1980 (1998)

2
3 4 5 6

0

4

8

12

0.02

0.04

0.06

0.08

0.10

0.12

 M
agnetic Field (T)

τ-1
 (n

s-1
)

Temperature (K)2
3 4 5 6

0

4

8
12

0.000

0.005

0.010

0.015

0.020

 M
agnetic Field (T)

τ r-1
 (n

s-1
)

Temperature (K)

0 4 8 12 16

PL
 in

te
ns

ity

B (T)

50 100 150

bosonic stimulation of exciton 
scattering - signature of 
degenerate Bose-gas of excitons

Butov et al. PRL 86, 5608 (2001)
PRL 87, 216804 (2001)

shrinkage of spatially 
localized exciton cloud
with reducing T 
degenerate exciton gas

Butov et al. Nature 417, 47 (2002)
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Time (ns)

macroscopically 
ordered exciton state

Butov et al. Nature, 418, 751 (2002)
difference between quasi-condensate –
macroscopic occupation of low energy 
states and BEC – macroscopic occupation 
of ground state – is not essential for most 
experiments [V.N. Popov (1972)] and 
unambiguous distinguishing between them 
in experiments is hard (if possible)

http://www.lbl.gov/~butov/
http://www.issp.ac.ru/butov/



Bosonic stimulation of exciton scattering
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PRL 87, 26804 (2001)

scattering rate of bosons 
to a state p is ~(1+Np)

L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard, PRL 86, 5608 (2001)



Experiment vs theory 
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NE=0 = eT /T - 10      X

T0 = πh2n / 2MXkB
_

temperature of quantum degeneracy
Time (ns)

dNE=0/dt = ΓphNE(1 + NE=0)(1 + nE
ph) – Γph (1 + NE)NE=0 nE

ph – NE=0 / τ  =

=  Γph (NE - nE
ph)NE=0 + Γph (1 + nE

ph) NE  – NE=0 / τ     

Frolich inversion condition
counterpart of population 
inversion condition for lasers

at low Tlattice and in presence 
of generation of hot excitons
NE – nE

ph >0



2D image of indirect exciton PL vs Pex
~ 

60
0 

µm

L.V. Butov, A.C. Gossard, and D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]



Radial dependence of indirect exciton PL

1.54 1.56 1.58

I
D

x4
1.54 1.55 1.56 1.57

 

0 40 80 120

Energy (eV)

PL
 in

te
ns

ity
indirect
exciton Dbulk

r (µm)

PL
 p

ea
k 

in
te

ns
ity

Energy (eV)

PL
 in

te
ns

ity excitation 
spot center 
r=0

external 
ring center

internal
ring center

internal 
ring

external ring

D

excitation
spot profile

r=0

3.
7 

µm



Ring structure of indirect exciton PL
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Temperature dependence of ring-shaped PL structure
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with increasing T rings wash out and spatial 
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530 µm Ring fragmentation
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2D image of indirect exciton PL vs temperature

T=0.38-20 K



Temperature dependence of ring fragmentation into 
spatially ordered array of beads
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Ordered phase
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Discussion

origin of the rings

on origin of the macroscopically ordered exciton phase

L.V. Butov, L.S. Levitov, A.V. Mintsev, B.D. Simons, A.C. Gossard, D.S. Chemla, unpublished



Similarities in astrophysics: ring structure of expanding matter

ring structures are generic for systems with
centrally symmetric mass flow

a planetary nebula - represents the 
final stage in the evolution of a 
Sun-like star

the nebular shells with textures 
are formed by the wind 
of material ejected 
by the star

Rayleigh-Taylor 
instability ?Helix  nebula

“…head-on collision between two galaxies.”
“Like a rock tossed into a lake, the collision sent a 
ripple of energy into space, plowing gas and dust in 
front of it … this cosmic tsunami leaves in its wake a 
firestorm of new star creation … in large fragmented 
gas clouds.”

from http://hubblesite.org
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excitons can travel in a dark state after having been excited
until slowed down to a velocity below photon emission
threshold, where they can decay radiatively

internal ring

TX drops outside of excitation spot 
fraction of optically active excitons increases



excitons

holes

electrons

distance
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off-resonance laser excitation creates charge imbalance in CQW
electrons and holes have different collection efficiency to CQW

same for 
e          h

holes created at the excitation spot diffuse out 
this depletes electrons in the vicinity of the laser spot
creating electron-free and hole rich region

excitons are generated within the 
interface between the hole rich region 
and the outer electron rich area 

external ring
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T=4.7 K
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expansion of the ring with decreasing gate voltage

a reduction of transverse electric field, and hence
of the current I(r), depletes electrons in CQWs

External control of exciton rings
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T=4.7 K
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Interaction of two exciton rings

rings attract one another
at large distances

the existence of ``dark matter'' 
outside the rings that mediates
the interaction

electron flow outside each ring 
which is perturbed by the 
presence of another ring

electrons in the area between the 
rings are depleted more strongly

attraction of the rings
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around the localized spots, small rings appear which shrink at increasing Pex

localized sources of electrons (due to pinholes) embedded in the hole rich illuminated area
e      h

direct exciton emission indicates hot cores at the center of the collapsed rings



Ordered phase

aggregates on the ring have no hot cores contrary 
to bright spots generated by the pinholes 

indirect exciton PL direct exciton PL 

aggregates move in concert with the ring when 
the position of the source is adjusted showing 
further that in-plane potential fluctuations are 
not strong enough to destroy the ordering
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the rings represent a source of cold excitons 
with a temperature close to that of the lattice
in external ring heating sources vanish exciton gas is the coldest

macroscopically ordered exciton state

new state, not predictedmacroscopically ordered phases can be both in
quantum (e.g. atom BEC) 
and classical (e.g. Taylor vortices) systems microscopic nature of 

ordered exciton state - ?

the macroscopically ordered phase appears abruptly at low temperatures 
is observed in the same temperature range as bosonic stimulation of exciton scattering

statistically degenerate Bose-gas of excitons

the macroscopic ordering is an intrinsic 
property of exciton condensate ?



Similarities with known phenomena: Modulational instabilities
stationary solutions to 1D nonlinear Schrodinger
equation under periodic boundary conditions 

stationary soliton trains
experimental example: 
soliton train in atom BEC with attractive interaction
K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

on a ring

soliton train
is observed 
below Tc only

intrinsic 
property of 
atom BEC

attractive interaction
for indirect excitons ?

the macroscopic ordering is an intrinsic 
property of exciton condensate ?

repulsion between beads of soliton train is wave interference phenomenon



Similarities in astrophysics

S. Chandrasekhar and E. Fermi (1953)
gravitational instability of an infinite cylinder:
the cylinder is unstable for all modes of deformation with 
wavelengths exceeding a certain critical value

fragmentation of 
the cylinder D

λ

infinite cylinder for the mode of 
maximum 
instability λ ~ πD

fragmentation of 
gaseous slabs and
filaments

step in star formation

gravitational
instability
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attractive interaction ?
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repulsive interaction
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attractive interaction
(for cos2θ < 1/3)

dipole-dipole interaction
U ~ d2/r3 (1-3cos2θ)

θ

soliton train in atom BEC appears when 
the interaction is switched from repulsive 
to attractive
K.E. Strecker et al., Nature 417, 150 (2002)

when in-plane electric field exceeds the threshold the
interaction switches from repulsive to attractive ?



indirect excitons with spatially separated 
electrons and holes, deh~10 nm

strong dipole-dipole interaction
large in-plane polarizability h

e
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spontaneous in plane dipole alignment 
at T<Tc

instability due to attractive interaction

?
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