Decoherence in a Cooper pair Shuttle

A.Romito, F. Plastina and Rosario Fazio

Seuola Normale Superiore - Pisa

Outline

Josephson vs Coulomb Blockade

Nanomechanical systems and shuttles

Cooper pair shuttle

Decoherence

Josephson current in a S-SET

$$H_c = E_c (\hat{n} - n_g)^2$$

$$I = I_J \sin \left(\phi_1 - \phi_2 \right)$$

The critical current depends on the charging energy of the island

Single Electron effects in the presence of mechanical vibrations

Gorelik et al 1998

SHUTTLE EFFECT

electrode clapper drain

- •Tuominen et al 1999
- Park et al 2000
- Erbe et al 2001

Superconducting Electrodes

Shuttle effect with Cooper pairs?

Gorelik et al 2001

Is it a coherent effect?

What is the role of decoherence?

A single Cooper-pair box, by periodically moving between two superconducting leads, is able to keep phase coherence of the two distant electrodes

The Model

$$H = E_C (n - n_g(t))^2 - \sum_{\alpha = L,R} E_J^{\alpha}(t) \cos(\varphi - \varphi_{\alpha})$$

The external leads have well defined phase

• The system is in regime of strong Coulomb blockade $(E_J << E_C)$. The Hilbert space of the shuttle is two-dimensional, spanned by two charge states differing by one Cooper-pair.

$$E_J^L \neq 0, E_J^R = 0, n_g = \frac{1}{2}$$

Free evolution

$$E_J^L = 0, E_J^R \neq 0, n_g = \frac{1}{2}$$

"Josephson hybrid"

$$|\psi>=\alpha|0>+\beta e^{i\varphi_{L/R}}|A$$

Accumulated phases

Phase difference

Dynamical phases

$$\underbrace{9} = \frac{1}{2} \int_{A}^{B} E_{J}(t) dt$$

$$\underbrace{\chi} = \frac{1}{2} \int_{B}^{C} E_{C}(t) dt$$

Decoherence

- Gate fluctuations
- Background charges
- Quasi particle tunneling

• ...

Important in establishing a stationary state

Strongly affects the Josephson current

Coupling to the environment

$$H_{\text{coupling}} = \sum_{i} \lambda_{i} (b_{i} + b_{i}^{+})$$

Treated in Born-Markov approximation

Master equation for the density matrix ρ in the space generated by $|0\rangle$, $|1\rangle$ states

Steady state: fixed point for the map $\rho(nT) \rightarrow \rho(nT + T)$

Contact region

Free evolution region

Modification of the critical current:

$$I = I \left(\phi, \mathcal{G}, \chi, \gamma_{J} t_{J}, \gamma_{c} t_{c} \right)$$

Average current over a period:

$$I = \frac{1}{T} \int_{\text{period}} \langle \hat{I}(t) \rangle dt$$

Weak damping $\gamma_J t_J << \gamma_C t_C << 1$

$$\gamma_J t_J << \gamma_C t_C << 1$$

$$I \approx \frac{2e (\gamma_J t_J) (\cos \varphi + \cos 2\chi) \tan \vartheta}{T (\gamma_C t_C)} \frac{1 + \cos \varphi \cos 2\chi}{1 + \cos \varphi \cos 2\chi}$$

Current is suppressed if dephasing in the contact region tends to zero

Strong damping

$$\gamma_J t_J >> 1$$
, $\gamma_C t_C >> 1$

the coherence is lost before the period is completed: the current is exponentially suppressed

Change in sign

Dependence on the dephasing rates

Zero-frequency noise

Strong damping
$$S(0) = \frac{4e^2}{T} \left\{ \frac{1}{2} - e^{-\gamma_j t_j} \cos \theta + e^{-2\gamma_j t_j} f(\theta, \chi, \phi, ...) \right\}$$

$$S(0) = \frac{4 e^2}{T} \frac{1}{\gamma_c t_c} \frac{\tan^2 \theta \sin^2 \phi}{2(1 + \cos \phi \cos(2\chi))}$$

Current noise

$$S(\omega) = \frac{1}{T} \int_{0}^{T} dt \int_{-\infty}^{+\infty} d\tau \left\{ \frac{1}{2} \left\langle \hat{I}(t+\tau)\hat{I}(t) \right\rangle - \left\langle \hat{I}(t+\tau) \right\rangle \left\langle \hat{I}(t) \right\rangle \right\} e^{-i\omega\tau}$$

60 HEWLETT ↑ ↑ ↑ ↑ ↑

HEWLETT A

Conclusions

- The Cooper pair shuttle is able to mantain and create phase coherence between two "distant" superconductors.
- Fluctuations of gate voltage can either enhance or suppress the supercurrent.
- The Cooper pair shuttle can junction behavior.
- The current noise displays a peak at Josephson energy.