ELECTRON ENERGY and PHASE RELAXATION in the PRESENCE of MAGNETIC IMPURITIES

L.I. Glazman

University of Minnesota

in collaboration with

A. Kaminski (University of Maryland)M. Vavilov (University of Minnesota)A.I. Larkin (Univ. of Minnesota & Landau Inst.)

Thanks to:

H. Pothier (SACLAY), N. Birge (MSU), C. Bauerle (CNRS), B.L. Altshuler (Princeton)

MESO 2003

Outline

- Electron energy and phase relaxation in a Fermi liquid
- The effect of magnetic impurities on electron momentum and phase relaxation
- Electron energy relaxation facilitated by magnetic impurities
- Quenching the impurity dynamics by a magnetic field or RKKY interaction: consequences for conduction electrons

1. Electron relaxation in a "clean" Fermi liquid

Rate of transitions:

2. Electron energy relaxation in a "dirty" Fermi liquid

$$K(E) = \int d^d q |V(q)|^2 \frac{1}{(qv_F)^2}$$

Particles diffuse instead of moving ballistically, stay together and interact for a longer time

1D wire

$$K(E) = \int d^{d}q |V(q)|^{2} \left[\frac{Dq^{2}}{E^{2} + (Dq^{2})^{2}} \right]^{2}$$

1979 Schmid; Altshuler, Aronov

 $D = \frac{1}{3} v_F^2 \tau_{tr}$

$$\frac{1}{L} \gg \lambda_F \qquad \frac{1}{\tau_{\varepsilon}} = \int E dEK(E) \propto \left(\frac{\lambda_F}{L}\right)^2 \sqrt{\frac{\varepsilon}{\hbar \tau_{tr}}} \propto \varepsilon^{1/2}$$

$$K(E) \sim \left(\frac{\lambda_F}{L}\right)^2 \frac{1}{\sqrt{\hbar \tau_{tr}}} E^{-3/2}$$

3. Evolution of an electron distribution: kinetic equation

 $\frac{df}{dt} = I\{f\} \text{ collision integral}$ $I\{f\} = -\int d\varepsilon' \int dEK(E)$ $\times \{f(\varepsilon)f(\varepsilon')[1 - f(\varepsilon - E)][1 - f(\varepsilon' + E)]$ $-f(\varepsilon - E)f(\varepsilon' + E)[1 - f(\varepsilon)][1 - f(\varepsilon')]\}$

 $\frac{1}{\tau_{\varepsilon}} \propto \varepsilon^2 \leftrightarrow K(E) \propto \text{const}$ $\frac{1}{\tau_{\varepsilon}} \propto \varepsilon^{1/2} \leftrightarrow K(E) \propto E^{-3/2}$

4. Electron phase relaxation in a "dirty" Fermi liquid

d=1 or 2: e-e collisions are <u>quasi-elastic</u>, phase is lost faster than energy

 $\frac{1}{\tau_{\varphi}(\varepsilon)} \sim \varepsilon^{1/3} \tau^{-2/3} \propto \varepsilon^{2/3}$ (Altshuler, Aronov, Khmelnitskii 1982)

 $1/\tau_{\varphi} \gg 1/\tau_{\varepsilon} \text{ at } \varepsilon \ge (\lambda_F/L)^4 \hbar \tau_{tr}^{-1}$

Fermi Liquid: $\tau_{\varphi}, \tau_{\varepsilon} \to \infty$ at $\varepsilon \to 0$ How to measure $\tau_{\varphi}, \tau_{\varepsilon}$?

 $\tau \varphi$: Temperature dependence of magnetoresistance $\delta R(B/B^*); B^* \sim \Phi_0/\sqrt{L^2 D \tau_{\varphi}(T)} \propto 1/\tau_{\varphi}^{1/2}$

 $au_{arepsilon}$: Relaxation of out-of-equilibrium electrons

Experiments on Energy Relaxation: Cu

Results:

VOLUME 79, NUMBER 18

PHYSICAL REVIEW LETTERS

3 NOVEMBER 1997

Energy Distribution Function of Quasiparticles in Mesoscopic Wires

H. Pothier, S. Guéron, Norman O. Birge,* D. Esteve, and M. H. Devoret

Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette, France (Received 25 April 1997)

Data for $f(\varepsilon)$ scale with $E/eU \rightarrow K(E,U) \propto \frac{1}{E^2}g\left(\frac{eU}{E}\right)$

If K is U-independent, then

with $\tau_0 \approx 1 n s$;

 $1/\tau_{\varepsilon}$ does not go to zero at $\varepsilon \to 0$!

FIG. 3. Continuous lines in all four panels: distribution functions, for *U* ranging from 0.05 to 0.3 mV by steps of 0.05 mV, plotted as a function of the reduced energy E/eU, for the same positions as in Fig. 2. Open symbols are best fits of the data to the solution of the Boltzmann equation with an interaction kernel $K(x, x', \varepsilon) = \tau_0^{-1} \delta(x - x')/\varepsilon^2$: in top panel, open circles correspond to the calculated distribution function in the middle of wires 1 and 2 (x = 0.5), with $\tau_0/\tau_D = 2.5$ and $\tau_0/\tau_D = 0.3$, respectively (both compatible with $\tau_0 \sim 1$ ns). In bottom panels, open diamonds are computed at x = 0.5 and x = 0.25 with $\tau_0/\tau_D = 0.08$ ($\tau_0 \sim 0.5$ ns).

Experiments on Energy Relaxation: Ag vs. Cu

Energy Redistribution Between Quasiparticles in Mesoscopic Silver Wires JLTP 118, p. 447 (2000)

F. Pierre, H. Pothier, D. Esteve, and M.H. Devoret

We have measured with a tunnel probe the energy distribution function of quasiparticles in silver diffusive wires connected to two large pads ("reservoirs"), between which a bias voltage was applied. From the dependence in energy and bias voltage of the distribution function we have inferred the energy exchange rate between quasiparticles. In contrast with previously obtained results on copper and gold wires, these data on silver wires can be well interpreted with the theory of diffusive conductors...

Distribution functions for U = 0.1, 0.2, 0.3, and 0.4 mV, plotted as a function of the reduced energy E/eU. Left panel: Ag sample D20a; right panel: Cu sample, $L = 5 \ \mu$ m.

"In silver samples we have assumed that the interaction kernel still obeys a power law $K(\varepsilon) = \kappa_{\alpha} \varepsilon^{-\alpha}$, with κ_{α} and α taken as fitting parameters... the best fits obtained with the exponent set at its predicted value $\alpha = 3/2$."

Energy Relaxation in Ag, Cu, and Au wires

F. Pierre et al., JLTP 118, 437 (2000) and NATO Proceedings (cond-mat/0012038)

Electron Phase Relaxation in Ag, Cu, and Au wires

Effect of magnetic impurities on the electron transport

1. Interaction of a conduction electron with a magnetic impurity

2. Scattering off a magnetic impurity (Born approximation)

 $\left|A_{\mathbf{p}\sigma\to\mathbf{p}'\sigma'}^{(1)}\right| \propto J_0^2 \delta(\varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'})$ Scattering is elastic, but scrambles electron spin

Contribution to the momentum and phase relaxation rates:

$$\frac{1}{\tau_{\rm s}} = 2\pi\nu n_{\rm s} J_0^2 S(S+1) \qquad \text{(saturates at low T)}$$

Effect of magnetic impurities on the electron transport

3. Scattering in the leading logarithmic approximation

$$\begin{split} A^{(2)}_{\mathbf{p}\sigma\to\mathbf{p}'\sigma'} \propto & 2\int_{-D}^{0} d\varepsilon'' \frac{\nu J_{0}^{2}}{\varepsilon - \varepsilon''} - \int_{0}^{D} d\varepsilon'' \frac{\nu J_{0}^{2}}{\varepsilon'' - \varepsilon} \\ & \propto \nu J_{0}^{2} \mathrm{ln} \frac{D}{|\varepsilon|} \end{split} \tag{Kondo (1964)}$$

Sum of the leading log-terms (Abrikosov; Suhl, 1965):

$$J_0 \to J = \frac{J_0}{1 - J_0 \nu \ln |D/\varepsilon|} = \frac{1}{\nu} \frac{1}{\ln |\varepsilon/T_{\rm K}|}$$

Kondo temperature: $T_{\rm K} = D \exp\left(-\frac{1}{J_0 \nu}\right)$

Contribution to the resistivity and phase relaxation rate: $\delta \rho_K \propto \frac{1}{\tau_s} \propto \frac{n_s}{\nu} \frac{1}{\ln(T/T_K)}$

Scattering is still elastic!

1. Simplest inelastic process in a toy model

Scattering cross-section: $\left|A_{\mathbf{p},\mathbf{p}'\to\mathbf{p}_1,\mathbf{p}_3}^{(2)}\right|^2 \sim \frac{J_0^4}{E^2} \delta(\xi_{\mathbf{p}} + \xi_{\mathbf{p}'} - \xi_{\mathbf{p}_1} - \xi_{\mathbf{p}_3})$

2. Full 2nd order perturbation theory result

Total cross-section $\varepsilon, \varepsilon' \to \varepsilon - E, \varepsilon' + E$ averaged over **S**:

$$K(E) = \frac{\pi n_{\rm s}}{2 \nu} (J\nu)^4 S(S+1) \frac{1}{E^2}$$

3. Dressing the bare diagram: relaxation of the impurity spin

$$K(E) \propto \frac{1}{E^2 + (\hbar/\tau_K)^2}$$

$$\frac{\hbar}{\tau_K} \propto eU$$
 $K(E) \propto \frac{1}{E^2}g\left(\frac{eU}{E}\right)$ Scaling is preserved

4. Kondo renormalization of the inelastic scattering

Leading log approximation:

$$\nu J \longrightarrow \left[\ln \frac{|\varepsilon|}{T_K} + \ln \frac{|\varepsilon - E|}{T_K} \right]^{-1} , \quad \nu J' \longrightarrow \left[\ln \frac{|\varepsilon'|}{T_K} + \ln \frac{|\varepsilon' + E|}{T_K} \right]^{-1}$$

 $K(E) \propto (J \cdot J')^2 \longrightarrow K(\varepsilon, \varepsilon', E)$

The dependence on $\varepsilon, \varepsilon'$ is weak, and the kernel can be simplified, if the electron distribution $f(\varepsilon)$ is smooth

Inelastic scattering off a magnetic impurity $\frac{K(E)}{E} \approx \frac{\pi}{2} \frac{n_s}{\nu} S(S+1) \left[\ln \frac{eU}{T_K} \right]^{-4} \frac{1}{E^2 + \left[\frac{\hbar}{\tau_K(eU)} \right]^2}$ $\frac{\hbar}{\tau_K(eU)} = \gamma \left[\ln \frac{eU}{T_K} \right]^{-2} \cdot eU, \quad \gamma \sim 1$

Scaling is intact at $eU \gg T_K$, where the ln-factors are almost const

At E,eU << T_K: back to FL behavior, $K(E) \sim \frac{n_s}{\nu} \frac{1}{T_K^2}$

(energy-independent)

Au:Fe
$$\rightarrow T_K \simeq 0.3$$
K; $U \lesssim 30 \ \mu V$

Energy relaxation:experiment vs. theory

Experiment: Observed scaling of $f(\varepsilon)$ suggests $K(\varepsilon) \sim 1/\varepsilon^2$.

Theory: Magnetic impurities lead to $K(E) \sim 1/E^2$. For Fe impurities in Au, it is sufficient to have $n \sim 10$ ppm

Experiment: SACLAY samples <u>did</u> contain Fe impurities with n up to \sim 30ppm

SACLAY vs MSU Au samples Pierre et al., in Kondo Effect and Dephasing in Low-Dim. Metallic Systems (cond-mat/0012038)

Kondo effect: $R(T) = A - B \log(T) \Rightarrow n_{Fe} \approx 50 \text{ ppm (courtesy N. Birge)}$

Energy relaxation:experiment vs. theory

Theory: <u>Prediction</u>: Magnetic field should suppress electron energy relaxation at $E \le g\mu_B B$.

Effect of spin polarization on the energy relaxation

1. Suppression of K(E) at $\varepsilon \ll g\mu_B B$

$$K(E) \sim \frac{n_s}{\nu} \frac{1}{\ln^4(g\mu_B B/T_K)} \left(\frac{1}{g\mu_B B}\right)^2$$

(A.K., L.G., 2001)

2. Enhancement of $1/\tau_{\varepsilon}$ at $\varepsilon > g\mu_B B$

Kinetic equation in the presence of n_s and SO interaction

– Göppert, Galperin, Altshuler, Grabert, 2002

3. Step-like dependence of $1/\tau_{\varepsilon}$ vs. ε at $\varepsilon \sim g\mu_B B$

$$\frac{\hbar}{\tau_{\varepsilon}} \sim \frac{n_s}{\nu} \frac{1}{\ln^4(g\mu_B B/T_K)}, \quad \varepsilon \lesssim g\mu_B B \\
\frac{\hbar}{\tau_{\varepsilon}} \sim \frac{n_s}{\nu} \frac{1}{\ln^2(g\mu_B B/T_K)}, \quad \varepsilon \gtrsim g\mu_B B$$

Effect of spin polarization on the energy relaxation: Ag[Mn]

Experiment: Ag[Mn], Anthore et al. (SACLAY), cond-mat/0301070

Energy Relaxation in Ag, Cu, and Au wires

F. Pierre et al., JLTP 118, 437 (2000) and NATO Proceedings (cond-mat/0012038)

Effect of spin polarization on the energy relaxation: Cu

INFLUENCE OF MAGNETIC FIELD ON EFFECTIVE ELECTRON-ELECTRON INTERACTIONS IN A COPPER WIRE

Cond-mat/0109279

Effect of spin polarization on the phase relaxation

Effect of spin polarization on the phase relaxation

1. Weak localization in a wire

$$\Delta \sigma_{\rm wl}^{\sigma\sigma'} \propto \langle A_{\sigma'} A_{\sigma}^* \rangle \propto \langle e^{i\Phi_{\sigma'}} e^{-i\Phi_{\sigma}} \rangle$$

$$\Delta \sigma_{\rm WL} = -\frac{e^2}{2\pi\hbar} \sqrt{D} \left(\frac{2}{\sqrt{2/3\tau_{\rm s} + 4/3\tau_{\rm so}}} + \frac{1}{\sqrt{2/3\tau_{\rm s} + 4/3\tau_{\rm so}}} - \frac{1}{\sqrt{2/\tau_{\rm s}}} \right).$$

Cooperon spin: S=1, S_z=± 1 S=1, S_z=0 S=0

(Hikami, Larkin, Nagaoka, 1980)

 σ

spin relaxation rate:
$$\frac{1}{\tau_{\rm s}} = 2\pi \frac{n_{\rm s}}{\nu} \frac{S(S+1)}{\ln^2 |T/T_{\rm K}|},$$

SO scattering rate in metals (Li ÷ Ag): $\frac{1}{\tau_{so}} \simeq 10^{-6} Z^4 \frac{1}{\tau_{tr}}$

(Gershenson, Sharvin, ~1980)

Effect of spin polarization on the weak localization

Effect of spin polarization on the phase relaxation

2. Effect of the magnetic impurities on mesoscopic conductance fluctuations

Landauer formula for DC conductance: $G(t) = \frac{e^2}{\pi t^2}$

$$(t) = \frac{e^2}{\pi\hbar} \sum_{\alpha\beta} |T_{\alpha\beta}(t)|^2$$

WL: spin polarization may change the statistics of random transmission amplitudes $T_{\alpha\beta}$.

 $1/\tau_{SO} = 0$: the change does occur,

 $\Delta G = \langle G \rangle_{\rm GUE} - \langle G \rangle_{\rm GOE} \neq 0$

 $\tau_{SO} = 0$: the change does not occur, $\Delta G = \langle G \rangle_{\text{GUE}} - \langle G \rangle_{\text{GUE}} = 0$ Mesoscopic Conductance Fluctuations: spin dynamics \rightarrow imp. configuration changes with time, $S(t') \neq S(t)$ at $|t-t'| \gg \tau_K$. The difference between samples vanishes:

$$R(\Delta B) \equiv \langle \bar{G}(t,B)\bar{G}(t',B+\Delta B)\rangle$$
$$-\langle \bar{G}(t,B)\rangle\langle \bar{G}(t',B+\Delta B)\rangle = 0$$

 $\begin{array}{l} \mbox{Polarization} \rightarrow \mbox{no spin dynamics} \rightarrow \\ \mbox{mesoscopic fluctuations restored (at any } \tau_{SO}) \end{array}$

$$R(\Delta B) \equiv \langle \bar{G}(t,B)\bar{G}(t',B+\Delta B)\rangle$$
$$-\langle \bar{G}(t,B)\rangle\langle \bar{G}(t',B+\Delta B)\rangle \neq 0$$

h/e Aharonov-Bohm oscillations in a Cu ring

h/e Aharonov-Bohm oscillations – full crossover function

$$\operatorname{var}G(B,T) \propto \frac{e^4}{\pi^2 \hbar^2} \frac{D^{3/2}}{T} \int \frac{d\varepsilon}{4T \cosh^4 \varepsilon/2T} \frac{\exp(-2\pi R \sqrt{\Gamma(\varepsilon, B/T)}/D)}{\sqrt{\Gamma(\varepsilon, B/T)}},$$
$$\Gamma(\varepsilon, B/T) = \left[1 - \frac{\langle \hat{\mathbf{S}}_{\mathbf{z}} \rangle^2 + \langle \hat{S}_z \rangle \tanh(\varepsilon + g\mu_B B)/2T}{S(S+1)}\right] \frac{1}{\tau_{\mathrm{s}}}$$

Relaxation rate Γ depends on *B/T* only; valid for arbitrary spin.

- 1. Why g=0.44? What is S?
- 2. Rate τ_{ϕ} disagree with τ_{ϵ}

Effects of interaction between magnetic impurities

1. Inelastic scattering off impurity pairs

Tail below ε_0 : $f(\varepsilon_0 - V) \propto \frac{T_{\rm sg}}{\tau_s V^2}$

Evolution of $f(\epsilon)$

Effects of interaction between magnetic impurities

2. Resisitivity and $1/\tau_{\phi}$ vs. *T*

R(T) and $\tau_{\varphi}^{-1}(T)$ have maxima only if $n_s > n_{\rm cr}$, allowing for a spin-glass state.

At $T_{\rm sg} \gg T_K$, the maxima are at $T \sim T_{\rm sg} \ln \frac{T_{\rm sg}}{T_K}$.

(virial expansion, valid at $T \gg T_{sg}$)

Contradictory data at τ_{ϕ} , R for $n_s \propto 3 \div 60$ ppm: F. Schopfer, C. Bäuerle et al. PRL (2003).

Conclusions

- Magnetic impurities help to re-distribute energy between the conduction electrons
- Small energy transfers are favored by this mechanism, $K(E) \propto 1/E^2$
- Energy relaxation at $\varepsilon < g\mu_B B$ is suppressed by Zeeman splitting
- Spin polarization affects the WL correction only at small $1/\tau_{SO}$
- Spin polarization enhances the mesoscopic conductance fluctuations
- The discrepancy between the data on energy and phase relaxation is not resolved yet