Transport in Granular Arrays

Alex Kamenev, Minnesota

Alexander Altland,KolnLeonid Glazman,MinnesotaJulia Meyer,Minnesota

Chernogolovka, June 2003.

the Coulomb blockade

accommodation of a single electron costs energy

▶ a quantum dot

the Coulomb blockade

coupling to external leads

► dot coupled to leads by *M* channels with transmission coefficients: $0 < t_s < 1$.

dimensionless conductance: $g = \sum_{s=1}^{M} |t_s|^2$

• alternative interpretation: g = G/d

▶ for g << 1, the dot is in a state of 'Coulomb blockade': total conductance

 $g_{tot} \sim \exp(-E_c/T)$

the Coulomb blockade

gate voltage as an external probe

gate electrode controls electrostatically preferred charge on the dot.

generic values of V: transport blocked

$\blacktriangleright V = E_c/2$

free current flow (Coulomb blockade 'peak')

... however,

- \blacktriangleright the phenomenon is extremely susceptible to the tunneling conductance, g.
 - for g << 1, exponential suppression of the conductance.

► however, for g >> 1, the Coulomb blockade diminishes down to a small correction: $dg \sim exp(-g)$

This contribution exists in parallel to all sorts of other quantum corrections (Altshuler-Aronov, weak localization ...) and is, therefore, nearly invisible.

question addressed in this talk:

• what happens if we consider an array of many strongly coupled (g>>1) dots ?

- ▶ the Coulomb blockade drives the system into an insulating phase.
- the corresponding charge gap is given by

$$\Delta \equiv E_c \exp(-g/4)$$

> at temperatures T < D, both the conductance, and diff. capacitance show activated behavior:

 $g_{tot}, \partial_\mu N \sim \exp(-\Delta/T)$

• tunneling incoherent (effects of quantum interference negligible) for T > g d.

- mechanisms relevant to the physics of the system:
 - charging: E_c ; and gate voltage: $q=V/E_c$
 - ► interface scattering: g

strategy

extended Matveev model

► Flensberg 93, Matveev 94: semi-phenomenological model of the Coulomb blockade in few channel quantum dots.

• generalization to an array:

$$j$$

$$N_{j} = 0$$
• charge displacement field: $Q_{j}(t)$. Physical meaning: $Q_{j+I}(t) - Q_{j}(t) = N_{j}(t) = charge$
sitting on grain no. j .

$$S[\theta] = S_{c}[\theta] + S_{scatt}[\theta]$$

$$S_{c}[\theta] = \frac{1}{T} \sum_{j=1}^{N} \sum_{m} \left[E_{c}(\theta_{j+1,m} - \theta_{j,m} - q)^{2} + |\omega_{m}||\theta_{j,m}|^{2} \right]$$
• reflection coefficient;

$$S_{scatt}[\theta] = D r \sum_{j=1}^{N} \int_{0}^{\beta} d\tau \cos(\theta_{j}(\tau))$$
• for many channels: $r \longrightarrow \prod_{s=1}^{M} r_{s} \ll 1$

analysis of Matveev model

▶ a major simplification: physics controlled by temporal zero mode $Q_{m=0}$. Dynamic modes give rise to inessential renormalization factors :

$$\langle \boldsymbol{q}_{j}^{2}(\boldsymbol{t}) \rangle = \frac{1}{N} \sum_{k} \sum_{m \neq 0}^{E_{c}/T} \frac{1}{E_{C} k^{2} + |\boldsymbol{w}_{m}|} = O(1) \quad \mathbf{k} \text{ IR convergent !}$$

▶ action of the static sector:

$$S[heta] = rac{E_c}{T} \sum_{j=1}^N ig[(heta_{j+1} - heta_j - q)^2 + r \cos(heta_j) ig]$$

interpretation I: lattice version of the classical sin-Gordon model

interpetation II: action of Frenkel-Kontorova (1932) model of atomic absorption on substrates

Frenkel-Kontorova model

$$S[\theta] = \frac{E_c}{T} \sum_{j=1}^{N} \left[(\theta_{j+1} - \theta_j)^2 + r \cos(\theta_j + qj) \right]$$

▶ atoms follow substrate,
$$Q_j = -qj$$
, energy:

$$F[heta] = rac{NE_c}{T} \left[q^2 - r
ight]$$

• ground state of the chain, $Q_j = 0$, energy: $F[\theta] = 0$

• phase transition at critical value: $q^* \sim r^{1/2}$.

excitations of the system: long solitons.

12442244442

implications

▶ in an interval of width $\sim q^*$, centered around q=0, the ground state of the system is q-independent (a)).

► for $q > q^*$, reentrance into q-dependent state (b)). However, plateau formation around other rational values of q.

▶ thermal fluctuations create *q*-dependent excited states (c)) that cost energy $D \sim E_c r^{1/2}$

translation to the metallic context

for zero gate voltage (and other rational values of q), the system is in an insulating state.

• the charge gap is given by: $D \sim E_c r^{1/2}$

• one can show that the insulating state survives generalization to random values of q, however, with a lower gap: $\boldsymbol{D} \sim E_c r$.

the real thing

- shortcomings of the previous discussion
 - Iimitation to few channels.
 - unclear how quantum interference (localization, dephasing, etc.) can be built in.
 - connections to other approaches are unclear.

▶ alternative approach: for g >> 1, large charge fluctuations. Description in terms of the phase f_i conjugate to the charge N_i ([f_i, N_j] = - $i d_{ij}$) is favorable.

warmup: single grain

$$S_c[\phi] = \frac{1}{4E_c} \int_0^\beta d\tau \, \left[\dot{\phi}^2 + 4iE_c q \dot{\phi} \right]$$

$$S_{scatt}[\phi] = g T^2 \int_{0}^{\beta} d\tau d\tau' \frac{\sin^2((\phi(\tau) - \phi(\tau'))/2)}{\sin^2(\pi T(\tau - \tau'))}$$

• for g >> 1, quadratic expansion:

$$S[\phi] \approx \frac{1}{T} \sum_{m} \phi_m \left(\frac{\omega_m^2}{4E_c} + g |\omega_m| \right) \phi_{-m} - \frac{4E_c}{T} q^2$$

f(t)

► anharmonic fluctuations lead to logarithmic corrections: $g_{tot} = \frac{g}{2} \left[1 - \frac{1}{g} \ln \frac{E_c}{T} \right]$

(Fazio & Schoen, 91, Golubev & Zaikin, 96, Efetov & Tschersich, 02, ...) small for $T > E_c exp(-g)$.

instantons

mathematically:

topologically non-trivial excitations - instantons: Korshunov (87)

$$\begin{split} \phi: S^1 \to S^1, \\ \tau \mapsto \phi(\tau) \end{split}$$

$$e^{i\phi(\tau)} = \frac{e^{2\pi i\tau T}-z}{1-\bar{z}e^{2\pi i\tau T}}, \qquad |z|\leq 1$$

- instantons extremize scattering action
- responsible for gate voltage dependence

• action:
$$S = g + \frac{T}{E_c} + 2 \mathbf{p} i q$$

t

f(t)

W=0

W=1

instanton formation in the array

• action:
$$S = g + \frac{I}{E_c} |L| + 2\mathbf{p}iqL$$

re-interpret instanton configuration as a dipole of two opposite charges:

with the fugacity (core energy):
$$exp(-g/2)$$
,

• interacting by one-dimensional Coulomb interaction: $(T/E_c) |x_a - x_b|$;

in a uniform external field: 2piq⁻

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{1}{(k!)^2} \left(e^{-g/2} \frac{E_c}{T} \right)^{2k} \sum_{x_1...x_{2k}}^N e^{-\frac{T}{E_c} \sum_{a,b}^{2k} (-)^{a+b} |x_a - x_b| - 2\pi i q \sum_a^{2k} (-)^a x_a}$$

fluctuation determinant

instantons in the array cont'd

▶ key to solving the problem is equivalence of the Coulomb gas to the sine-Gordon model:

$$S[\theta] = \frac{E_c}{T} \sum_{j=1}^{N} \left[(\theta_{j+1} - \theta_j - q)^2 - e^{-g/2} \cos(\theta_j) \right]$$

fugacity (= pinning strength):

$$\prod_{s=1}^{M} r_s = e^{\frac{1}{2} \sum_{s=1}^{M} \ln(1 - |t_s|^2)} \approx e^{-\frac{1}{2} \sum_{s=1}^{M} |t_s|^2} = e^{-g/2}$$

cf. with the previous approach !

$$\Delta \sim E_c e^{-g/4}$$

dynamics and conductivity

▶ real time classical Langevin dynamics, $q_i \rightarrow q_i(t)$:

$$\frac{1}{g} \frac{d\theta_j}{dt} = E_c \left[\theta_{j+1} - 2\theta_j + \theta_{j-1} - e^{-g/2} \sin(\theta_j + jq) \right] + E + \xi_j(t)$$

the noise correlator: $\langle \mathbf{x}_j(t)\mathbf{x}_{j'}(t') \rangle = \frac{T}{g} \mathbf{d}_{j,j'} \mathbf{d}(t-t')$

► soliton - antisloliton creation as an "under-barrier" process: $n_s = l_s^{-1} exp(-D/T)$, where $l_s = exp(+g/4)$ is the soliton length and $D = E_c exp(-g/4)$ is the charge gap,

• moving solitons, $q_j(t) = q(j-v_s t)$, where the soliton velocity: $v_s = l_s gE$

• current density: $J = e n_s v_s$; conductivity: $s = g exp\{-D/T\}$.

disorder

▶ random gate voltages: $q \rightarrow q_j$

• pinning energy:
$$E_{pin} = E_c \left(e^{-g/2}\right)^2$$

▶ charge gap:
$$\Delta_{random} = \sqrt{E_c E_{pin}} pprox E_c e^{-g/2}$$

▶ role of rare events and relation to Burgulence, Feigelman 1980.

2D case

for N dots -- 2N links:
 N soft modes (placket rotations)

$$S = \frac{E_c}{T} \left(\operatorname{div} \vec{\theta} \right)^2 - \sqrt{\frac{E_c}{T}} e^{-\frac{g}{2}} \left(\cos \theta_x + \cos \theta_y \right)$$

single charge soliton energy:

$$\Delta = \sqrt{E_c T} e^{-g/2} \log\left(\frac{E_c}{T} e^g\right)$$

• conductivity $g_{tot} = exp(-\Delta/T)$

conclusions:

- physics of arrays is equivalent to a classical pinned charge density wave.
- ▶ activation behavior with the charge gap $\Delta \sim exp(-g/4)$.

▶ partition function is dominated by the instanton configurations.

open questions:

inclusion of quantum interference, i.e. how does this mechanism compete/cooperate with effects of localization ?

role of disorder and rare events.