Counting Statistics of Charge Transport

Israel Klich, Technion, Haifa.

Colaborators:
J. E. Avron, Technion, Haifa. G. M. Graf, E.T.H, Zurich.
June, 2003

Outline:

- Counting Statistics - A simple setting.
- Full counting statistics.
- Convergence and Regularization:
\diamond Thermodynamic limit
\diamond Linear dispersion .
- Interpretation, Comparison between a continuous measurement of current and measurement of charge.
- Elaboration on the first moments.
- The many cycle limit: When is the pumping "extensive" in time?

Setting:

- The system consists of reservoirs: $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots$

The reservoirs are coupled at time $t=0$ and decoupled at time T.
\mathcal{R}_{1}
Scattering
\mathcal{R}_{2}

- Measured quantity: charge at the reservoirs in the end compared to the initial charge.
- For simplicity consider just the charge entering and leaving reservoir 1 , and denote \widehat{Q} the projection on \mathcal{R}_{1}.
- A problem of a quantum field coupled to "classical" controlled external potential. The setting applies also to other processes involving transfer of electrons.
- Full counting statistics was introduced in:
L.S. Levitov and G.B. Lesovik, (1993) JETP Lett., 58, pp. 230-235
D.A. Ivanov and L.S. Levitov, (1993), JETP Lett., 58, pp. 461-468
D.A. Ivanov, H.W. Lee and L.S. Levitov, (1997) Phys. Rev., B56, pp. 6839-6850
L.S. Levitov, H.W. Lee and G.B. Lesovik, (1996), JMP, 37, pp. 48454866

Full counting statistics

- The statistics of charge transferred is described by derivatives of:

$$
\chi(\lambda)=\sum P\left(\text { charge in } \mathcal{R}_{1} \text { changed by } n\right) e^{i \lambda n}
$$

- For adiabatic change, and short scattering time Levitov and Lesovik, obtained the following expression for χ :

$$
\begin{equation*}
\chi(\lambda)=\operatorname{det}\left(1+n\left(S^{\dagger} e^{i q \lambda} S e^{-i q \lambda}-1\right)\right) \tag{1}
\end{equation*}
$$

Where n is the occupation number operator and S is the scattering matrix.

It was remarked that "this expression requires careful understanding and regularization".

- Assume that:
$-\alpha, \beta$ are a basis for the Fock space which are eigenstates of the second quantized charge operator \mathbb{Q} of reservoir 1 .
- $\mathbb{U}(T)$ is the evolution in Fock space
- ρ is the initial density matrix, which is assumed diagonal in α.

Then:

$$
\begin{gather*}
\chi(\lambda, T)=\sum_{\alpha, \beta} P(\alpha(t=0), \beta(t=T)) e^{i \lambda(Q[\beta]-Q[\alpha])} \tag{2}\\
=\sum_{\alpha, \beta}<\alpha|\rho| \alpha>|<\alpha| \mathbb{U}^{\dagger}|\beta>|^{2} e^{i \lambda(Q[\beta]-Q[\alpha])} \\
=\operatorname{Tr}\left(\rho \mathbb{U}^{\dagger}(T) e^{i \lambda \mathbb{U}}(T) e^{-i \lambda \mathbb{Q}}\right)
\end{gather*}
$$

Non interacting particles:

- For a single particle operator e^{A} define the second quantized operator

$$
\left\ulcorner\left(e^{A}\right)=\exp \left(\sum A_{i j} a_{i}^{\dagger} a_{j}\right)\right.
$$

- $\Gamma\left(e^{A}\right) \Gamma\left(e^{B}\right)=\Gamma\left(e^{A} e^{B}\right)$ this can be verified by checking:

$$
\begin{equation*}
\left[A_{i j} a_{i}^{\dagger} a_{j}, B_{k l} a_{k}^{\dagger} a_{l}\right]=[A, B]_{m n} a_{m}^{\dagger} a_{n} \tag{3}
\end{equation*}
$$

- For particles this reflects that:

$$
\left\ulcorner\left(e^{A}\right)=e^{A} \oplus\left(e^{A} \otimes e^{A}\right) \oplus\left(e^{A} \otimes e^{A} \otimes e^{A}\right) \oplus \ldots\right.
$$

on the Fock space $\oplus_{n} \operatorname{Sym}($ Asym $)\left(\otimes^{n} H\right)$

- For example, for non interacting particles, Bosons or Fermions, \mathbb{U} is obtained from the single particle evolution U by:

$$
\mathbb{U}=\Gamma(U)=U \oplus(U \otimes U) \oplus(U \otimes U \otimes U) \oplus \ldots
$$

It is evident that $\Gamma\left(U_{1} U_{2}\right)=\Gamma\left(U_{1}\right) \Gamma\left(U_{2}\right)$

- We will use the following formula

$$
\begin{equation*}
\operatorname{Tr}(\Gamma(C))=\prod_{i}\left(1-\xi e^{\mu_{i}}\right)^{-\xi}=\operatorname{det}\left(1-\xi e^{C}\right)^{-\xi} \tag{4}
\end{equation*}
$$

Where $\xi=1$ for bosons and $\xi=-1$ for fermions.

- This is just the partition function of non interacting particles, with Hamiltonian C / β.
- For non interacting particles:

$$
\begin{equation*}
\operatorname{Tr}\left(\Gamma\left(e^{A}\right) \Gamma\left(e^{B}\right) \ldots\right)=\operatorname{det}\left(1-\xi e^{A} e^{B} \ldots\right)^{-\xi} \tag{5}
\end{equation*}
$$

- All the operators appearing in (2) are of the form $\Gamma(\ldots)$ so:

$$
\begin{equation*}
\chi(\lambda, T)=\frac{1}{Z} \operatorname{Tr}\left(\Gamma\left(e^{-\beta H_{0}} U^{\dagger} e^{i \lambda \widehat{Q}} U e^{-i \lambda \hat{Q}}\right)\right) \tag{6}
\end{equation*}
$$

- Formally χ is similar to a partition function, and $\log \chi$ to a thermodynamic potential with respect to λ and the extensive parameter T

$$
\begin{gather*}
\chi(\lambda)=\frac{1}{Z} \operatorname{det}\left(1+e^{-\beta H_{0}}\left(U^{\dagger} e^{i \lambda \widehat{Q}} U e^{-i \lambda \widehat{Q}}\right)\right)= \tag{7}\\
\operatorname{det}\left(1+n\left(U^{\dagger} e^{i \lambda \hat{Q}} U e^{-i \lambda \widehat{Q}}-1\right)\right)
\end{gather*}
$$

Where $Z=\operatorname{det}\left(1+e^{-\beta H_{0}}\right)$ and n is the occupation number operator $\frac{e^{-\beta H_{0}}}{1+e^{-\beta H_{0}}}$ at the initial time (H_{0} is the initial Hamiltonian).

- The adiabatic limit: $S=\lim _{t \rightarrow \infty} e^{i H_{0} t} U(t,-t) e^{i H_{0} t}$. Since \widehat{Q} commutes with H_{0}, one obtains in the limit of $T \rightarrow \infty$:

$$
\begin{equation*}
\chi(\lambda)=\operatorname{det}\left(1+n\left(S^{\dagger} e^{i \lambda \hat{Q}} S e^{-i \lambda \hat{Q}}-1\right)\right) \tag{8}
\end{equation*}
$$

Convergence and Regularization

- A determinant of the form $\operatorname{det}(1+A)$ is well defined if the operator A has a well defined trace ($A \in \mathcal{J}_{1}=$ trace class). Then

$$
\log \operatorname{det}(1+A)=\operatorname{Tr} A+\frac{1}{2} \operatorname{Tr} A^{2}+\ldots
$$

What about the operator $n_{d}\left(U^{\dagger} e^{i \lambda \hat{Q}} U e^{-i \lambda \hat{Q}}-1\right)$?

- Two basic problems: "IR", and "UV":
\diamond Thermodynamic limit - large system, log Vol charge fluctuations.
\diamond For linear dispersion - energy unbounded bellow.

Sketch of validity proof for quadratic dispersion.

- Show that

$$
n_{d}\left(U^{\dagger} e^{i \lambda \hat{Q}} U e^{-i \lambda \hat{Q}}-1\right)
$$

has a well defined trace if

$$
n\left(U_{0}^{\dagger} e^{i \lambda \hat{Q}} U_{0} e^{-i \lambda \hat{Q}}-1\right)
$$

has a well defined trace.
Where U_{0} is free, connected evolution.

- Assume that the system is driven by a Hamiltonian $H(t)=p^{2}+V(t)$ where $V(t)$ is a local potential supported at the pump.
- For quadratic dispersion there is finite density of particles.
- Note that if $A \in \mathcal{J}_{1}$ and B is a bounded operator then $A B \in \mathcal{J}_{1}$. In our case all of the operators appearing are bounded.
- Show that one can replace n_{d} by n (i.e. $\left.\left(n-n_{d}\right) \in \mathcal{J}_{1}\right)$ Avron et. al.
- Birman-Solomyak criterion: If A is diagonal in the p representation and B diagonal in x representation then $\operatorname{Tr} A B=\int \mathrm{d} p A(p) \int \mathrm{d} x B(x)$ if the integrals exist.
- $n\left(U(T)-U_{0}(T)\right) \in \mathcal{J}_{1}$ where $U_{0}(T)=e^{-i p^{2} T}$:

$$
\begin{gathered}
\operatorname{Tr}\left(\left|n\left(U-U_{0}\right)\right|\right) \leq \int_{0}^{T}\left\|n U_{0}(T-t) V U(t)\right\|_{1} \mathrm{~d} t \leq \\
\int_{0}^{T} \int|n(p)| \mathrm{d} p \int|V(x, t)| \mathrm{d} x \mathrm{~d} t
\end{gathered}
$$

- Thus the statement is equivalent to proving validity for free connected evolution.
- Last step: prove

$$
n\left(U_{0}^{\dagger} e^{i \lambda \widehat{Q}} U_{0} e^{-i \lambda \hat{Q}}-1\right) \in \mathcal{J}_{1}
$$

All operators are well known, standard estimates.

Regularized determinant for the linear dispersion case.

- Note particle - hole symmetry: $(n, \lambda) \Rightarrow(1-n,-\lambda)$,

$$
\begin{equation*}
\operatorname{det}\left(1+(1-n)\left(e^{-i \lambda \hat{Q}_{T}} e^{+i \lambda \hat{Q}}-1\right)\right) \tag{9}
\end{equation*}
$$

Where $\hat{Q}_{T}=U^{\dagger} \hat{Q} U$.

- This suggests to look for a formula that involves particles and holes:
- Regularized formula by subtracting and adding the first moment:

$$
\begin{gathered}
\chi(\lambda)_{r e g}= \\
\operatorname{det}\left(1+n\left(e^{i \lambda \hat{Q}_{T}} e^{-i \lambda(1-n) \hat{Q}} e^{-i \lambda n \widehat{Q}_{T}}-1\right)+(n-1)\left(e^{i n \lambda \hat{Q}} e^{-i \lambda n \widehat{Q}_{T}}-1\right)\right) e^{i \lambda \operatorname{Tr}\left\{\left(U n U^{\dagger}-n\right) \hat{Q}\right\}}
\end{gathered}
$$

- Note $e^{-i \lambda n \widehat{Q}_{T}}$ is not unitary because $n \widehat{Q}_{T}$ is not hermitian. this can be amended by taking instead $e^{-i \lambda n \widehat{Q}_{T} n}$
- An equivalent result, valid only at zero temperature appeared in B. A. Muzikantskii and Y. Adamov, cond-mat/0301075.

Interlude: Classical picture

- Classical particles in a box:

Number of particles leaving a box which is opened for a time t. Let p be the single particle probability of leaving.

B

$$
\chi(\lambda)=\sum P(\mathrm{n} \text { particles left the box }) e^{i \lambda n}
$$

Assume particles are statistically independent. if χ_{1} is the characteristic function for a single particle,

$$
\begin{equation*}
\chi(\lambda)=\prod_{\text {particles }} \chi_{1}(\lambda)=\left(q+e^{i \lambda} p\right)^{N} \tag{10}
\end{equation*}
$$

Where N is the number of particles and $p+q=1 \Rightarrow$ we get a binomial distribution.

Let $B \rightarrow \infty, N \rightarrow \infty$ and $N / B=n=$ const. (i.e. the density of particles remains const).

As we enlarge the box $p \rightarrow \frac{p}{B}$. thus

$$
\begin{gather*}
\chi(\lambda)=\lim _{N \rightarrow \infty}\left(1-\frac{p}{B}+e^{i \lambda \frac{p}{B}}\right)^{N}= \tag{11}\\
\lim _{N \rightarrow \infty}\left(1+\left(e^{i \lambda}-1\right) \frac{p}{N / n}\right)^{N}=e^{\left(e^{i \lambda}-1\right) p n}
\end{gather*}
$$

Which is a poisson distribution.

- In the quantum statistical mechanics world the picture is different:

Example: occupy just the quantum state $\mid 1>$ then $n=|1><1|$ and

$$
\chi(\lambda)=\operatorname{det}(1+|1><1|(\wedge-1))=<1|\wedge| 1>
$$

Where $\wedge=U^{\dagger} e^{i \lambda Q} U e^{-i \lambda Q}$

- if we occupy also $\mid 2>$ then $n=|1><1|+|2><2|$ and

$$
\chi(\lambda)=\operatorname{det}(1+n(\wedge-1))=\operatorname{det}\left(\begin{array}{ll}
<1|\wedge| 1> & <1|\wedge| 2> \\
<2|\wedge| 1> & <2|\wedge| 2>
\end{array}\right) \neq<1|\wedge| 1><2|\wedge| 2>
$$

- Note however, usually for open systems decay of non-diagonal in time.

Direct Current Measurements:

- We start of with the wrong option:

$$
\chi_{\text {wrong }}(\lambda)=<e^{i \lambda\left(\hat{Q}_{T}-\hat{Q}\right)}>=<e^{i \lambda \int \hat{I}\left(t^{\prime}\right) \mathrm{d} t^{\prime}}>
$$

$\widehat{Q}_{T}-\widehat{Q}$ is not a good quantum mechanical observable:
Doesn't measure the state of the system but contains the future - you can't measure it again.
While Q has integer spectrum, $\widehat{Q}_{T}-\widehat{Q}$ has continuous spectrum \Rightarrow not a good measure of charge transfer.

- Measurement using an auxiliary quantum mechanical detector such as a spin or other device:

$$
\begin{equation*}
\chi_{\text {detector }}(\lambda)=<\overleftarrow{\mathcal{T}} e^{i \lambda / 2 \int_{0}^{t} I\left(t^{\prime}\right) \mathrm{d} t^{\prime}} \overrightarrow{\mathcal{T}} e^{i \lambda / 2 \int_{0}^{t} I\left(t^{\prime}\right) \mathrm{d} t^{\prime}}> \tag{12}
\end{equation*}
$$

Where \mathcal{T} is time ordering. A general approach:
Yu.V. Nazarov, and M. Kindermann,(2001), cond-mat/0107133
Difference between statistics schemes:
G. B. Lesovik and N. M. Shelkachev cond-mat/0303024 (in Russian!)

- Relation to the expression

$$
\begin{equation*}
\chi(\lambda)=<e^{i \lambda Q(T)} e^{-i \lambda Q(0)}> \tag{13}
\end{equation*}
$$

Write in path integral language the same quantities:

$$
\chi(\lambda, T)=\int \underset{\substack{\xi_{1}(0) \\ \xi_{2}(T)=\xi_{2}(0)}}{ } \mathcal{D}\left[\xi_{1}\right] \mathcal{D}\left[\xi_{2}\right] \rho\left(\xi_{1}(0), \xi_{2}(0)\right) e^{i\left(S\left[\xi_{1}\right]-S\left[\xi_{2}\right]\right)} e^{i \lambda \int_{0}^{t} \partial_{t} Q\left(\xi_{1}\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}}
$$

If for example $Q=\theta(x)$, then:

$$
\chi(\lambda)=\int \begin{aligned}
& \\
& \xi_{1}(0)=\xi_{2}(0) \\
& \xi_{2}(T)=\xi_{1}(T)
\end{aligned} \quad \mathcal{D}\left[\xi_{1}\right] \mathcal{D}\left[\xi_{2}\right] \rho\left(\xi_{1}(0), \xi_{2}(0)\right) e^{i\left(S\left[\xi_{1}\right]-S\left[\xi_{2}\right]\right)} e^{i \lambda \int_{0}^{t} \int_{0}^{T} \mathrm{~d} x \partial_{t}\left|\xi_{1}\left(t^{\prime}, x\right)\right|^{2} \mathrm{~d} t^{\prime}}
$$

Substitution of $i \partial_{t} \xi_{1}\left(t^{\prime}\right)=H \xi_{1}\left(t^{\prime}\right)$, we get $\int I\left(t^{\prime}\right) \mathrm{d}\left(t^{\prime}\right)$ instead of $\int_{0}^{t} \partial_{t^{\prime}}\left|\xi_{1}\left(t^{\prime}\right)\right|^{2} \mathrm{~d} t^{\prime}$ \Rightarrow By definition of the path integral will get a time ordered exponent of current operators.
However: substitution is legitimate only for classical trajectories in the path integral, thus describes only the saddle point of the integral.

Moments

- We are interested in the cummulants defined by

$$
\ll Q^{k} \gg=\left.i^{k} \partial_{\lambda}^{k} \log \chi(\lambda)\right|_{\lambda=0}
$$

- Representation of the differentiations:

Consider words over Z_{2}, with cyclic permutations identified, and the operator D defined by the rules:
A) $D(1)=-(11)+(0)$
B) $D(0)=-(10)-(1)$
C) D satisfies the Leibniz rule: $D(a b)=(D a) b+a(D b)$,

$$
\begin{gather*}
D(1)=-(11)+(0) \tag{14}\\
D^{2}(1)=2(111)-3(10)-(1) \\
D^{3}(1)=6(1111)-12(110)-3(00)+(11)-(0)
\end{gather*}
$$

Then the $(k+1)$-th cummulant is related to $D^{k}(1)$:
Replace $1 \rightarrow n\left(\widehat{Q}_{T}-\widehat{Q}\right)$ and $0 \rightarrow n\left(\left(\widehat{Q}_{T}-\widehat{Q}\right)^{2}+\left[\widehat{Q}_{T}, \widehat{Q}\right]\right)$, and trace the resultant operator.

Transport: First moment

- $D^{0}(1)=(1) \Rightarrow$

$$
\begin{equation*}
\ll Q \gg=-i \operatorname{Tr}\left(n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right)\right)=-i \operatorname{Tr}\left(\left(U^{\dagger} n_{d} U-n_{d}\right) \widehat{Q}\right) \tag{15}
\end{equation*}
$$

- In the adiabatic limit:

$$
\begin{equation*}
\ll Q \gg=-i \operatorname{Tr}\left(\left(S^{\dagger} n_{d} S-n_{d}\right) \widehat{Q}\right) \tag{16}
\end{equation*}
$$

Now we use that

$$
\begin{equation*}
i \hbar \dot{S}_{d}=\left[H_{0}, S_{d}\right] \tag{17}
\end{equation*}
$$

So that

$$
\begin{equation*}
S_{d} H_{0} S_{d}^{\dagger}=H_{0}-\mathcal{E} \tag{18}
\end{equation*}
$$

- Where $\mathcal{E}=i \hbar \dot{S}_{d} S_{d}^{\dagger}$ is called the energy shift.

A conjugate notion to Wigner time delay $\mathcal{T}=i \hbar\left(\partial_{E} S_{d}\right) S_{d}^{\dagger}$

- It follows that

$$
\begin{equation*}
S_{d} n\left(H_{0}\right) S_{d}^{\dagger}=n\left(H_{0}-\mathcal{E}\right) \tag{19}
\end{equation*}
$$

- In the limit of adiabatic variation of the scattering we have

$$
\mathcal{E}=i \hbar \dot{S}_{d} S_{d}^{\dagger} \ll 1
$$

and
$<Q>=\operatorname{Tr}\left(n\left(H_{0}-\mathcal{E}\right)-n\left(H_{0}\right)\right) \widehat{Q} \simeq \operatorname{Tr}\left(n^{\prime}\left(H_{0}\right) \mathcal{E} \widehat{Q}\right)=q \int \mathrm{~d} t \int \mathrm{~d} E n^{\prime}(E) \mathcal{E}_{11}(t)$

- Note $n^{\prime}\left(H_{0}\right)$ is localized at the fermi energy.
- Equivalent to the result of M. Büttiker, A. Prêtre and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).

Noise: Second moment

- Noise is the variance per unit time of the transfer distribution :

$$
\begin{aligned}
< & (\Delta Q)^{2}>=-\ll Q^{2} \gg=\operatorname{Tr}\left(n\left(\widehat{Q}_{T}-\widehat{Q}\right)(1-n)\left(\widehat{Q}_{T}-\widehat{Q}\right)\right),= \\
& \operatorname{Tr}\left(n(1-n)\left(\widehat{Q}_{T}-\widehat{Q}\right)^{2}\right)+\frac{1}{2} \operatorname{Tr}\left(\left[n,\left(\widehat{Q}_{T}-\widehat{Q}\right)\right]\left[\left(\widehat{Q}_{T}-\widehat{Q}\right), n\right]\right) .
\end{aligned}
$$

It splits into two positive terms:

- Johnson-Nyquist noise is the first term, proportional to temperature:

$$
\begin{equation*}
Q_{J N}^{2}=\operatorname{Tr}\left(n(1-n)\left(\widehat{Q}_{T}-\widehat{Q}\right)^{2}\right)=-T \operatorname{Tr}\left(n^{\prime}\left(\widehat{Q}_{T}-\widehat{Q}\right)^{2}\right) \geq 0, \tag{20}
\end{equation*}
$$

- The quantum shot noise involves correlations at different times and survives at $T=0$ is the second term:

$$
\begin{equation*}
Q_{Q S}^{2}=\frac{1}{2} \operatorname{Tr}\left(\left[n, \widehat{Q}_{T}\right][\widehat{Q}(T), n]\right)=\frac{1}{2} \operatorname{Tr}([\delta n, Q][Q, \delta n]) \geq 0 \tag{21}
\end{equation*}
$$

Classical limit of the commutator is order $\hbar \Rightarrow Q_{Q S}^{2} \rightarrow 0$ in this limit.

Noise: third moment

- Importance of the third moment:
L. S. Levitov and M. Reznikov, cond-mat/0111057.
- The third cummulant is obtained from $D^{2}(1)=2(111)-3(10)-(1)$

$$
\begin{gather*}
\ll Q^{3} \gg=-i \operatorname{Tr}\left(-2 n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right) n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right) n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right)\right. \tag{22}\\
\left.+3 n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right) n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right)^{2}-n_{d}\left(\widehat{Q}_{T}-\widehat{Q}\right)\right)
\end{gather*}
$$

- Odd moments always have a term proportional to the first moment.
- Motivation to study the Fourth moment: Until now all of the moments didn't contain explicitly the term $\left[\widehat{Q}_{T}, \widehat{Q}\right]$.

A check reveals that $\ll Q^{4} \gg$ does contain this term.
This term measures an "uncertainty" between measuring a particles side and the knowledge of where it originated.

The many cycle limit:

 When is the pumping "extensive" in time?- Notion of extensivity - all moments?
- For periodic driven systems we denote $\Lambda_{m}=U^{m \dagger} e^{i \lambda Q} U^{m} e^{-i \lambda Q}$ where U is a one cycle evolution, and denote $\chi_{m}=\operatorname{det}\left(1+n\left(\Lambda_{m}-1\right)\right)$.
- Quantities averaged over many cycles are computed from $\frac{1}{m} \log \chi_{m}$.
- The equation for extensivity is $\chi_{m+l} \sim \chi_{m} \chi_{l}$:

$$
\begin{equation*}
\operatorname{det}\left(1+n\left(\Lambda_{l+m}-1\right)\right) \sim \operatorname{det}\left(1+n\left(\Lambda_{l}-1\right)\right) \operatorname{det}\left(1+n\left(\Lambda_{m}-1\right)\right) \tag{23}
\end{equation*}
$$

- This equation doesn't imply an equation for the operators. Let's guess:

$$
\begin{equation*}
1+n\left(\Lambda_{l+m}-1\right) \sim U^{m \dagger}\left(1+n\left(\Lambda_{l}-1\right)\right) U^{m}\left(1+n\left(\Lambda_{m}-1\right)\right) \tag{24}
\end{equation*}
$$

- Extensivity in time is a property of steady state pumping. Under the condition: $[n, U]=0$, extensivity is equivalent to:

$$
\begin{equation*}
\underbrace{U^{m}\left(\wedge_{l}-1\right) U^{m \dagger}}_{B} \underbrace{\left.\left(\Lambda_{m}-1\right)\right)}_{A} n(n-1) \tag{25}
\end{equation*}
$$

- $n(n-1)$ is a function localized at the Fermi energy \Rightarrow contribution only from states travelling approximately at V_{F}.
A is non-vanishing on states that reach the pump during m cycles.
B is non vanishing on states that reach the pump between cycles $m, l+m$.

The overlap is a "boundary" term.

Further projects:

Meaning of the fourth moment.

Interactions

Non adiabatic problems (microwave radiation)

Statistics of Spin transport

