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Outline:

• Counting Statistics - A simple setting.

• Full counting statistics.

• Convergence and Regularization:

� Thermodynamic limit

� Linear dispersion .

• Interpretation, Comparison between a continuous measurement of cur-
rent and measurement of charge.

• Elaboration on the first moments.

• The many cycle limit: When is the pumping ”extensive” in time?
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Setting:

• The system consists of reservoirs: R1 , R2, ...
The reservoirs are coupled at time t = 0 and decoupled at time T .
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• Measured quantity: charge at the reservoirs in the end compared to the
initial charge.

• For simplicity consider just the charge entering and leaving reservoir 1,
and denote Q̂ the projection on R1.

• A problem of a quantum field coupled to ”classical” controlled external
potential. The setting applies also to other processes involving transfer
of electrons.

• Full counting statistics was introduced in:

L.S. Levitov and G.B. Lesovik, (1993) JETP Lett., 58, pp. 230–235

D.A. Ivanov and L.S. Levitov, (1993) , JETP Lett., 58, pp. 461–468

D.A. Ivanov, H.W. Lee and L.S. Levitov, (1997) Phys. Rev., B56,
pp. 6839–6850

L.S. Levitov, H.W. Lee and G.B. Lesovik, (1996), JMP, 37, pp. 4845–
4866
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Full counting statistics

• The statistics of charge transferred is described by derivatives of:

χ(λ) =
∑

P (charge inR1 changedby n)eiλn

• For adiabatic change, and short scattering time Levitov and Lesovik,
obtained the following expression for χ:

χ(λ) = det(1 + n(S†eiqλSe−iqλ − 1)) (1)

Where n is the occupation number operator and S is the scattering ma-
trix.

It was remarked that ”this expression requires careful understand-

ing and regularization”.
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• Assume that:

– α, β are a basis for the Fock space which are eigenstates of the
second quantized charge operator Q of reservoir 1.

– U(T ) is the evolution in Fock space

– ρ is the initial density matrix, which is assumed diagonal in α.

Then:

χ(λ, T ) =
∑

α,β P (α(t = 0), β(t = T ))eiλ(Q[β]−Q[α]) (2)

=
∑

α,β < α|ρ|α > | < α|U†|β > |2eiλ(Q[β]−Q[α])

= Tr(ρU†(T )eiλQU(T )e−iλQ)
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Non interacting particles:

• For a single particle operator eA define the second quantized operator

Γ(eA) = exp(
∑

Aija
†
iaj)

• Γ(eA)Γ(eB) = Γ(eAeB) this can be verified by checking:

[Aija
†
iaj, Bkla

†
kal] = [A, B]mna†man (3)

• For particles this reflects that:

Γ(eA) = eA ⊕ (eA ⊗ eA)⊕ (eA ⊗ eA ⊗ eA)⊕ ...

on the Fock space ⊕nSym(Asym)(⊗nH)

• For example, for non interacting particles, Bosons or Fermions, U is
obtained from the single particle evolution U by:

U = Γ(U) = U ⊕ (U ⊗ U)⊕ (U ⊗ U ⊗ U)⊕ ...

It is evident that Γ(U1U2) = Γ(U1)Γ(U2)
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• We will use the following formula

Tr(Γ(C)) =
∏

i(1− ξeµi)−ξ = det(1− ξeC)−ξ (4)

Where ξ = 1 for bosons and ξ = −1 for fermions.

• This is just the partition function of non interacting particles, with Hamil-
tonian C/β.

• For non interacting particles:

Tr(Γ(eA)Γ(eB)...) = det(1− ξeAeB...)−ξ (5)
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• All the operators appearing in (2) are of the form Γ(...) so:

χ(λ, T ) =
1

Z
Tr(Γ(e−βH0U †eiλQ̂Ue−iλQ̂)) (6)

• Formally χ is similar to a partition function, and logχ to a thermodynamic
potential with respect to λ and the extensive parameter T

χ(λ) = 1
Z
det(1 + e−βH0(U †eiλQ̂Ue−iλQ̂)) = (7)

det(1 + n(U †eiλQ̂Ue−iλQ̂ − 1))

Where Z = det(1+e−βH0) and n is the occupation number operator e−βH0

1+e−βH0

at the initial time (H0 is the initial Hamiltonian).

• The adiabatic limit: S = limt→∞ eiH0tU(t,−t)eiH0t. Since Q̂ commutes
with H0, one obtains in the limit of T →∞:

χ(λ) = det(1 + n(S†eiλQ̂Se−iλQ̂ − 1)) (8)
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Convergence and Regularization

• A determinant of the form det(1 + A) is well defined if the operator A
has a well defined trace (A ∈ J1=trace class). Then

logdet(1 + A) = TrA +
1

2
TrA2 + ...

.

What about the operator nd(U
†eiλQ̂Ue−iλQ̂ − 1)?

• Two basic problems: ”IR”, and ”UV”:

� Thermodynamic limit - large system, logVol charge fluctuations.

� For linear dispersion - energy unbounded bellow.
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Sketch of validity proof for quadratic dispersion.

• Show that

nd(U
†eiλQ̂Ue−iλQ̂ − 1)

has a well defined trace if

n(U †0e
iλQ̂U0e

−iλQ̂ − 1)

has a well defined trace.
Where U0 is free, connected evolution.

• Assume that the system is driven by a Hamiltonian H(t) = p2 + V (t)
where V (t) is a local potential supported at the pump.

• For quadratic dispersion there is finite density of particles.

• Note that if A ∈ J1 and B is a bounded operator then AB ∈ J1. In our
case all of the operators appearing are bounded.

• Show that one can replace nd by n (i.e. (n− nd) ∈ J1) Avron et. al.
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• Birman-Solomyak criterion: If A is diagonal in the p representation and
B diagonal in x representation then TrAB =

∫
dpA(p)

∫
dxB(x) if the

integrals exist.

• n(U(T )− U0(T )) ∈ J1 where U0(T ) = e−ip2T :

Tr(|n(U − U0)|) ≤
∫ T

0
||nU0(T − t)V U(t)||1dt ≤

∫ T

0

∫
|n(p)|dp

∫
|V (x, t)|dxdt

• Thus the statement is equivalent to proving validity for free connected
evolution.

• Last step: prove

n(U †0e
iλQ̂U0e

−iλQ̂ − 1) ∈ J1

All operators are well known, standard estimates.
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Regularized determinant for the linear dispersion case.

• Note particle - hole symmetry: (n, λ)⇒ (1− n,−λ),

det(1 + (1− n)(e−iλQ̂T e+iλQ̂ − 1)) (9)

Where Q̂T = U †Q̂U .

• This suggests to look for a formula that involves particles and holes:

• Regularized formula by subtracting and adding the first moment:

χ(λ)reg =

det(1 + n(eiλQ̂T e−iλ(1−n)Q̂e−iλnQ̂T − 1) + (n− 1)(einλQ̂e−iλnQ̂T − 1))eiλTr{(UnU †−n)Q̂}

– Note e−iλnQ̂T is not unitary because nQ̂T is not hermitian. this can be

amended by taking instead e−iλnQ̂Tn

– An equivalent result, valid only at zero temperature appeared in
B. A. Muzikantskii and Y. Adamov, cond-mat/0301075.
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Interlude: Classical picture

• Classical particles in a box:
Number of particles leaving a box which is opened for a time t. Let p be the
single particle probability of leaving.

χ(λ) =
∑

P (n particles left the box)eiλn
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Assume particles are statistically independent. if χ
1
is the characteristic func-

tion for a single particle ,

χ(λ) =
∏

particles

χ
1
(λ) = (q + eiλp)N (10)

Where N is the number of particles and p + q = 1 ⇒
we get a binomial distribution.

Let B → ∞ , N → ∞ and N/B = n = const. (i.e. the density of particles
remains const).

As we enlarge the box p→ p
B
. thus

χ(λ) = limN→∞(1− p
B

+ eiλ p
B
)N = (11)

limN→∞(1 + (eiλ − 1) p
N/n

)N = e(eiλ−1)pn

Which is a poisson distribution.
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• In the quantum statistical mechanics world the picture is different:

Example: occupy just the quantum state |1 > then n = |1 >< 1| and

χ(λ) = det(1 + |1 >< 1|(Λ− 1)) =< 1|Λ|1 >

Where Λ = U †eiλQUe−iλQ

• if we occupy also |2 > then n = |1 >< 1|+ |2 >< 2| and

χ(λ) = det(1+n(Λ−1)) = det

(

< 1|Λ|1 > < 1|Λ|2 >
< 2|Λ|1 > < 2|Λ|2 >

)

6=< 1|Λ|1 >< 2|Λ|2 >

• Note however, usually for open systems decay of non-diagonal in time.
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Direct Current Measurements:

• We start of with the wrong option:

χwrong(λ) =< eiλ(Q̂T−Q̂) >=< e
iλ

∫
Î(t′)dt′

>

Q̂T − Q̂ is not a good quantum mechanical observable:
Doesn’t measure the state of the system but contains the future - you
can’t measure it again.
While Q has integer spectrum, Q̂T − Q̂ has continuous spectrum ⇒ not
a good measure of charge transfer.

• Measurement using an auxiliary quantum mechanical detector such as
a spin or other device:

χdetector(λ) =<
←−
T e

iλ/2
∫ t

0
I(t′)dt′−→

T e
iλ/2

∫ t

0
I(t′)dt′

> (12)

Where T is time ordering. A general approach:
Yu.V. Nazarov, and M. Kindermann,(2001), cond-mat/0107133
Difference between statistics schemes:
G. B. Lesovik and N. M. Shelkachev cond-mat/0303024 (in Russian!)
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• Relation to the expression

χ(λ) =< eiλQ(T )e−iλQ(0) > (13)

Write in path integral language the same quantities:

χ(λ, T ) =

∫

ξ1(0) = ξ2(0)
ξ2(T ) = ξ1(T )

D[ξ1]D[ξ2]ρ(ξ1(0), ξ2(0))ei(S[ξ1]−S[ξ2])e
iλ

∫ t

0
∂t′Q(ξ1(t′))dt′

If for example Q = θ(x), then:

χ(λ) =

∫

ξ1(0) = ξ2(0)
ξ2(T ) = ξ1(T )

D[ξ1]D[ξ2]ρ(ξ1(0), ξ2(0))ei(S[ξ1]−S[ξ2])e
iλ

∫ t

0

∫ T

0
dx∂t′|ξ1(t′,x)|2dt′

Substitution of i∂t′ξ1(t′) = Hξ1(t′), we get
∫

I(t′)d(t′) instead of
∫ t

0
∂t′|ξ1(t′)|2dt′

⇒ By definition of the path integral will get a time ordered exponent of
current operators.
However: substitution is legitimate only for classical trajectories in the
path integral, thus describes only the saddle point of the integral.
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Moments

• We are interested in the cummulants defined by

<< Qk >>= ik∂k
λ logχ(λ)|λ=0

• Representation of the differentiations:

Consider words over Z2, with cyclic permutations identified, and the
operator D defined by the rules:
A) D(1) = −(11) + (0)
B) D(0) = −(10)− (1)
C) D satisfies the Leibniz rule: D(ab) = (Da)b + a(Db),

D(1) = −(11) + (0) (14)

D2(1) = 2(111)− 3(10)− (1)

D3(1) = 6(1111)− 12(110)− 3(00) + (11)− (0)

Then the (k + 1)-th cummulant is related to Dk(1):
Replace 1 → n(Q̂T − Q̂) and 0 → n((Q̂T − Q̂)2 + [Q̂T , Q̂]), and trace the
resultant operator.
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Transport: First moment

• D0(1) = (1)⇒

<< Q >>= −iTr(nd(Q̂T − Q̂)) = −iTr((U †ndU − nd)Q̂) (15)

• In the adiabatic limit:

<< Q >>= −iTr((S†ndS − nd)Q̂) (16)

Now we use that

i~Ṡd = [H0, Sd] (17)

So that

SdH0S
†
d = H0 − E (18)

• Where E = i~ṠdS
†
d is called the energy shift.

A conjugate notion to Wigner time delay T = i~(∂ESd)S
†
d

• It follows that

Sdn(H0)S
†
d = n(H0 − E) (19)
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• In the limit of adiabatic variation of the scattering we have

E = i~ṠdS
†
d << 1

and

< Q >= Tr(n(H0−E)−n(H0))Q̂ ' Tr(n′(H0)EQ̂) = q

∫

dt

∫

dEn′(E)E11(t)

• Note n′(H0) is localized at the fermi energy.

• Equivalent to the result of
M. Büttiker, A. Prêtre and H. Thomas, Phys. Rev. Lett. 70, 4114
(1993).
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Noise: Second moment

• Noise is the variance per unit time of the transfer distribution :

< (∆Q)2 >= − << Q2 >>= Tr
(
n(Q̂T − Q̂)

(
1− n

)
(Q̂T − Q̂)

)
,=

Tr
(
n(1− n) (Q̂T − Q̂)2

)
+ 1

2
Tr

(
[n, (Q̂T − Q̂)] [(Q̂T − Q̂), n]

)
.

It splits into two positive terms:

• Johnson-Nyquist noise is the first term, proportional to temperature:

Q2
JN = Tr

(
n(1− n) (Q̂T − Q̂)2

)
= −T Tr(n′(Q̂T − Q̂)2) ≥ 0, (20)

• The quantum shot noise involves correlations at different times and
survives at T = 0 is the second term:

Q2
QS =

1

2
Tr

(
[n, Q̂T ] [Q̂(T ), n]

)
=

1

2
Tr

(
[δn, Q] [Q, δn]

)
≥ 0 (21)

Classical limit of the commutator is order ~ ⇒ Q2
QS → 0 in this limit.
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Noise: third moment

• Importance of the third moment:
L. S. Levitov and M. Reznikov, cond-mat/0111057.

• The third cummulant is obtained from D2(1) = 2(111)− 3(10)− (1)

<< Q3 >>= −iTr(−2nd(Q̂T − Q̂)nd(Q̂T − Q̂)nd(Q̂T − Q̂) (22)

+3nd(Q̂T − Q̂)nd(Q̂T − Q̂)2 − nd(Q̂T − Q̂))

• Odd moments always have a term proportional to the first moment.

• Motivation to study the Fourth moment: Until now all of the mo-
ments didn’t contain explicitly the term [Q̂T , Q̂].

A check reveals that << Q4 >> does contain this term.

This term measures an ”uncertainty” between measuring a particles side
and the knowledge of where it originated.
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The many cycle limit:

When is the pumping ”extensive” in time?

• Notion of extensivity - all moments?

• For periodic driven systems we denote Λm = Um†eiλQUme−iλQ where U is
a one cycle evolution, and denote χm = det(1 + n(Λm − 1)).

• Quantities averaged over many cycles are computed from 1
m

logχm.

• The equation for extensivity is χm+l ∼ χmχl:

det(1 + n(Λl+m − 1)) ∼ det(1 + n(Λl − 1)) det(1 + n(Λm − 1)) (23)

• This equation doesn’t imply an equation for the operators. Let’s guess:

1 + n(Λl+m − 1) ∼ Um†(1 + n(Λl − 1))Um(1 + n(Λm − 1)) (24)
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• Extensivity in time is a property of steady state pumping.
Under the condition: [n, U ] = 0, extensivity is equivalent to:

Um(Λl − 1)Um†

︸ ︷︷ ︸
B

(Λm − 1))
︸ ︷︷ ︸

A

n(n− 1) (25)

• n(n− 1) is a function localized at the Fermi energy ⇒
contribution only from states travelling approximately at VF .

A is non-vanishing on states that reach the pump during m cycles.
B is non vanishing on states that reach the pump between cycles m, l+m.

The overlap is a ”boundary” term.
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Further projects:

Meaning of the fourth moment.

Interactions

Non adiabatic problems (microwave radiation)

Statistics of Spin transport
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