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Basic Issue
Flux noise [Sφ(ω)] and impedance
[Z(ω)] measurements performed on
nominally unfrustrated (f=0) regular
arrays reveal features inconsistent
with predictions of the BKT theory

Hidden disorder + Residual frustration 
⇓

Glass-like dynamicsa ˜ 10 µm
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AC Sheet Impedance Z(ω,T) and Flux Noise Spectrum SΦ(ω,T)

Spectral range:   0.1 Hz – 20kHz
Inductance sensitivity:   ~ 1 pH

40 turns receive microcoil of 0.7 µm
wide and 0.7 µm spaced Nb wires

Spectrum analyser SΦ(ω,T)
SC flux 

transformer

SQUID

Array

Receive coil
(gradiometer)

ID , ω
Lock-in Z(ω,T)Drive 

coil
δM



Relation between SΦ(ω,T) and Z(ω,T)

B. More «universal» approach by S.E. Korshunov, PRB (2002):

• no decomposition in vortex and « spin-wave » fluctuations  

• SΦ(ω,T) directly related to current correlations ⇒ screening effects

A. First attemptby Kim and Minnhagen, PRB (1999): 

• ignore screening effects (mutual influence of field and current fluctuations) 

• incorrect calculation of the magnetic field created by the currents

Fluctuation-dissipation theorem: SΦ(ω,T) = 2(kBT/ω)Im(δM)

⇓



B. Strong screening: LZ/mc << 1

Low temperatures: RZ << ωLZ

SΦ(ω,T) ∝ [kBT/ω2]RZ(ω,T)

Regimes of Interest

δM ˜ Ms{1 + [Z(ω,T)/iωmc]}-1 SΦ(ω,T) = 2(kBT/ω)Im(δM)

Z = Rz + iωLz or G ≡ Z-1 ≡ RG
-1 + (iωLG)-1

Ms and mc from coil geometry

A. Weak screening: LZ/mc >> 1

SΦ(ω,T) ∝ kBT Re[Z-1(ω,T)]

⇓



Theoretical Predictions for « Ideal » Josephson Junction Arrays 
at Strictly Zero Frustration (f=0)

Vortex-Antivortex (VA) pairs
dominate for:

T=TC
T>TC and ωξ < ω < ωD

⇒ RZ(ω) ∝ ω2(Tc/T)-1

ωξ ~ ωDexp{-b/[(T/TC)-1)]1/2}

ωD ≈ φ0
2/RnkBT

Free vortices (FV) 
dominate for:

T>TC and ω < ωξ

⇒ RZ independent of ω

AHNS extension of the BKT theory
Ambegaokar et al., PRL (1978)
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Consequences for SΦ(ω)
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SΦ(ω) ∝ RZ(ω)/ω2 ∝ ω2(Tc/T)-3
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SΦ(ω) ∝ Re[Z (ω)-1]
• ω < ωξ (FV)          SΦ(ω) : white noise
• ωξ < ω < ωD (VA)   SΦ(ω) ∝ ω-[2(Tc/T)-1]



• Low T :  LG
-1(ω) weakly increasing with ω

• High T : strong suppression of LG
-1(ω) 

Frequency Dependence - RZ(ω) and LG
-1(ω) Isotherms

• Low T : RZ(ω) ∝ ω

• High T : RZ independent of ω



Magnetic Flux Noise Power Spectra - SΦ(ω) Isotherms

Low T

• 1/ω noise over 4 decades in ω
• Consistent with SΦ(ω) ∝ RZ(ω)/ω2

High T

• Crossover from 1/ω to white noise
• White noise consistent with RZ

independent of ω at high T 



Additional Evidence for 1/ω Magnetic Flux Noise : Shaw et al., PRL (1996)

At high T (« above TBKT ») : 
Crossover from 1/ω to white noise

Data consistent with dynamic scaling

based on the BKT theory

1/ω noise unexplained

ω-1



Glass-like Vortex Dynamics in « Real » Josephson Junction Arrays: 
Basic Ingredients

• « Hidden » Disorder

Coupling energy in proximity-effect coupled SNS arrays:

EJ ∝ exp[-d/ξN]

d: length of N bridge  , ξN(T) : coherence length in N

Typically:  ∆d/d ˜ 3-5 % ,    d/ξN(TCS) ˜ 16-17 ⇒ ∆EJ/EJ ˜ 50-90 %

Weak unavoidable random variations in the junction geometrical 
parameters introduced by the fabrication process result in 

strong fluctuations of EJ

⇒



• Residual frustration

Incomplete suppression of ambient 
magnetic fields (1-10 mG) ⇒ vortices 
always present in the array

δf ˜ 10-3-10-2⇒

Frustration measured by f =ΦP/φ0
ΦP = magnetic flux per plaquette

Thermally created vortices due to 
finite size effects (L, Λ) : irrelevant 
for T below TC

Deviations from linearity (RZ ∝ f)
at very small f

δf



Vortex Glass in two dimensions ?

• Unlike in 3D, in 2D a vortex glass is
unstable against plastic flow of 
thermally created dislocation pairs

• However, «Dynamic freezing» from
a liquid to a frozen liquid is possible 
at sufficiently short time scales

• Regime crossover at a ω-dependent 
temperature T*(ω) 

⇓

• T*(ω) well above melting of ideal 2D 
vortex crystal

M. Calame et al., PRL (2001)

TM ˜  18K



Vortex Glass in two dimensions ?

• Unlike in 3D, in 2D a vortex glass is
unstable against plastic flow of 
thermally created dislocation pairs

• However, «Dynamic freezing» from
a liquid to a frozen liquid is possible 
at sufficiently short time scales

• Regime crossover at a ω-dependent 
temperature T*(ω) 

⇓

• T*(ω) well above melting of ideal 2D 
vortex crystal

τ ≡ kBT/EJ(T)

Triangular JJ array



Vortex Hopping in the Frozen Liquid Regime [T < T*(ω)]

Two-level system approach, Mott and Davies, 1971; Koshelev and Vinokur, 1991

Thermally activated vortex hopping between pairs 
of metastable states in neighboring plaquettes

a

∆

  
r 
F =

r 
K × ˆ ϕ 0

Average velocity in a single two-level system

<v> ~ (a2φ0/kBT)cosh-2(∆/kBT)iω[1 + iωτ(U)]-1K

τ(U) = τ0exp(U/kBT) U : energy barrier

Vortex contribution δZv to the impedance Z δZv ≡ E/K ~ (φ0/a2K)δf <<v>>

<<v>> : vortex velocity averaged over all possible two-level systems,
with distributions W(∆) and P(U)



Comparison of RZ(ω) and SΦ(ω) with Theoretical Predictions

RG(ω,T) ˜ [ωLJ(T)]2/RZ(ω,T) ~ δf-1ω/T⇒

• Umax, <∆> ~ EJ(T)
• ωτ0 << 1 << ωτmax

Distributions

P(U)

W(∆)
Umax

U, ∆<∆>

kBT

• RZ(ω,T) ~ δfτωLJ(T)

τ≡kBT/EJ(T)  ,  LJ(T)=(φ0/2p)2/EJ(T) 

⇓



Scaling prediction for SΦ(ω,T)

SΦ(ω,T) ~ (kBT/ω2) RZ(ω,T) 

Korshunov, PRB (2000)

⇓

SΦ(ω,T) ~ τ2/ω

τ ≡ kBT/EJ(T) 

⇓

SΦ(ω,T)/ τ2 ~ 1/ω

independent of T

τ



Thermally Activated Vortex Motion in the Liquid State [T > T*(ω)]

Barrier limited diffusion of 
noninteracting particles

Martinoli et al., Physica B (91)
Coffey and Clem, PRL (91)

?

•
RZ(T) ∝ δfexp(-∆/kBT)

SΦ(T) ~ (kBT)/RZ(T) ~ (kBT)exp(∆/kBT)

⇓

• Crossover [SΦ(T)]white ⇔ [SΦ(ω,T)]1/ω ωC ~ ωDexp(-∆/kBT)⇒



Thermally Activated Vortex Motion in the Liquid State [T > T*(ω)]
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RZ(T) ∝ δfexp(-∆/kBT)



Energy Barriers

The energy barriers ∆ extracted from both RZ(T) and SΦ(T) in the 
vortex liquid regime [T > T*(ω)] are much higher [∆ ˜ (2-4)EJ] than
that predicted for a triangular array of infinite size (∆ ˜ 0.04EJ)

Possible explanations

1. Vortex diffusion controlled by surface barriers
Burlachkov et al., PRB (94) 

In 2D ⇒ ∆ ˜ (p/2)v3EJln(C/δf)     , C ˜ 0.2

∆ ˜ (2-4)EJ       ⇒ δf ˜ (10-5)%



2. ? is not an energy barrier, but rather the energy needed to 
create the core of thermally excited vortices which dominate the 

dynamic response at high temperatures

Lobb et al., PRB (83)

S. Candia et al., 2003



Conclusions

Low-temperature glass-like features observed in flux noise spectra and 
impedance measurements performed on regular nominally unfrustrated 
arrays of SNS Josephson junctions can be explained by a simple vortex 
hopping model based on « hidden » disorder in the couling energy and 
residual frustration due to incomplete suppression of ambient magnetic 
fields.

Energy barriers extracted from flux noise spectra and resistance data in 
the high-temperature vortex liquid regime are much higher than the 
« bulk » value predicted by theory. Surface barrier mechanism? Vortex 
core mechanism?


