Vortex Glass Dynamics in Josephson Junction Arrays

5. Candia¹, 5.E. Korshunov², Ch. Leemann¹, R. Théron¹, and P. Martinoli¹ ¹Université de Neuchâtel, ²Landau Institute for Theoretical Physics

Triangular array of SNS JJ

Basic Issue

Flux noise $[S_{\phi}(\omega)]$ and impedance $[Z(\omega)]$ measurements performed on nominally unfrustrated (f=0) regular arrays reveal features inconsistent with predictions of the BKT theory

Hidden disorder + Residual frustration
U
Glass-like dynamics

AC Sheet Impedance $Z(\omega,T)$ and Flux Noise Spectrum $S_{\Phi}(\omega,T)$

Relation between $S_{\Phi}(\omega,T)$ and $Z(\omega,T)$

A. First attempt by Kim and Minnhagen, PRB (1999):

- ignore screening effects (mutual influence of field and current fluctuations)
- incorrect calculation of the magnetic field created by the currents
- B. More «universal» approach by S.E. Korshunov, PRB (2002):
- no decomposition in vortex and « spin-wave » fluctuations
- $S_{\Phi}(\omega,T)$ directly related to current correlations \Rightarrow screening effects

Fluctuation-dissipation theorem: $S_{\Phi}(\omega,T) = 2(k_{B}T/\omega)Im(\delta M)$

Regimes of Interest

Theoretical Predictions for « Ideal » Josephson Junction Arrays at Strictly Zero Frustration (f=0)

AHNS extension of the BKT theory Ambegaokar et al., PRL (1978)

 $\log R_{Z}$ T>T ω_{ξ} ω^1 T=T_c ᠧ᠆ logω Vortex-Antivortex (VA) pairs dominate for: $T=T_{c}$ $T>T_{c}$ and $\omega_{\xi} < \omega < \omega_{D}$ $\Rightarrow R_{Z}(\omega) \propto \omega^{2(Tc/T)-1}$ $\omega_{\xi} \sim \omega_{D} exp\{-b/[(T/T_{c})-1)]^{1/2}\}$ $\omega_{D} \approx \phi_{0}^{2}/R_{n}k_{B}T$

> Free vortices (FV) dominate for: T>T_C and ω < ω_ξ R₇ independent of ω

Consequences for $S_{\Phi}(\omega)$

logω

Frequency Dependence - $R_Z(\omega)$ and $L_G^{-1}(\omega)$ Isotherms

Magnetic Flux Noise Power Spectra - $S_{\Phi}(\omega)$ Isotherms

Low T

High T

- 1/ω noise over 4 decades in ω
 Consistent with S_Φ(ω) ∝ R_Z(ω)/ω²
- Crossover from $1/\omega$ to white noise
- White noise consistent with R_Z independent of ω at high T

Additional Evidence for 1/0 Magnetic Flux Noise : Shaw et al., PRL (1996)

At high T (« above T_{BKT} »): Crossover from 1/ ω to white noise

Data consistent with dynamic scaling based on the BKT theory

 $1/\omega$ noise unexplained

Glass-like Vortex Dynamics in « Real » Josephson Junction Arrays: Basic Ingredients

• « Hidden » Disorder

 \Rightarrow

Coupling energy in proximity-effect coupled SNS arrays: $E_J \propto \exp[-d/\xi_N]$ d: length of N bridge , $\xi_N(T)$: coherence length in N Weak unavoidable random variations in the junction geometrical

parameters introduced by the fabrication process result in strong fluctuations of E_J

Typically: $\Delta d/d \sim 3-5 \%$, $d/\xi_N(T_{CS}) \sim 16-17 \Rightarrow \Delta E_J/E_J \sim 50-90 \%$

Residual frustration

Frustration measured by $f = \Phi_P / \phi_0$ $\Phi_{\rm P}$ = magnetic flux per plaquette

Incomplete suppression of ambient magnetic fields (1-10 mG) \Rightarrow vortices always present in the array

 $\delta f \sim 10^{-3} - 10^{-2}$

Thermally created vortices due to finite size effects (L, Λ) : irrelevant for T below T_c

Deviations from linearity $(R_7 \propto f)$ at very small f

Vortex Glass in two dimensions?

 Unlike in 3D, in 2D a vortex glass is unstable against plastic flow of thermally created dislocation pairs

 However, «Dynamic freezing» from a liquid to a frozen liquid is possible at sufficiently short time scales

- Regime crossover at a ω-dependent temperature T*(ω)
- T^{*}(ω) well above melting of ideal 2D vortex crystal

M. Calame et al., PRL (2001)

Vortex Glass in two dimensions?

 Unlike in 3D, in 2D a vortex glass is unstable against plastic flow of thermally created dislocation pairs

 However, «Dynamic freezing» from a liquid to a frozen liquid is possible at sufficiently short time scales

 Regime crossover at a ω-dependent temperature T*(ω)

 T^{*}(ω) well above melting of ideal 2D vortex crystal

 $\tau \equiv k_{\rm B}T/E_{\rm J}(T)$

Vortex Hopping in the Frozen Liquid Regime $[T < T^*(\omega)]$

Two-level system approach, Mott and Davies, 1971; Koshelev and Vinokur, 1991

Thermally activated vortex hopping between pairs of metastable states in neighboring plaquettes

Average velocity in a single two-level system

Vortex contribution δZ_v to the impedance Z

 $\delta Z_{v} \equiv E/K \sim (\phi_{0}/a^{2}K)\delta f \leftrightarrow v$

<<p>>: vortex velocity averaged over all possible two-level systems, with distributions $W(\Delta)$ and P(U)

Comparison of $R_Z(\omega)$ and $S_{\Phi}(\omega)$ with Theoretical Predictions

Distributions

• $R_{Z}(\omega,T) \sim \delta f \tau \omega L_{J}(T)$ $\tau = k_{B}T/E_{J}(T)$, $L_{J}(T)=(\phi_{0}/2p)^{2}/E_{J}(T)$

 $\Rightarrow \mathsf{R}_{\mathsf{G}}(\omega,\mathsf{T}) \sim [\omega \mathsf{L}_{\mathsf{J}}(\mathsf{T})]^2 / \mathsf{R}_{\mathsf{Z}}(\omega,\mathsf{T}) \sim \delta \mathsf{f}^{-1} \omega / \mathsf{T}$

Scaling prediction for $S_{\Phi}(\omega,T)$

Korshunov, PRB (2000)

 $S_{\Phi}(\omega,T) \sim (k_{B}T/\omega^{2}) R_{Z}(\omega,T)$

₩

$$S_{\Phi}(\omega,T) \sim \tau^{2}/\omega$$
$$\tau \equiv k_{B}T/E_{J}(T)$$

↓

 $S_{\Phi}(\omega,T)/\tau^2 \sim 1/\omega$ independent of T

Thermally Activated Vortex Motion in the Liquid State $[T > T^{*}(\omega)]$

Thermally Activated Vortex Motion in the Liquid State $[T > T^{*}(\omega)]$

• Crossover $[S_{\Phi}(T)]_{white} \Leftrightarrow [S_{\Phi}(\omega,T)]_{1/\omega}$

$$\Rightarrow \omega_{c} \sim \omega_{D} \exp(-\Delta/k_{B}T)$$

Energy Barriers

The energy barriers Δ extracted from both $R_Z(T)$ and $S_{\Phi}(T)$ in the vortex liquid regime $[T > T^*(\omega)]$ are much higher $[\Delta \sim (2-4)E_J]$ than that predicted for a triangular array of infinite size $(\Delta \sim 0.04E_J)$

Possible explanations

1. Vortex diffusion controlled by surface barriers Burlachkov et al., PRB (94)

In 2D
$$\Rightarrow \Delta^{\sim} (p/2)v3E_{J}ln(C/\delta f)$$
, $C^{\sim} 0.2$

$$\Delta \sim (2-4)E_{\rm J} \Rightarrow \delta f \sim (10-5)\%$$

2. ? is not an energy barrier, but rather the energy needed to create the core of thermally excited vortices which dominate the dynamic response at high temperatures

Conclusions

Low-temperature glass-like features observed in flux noise spectra and impedance measurements performed on regular nominally unfrustrated arrays of SNS Josephson junctions can be explained by a simple vortex hopping model based on « hidden » disorder in the couling energy and residual frustration due to incomplete suppression of ambient magnetic fields.

Energy barriers extracted from flux noise spectra and resistance data in the high-temperature vortex liquid regime are much higher than the « bulk » value predicted by theory. Surface barrier mechanism? Vortex core mechanism?