Quantum coherence in a superconducting flux qubit

Yasunobu Nakamura NEC Fundamental Research Laboratories Frontier Research System, RIKEN Irinel Chiorescu, Kees Harmans, Hans Mooij Department of NanoScience, TU Delft

Collaborators

<u>TU Delft</u> Hannes Majer (→Yale) Adrian Lupascu Kouichi Semba (NTT) Raymond Schouten Alexander ter Haar Lieven Vandersypen

Discussions with <u>CEA Saclay</u> Daniel Esteve Abdel Aassime Denis Vion Cristian Urbina <u>NEC/RIKEN</u> (charge qubit) Yuri Pashkin Tsuyoshi Yamamoto Oleg Astafiev JawShen Tsai Fumiki Yoshihara Michio Watanabe

Motivation

- Coherent control of an artificial two-level system in solid-state device
- Understanding the mechanism of decoherence

Charge qubit and flux (phase) qubit

Variety of Josephson-junction qubits

coupled gubits

Cooper-pair box: a charge qubit

• sensitive to charge fluctuations

 $E_J/E_C \sim 0.3$

decoherence time ~ ns

Nakamura et al. Nature 398 786 (1999)

Rabi oscillations in "Quantronium"

• Large $E_J/E_C \sim 5$

CEA Saclay

- Operation at optimal point
- Long decoherence time ~ 0.5 μs

Vion et al. Science 296, 886 (2002)

Optimal operation point

Rabi Oscillations in a Large Josephson-Junction Qubit

John Martinis, S. Nam, J. Aumentado (NIST Boulder) ; C. Urbina (CNRS/CEA Saclay)

- Demonstrated qubit operation
 - State preparation fidelity of >99%
 - State manipulation Rabi oscillations
 - State measurement fidelity of 85%
- Scalable system large junctions, microfab.
- ~1 μs coherence times at Saclay, U. Kansas

3-Josephson-junction loop qubit

Loop inductance is not necessary \Rightarrow small loop can be used cf. RF-SQUID (single-junction loop) requires ~100-µm loop

Mooij et al. Science 285, 1036 (1999)

Energy levels

 $E_J = 1055 \,\mu\text{eV}, \ E_C = 30.44 \,\mu\text{eV}, \ \alpha = 0.80$ $E_J = 255 \,\text{GHz}, \ E_C = 7.36 \,\text{GHz}$

Sample

qubit + readout SQUID

Qubit signal: Energy levels and circulating current

γ π

Qubit operation at optimal point

and readout after adiabatic bias phase shift

Bias phase shift

Automatic phase shift is induced by SQUID bias current increase

$$E_J = 1000 \,\mu\text{eV}, \ E_C = 40 \,\mu\text{eV}, \ \alpha = 0.75$$
$$\Delta \approx 10 \,\text{GHz} \qquad \Rightarrow \Delta I_{\text{sw}}/I_{\text{sw}} \sim 4.5\%$$

Qubit readout: switching current measurement

Switching probability curves: ideal case

- nominal ground state
- under saturation
- nominal excited state

Switching probability curves

Spectroscopy and the bias phase shift

Rabi oscillations: power dependence

Rabi oscillations

Ramsey interference (or Free-induction decay)

Relaxation time

Possible decoherence sources

charge/Josephson-energy fluctuations?

Design of electromagnetic environment

- Large shunt capacitor
 - Filter noise
- Symmetric plasma mode
 - Avoid coupling between control pulse and SQUID plasma excitation
- **On-chip resistor**
 - Suppress parasitic resonance in the leads

Impedance of surrounding circuit

Spin echo

Charge noise and phase noise

CEA Saclay

D. Vion et al. Fortschritte der Physik, **51**, 462 (2003).

Summary

coherent control of 3-junction-loop flux qubit

- Rabi-oscillation period >~1.5 ns
- High readout efficiency ~60%
- Relaxation time
- Dephasing time T₂

 $\sim 60\%$ T₁~0.9 µs T₂*~20 ns

Future works

- Identification of the decoherence sources
- Operation at the optimal point
- Understanding switching dynamics in the readout
- Optimization of the parameters

Chiorescu, Nakamura, Harmans, Mooij, Science 299, 1869 (2003).