

Spin susceptibility of interacting electrons in 2D:

<u>Vladimir Pudalov</u> Michael Gershenson Haruo Kojima Gerhard Brunthaler Adrian Prinz Guenther Bauer Lebedev Physics Institute, Russia Rutgers University, USA Rutgers University, USA Johannes Kepler University, Austria Johannes Kepler University, Austria

Outline

Direct measurements of χ , m^* and g^* -factor of mobile electrons. Renormalization of χ^* , m^* , and g^* with r_s Absence of a spontaneous magnetization at $n = n_c$ Test of the FL coupling constants F_0^a and F_1^s , determined from SdH

Experimental Setup

Mixing Chamber of Dilution Fridge

Gershenson et al. Physica E (2002).

How it works:

the beating period \propto to the difference of densities for spin-up and spin-down electrons:

Assumption: $\hbar\omega_c \ll \varepsilon_F$ $\frac{\Delta \rho_{xx}}{\rho_{xx}} \ll 1$

Examples of SdH oscillations for zero and non-zero in-plane field

Examples of SdH oscillations with normalized amplitude

Pudalov et al., PRL (2002)

Resulting $\chi^* \sim g^* m^*$

Effective mass *m** and

g*-factor

Two possible values for *m** (in two assumptions):

high m^* - for T_D being *T*-independent and **low** m^* - for $T_D \sim \rho(T)$

Recent thery of magnetooscillations (Martin et al, cond-mat/0302054) supports the **lower** *m** and **higher** *g** values:

NB:

 χ * is sample-independent (<2%), *m** is sample-dependent (~10%)

Absence of a spontaneous spin polarization for densities down to $7.7 \times 10^{10} \text{ cm}^{-2}$, including the critical density n_c

SdH periodicity in weak perpendicular fields depends only on the Landau level degeneracy (i.e., flux quantum) and is nonrenormalized!

Experiment:

SdH oscillations have a periodicity, which correponds to the presence of the two spin subbands, for all densities, down to n_c . Hence, the **2D system is unpolarized down to** n_c

SdH oscillations at low densities

Both, row SdH data at $n \approx n_c$

and the phase (sign) of SdH oscillations set an upper limit for the ratio of the Zeeman-to-cyclotron energy, < 3/2: $\chi^*/\chi_b < 8$ at $n=n_c=7.7 \times 10^{10} \text{ cm}^{-2}$ Pudalov et al, cond-mat/0110160 $n = 0.53 \times 10^{11}$ is the highest density at which $\chi^*(n)$ may be viewed as a critical dependence

Test of the F_0^a and F_1^s values, determined from χ^* and m^*

Dots – experimental data

Red lines - 1st order in *T* & high orders in interactions, using F_0^a and F_1^s values

Blue lines – numerical RPA, to all order in *T*.

Pudalov et al, PRL 2003

Conclusions

- 1) Using the crossed field technique, renormalized χ^* , m^* , and g^* values are determined in the range r_s =1-9.5
- 1) For different samples, the period of SdH corresponds to the 4-fold degeneracy of spin/valleys (unpolarized system) at all densities, up to r_s =9.5.
- 2) In particular, the 2D-MIT at $n=n_c$ at B=0 is not accompanied by a complete spontaneous polarization ($P_0=1$) of spins or valleys. An upper estimate is $P_0<0.15$ at n_c .
- 3) A divergence might occur at a universal sample-independent density $n < 0.5 \times 10^{11}$, for both m^* and χ^* , with same critical indeces >0.5.
- 4) The FL coupling constants F_0^a and F_1^s , determined from SdH, provide very good none-parameter quantitative agreement of the $\rho(T)$ data in the ballistic *T*-range with theory