Contribution of geometrical resonances to

 the Andreev process in double-barrier FISIF' and SIFIS structuresZ. Radović
M. Božović
Z. Pajović

Department of Physics
University of Belgrade
N. Lazarides
N. Flytzanis

Department of Physics
University of Crete, Heraklion

Outline

- FIS vs. FISIF (SIFIS) junctions - microscopic theory
- Incoherent transport and spin accumulation
- Coherent transport in clean FISIF junctions:
- Scattering problem
- Differential conductances (charge and spin)
- Coherent transport in clean SIFIS junctions :
- Scattering problem
- dc Josephson current

Why FS vs. FSF (SFS) junctions?

- Tunneling spectroscopy of superconductors by spinpolarized currents.
- Interplay of ferromagnetism and superconductivity.
- Ballistic transport - interference effects
- LCs in quantum computers ?

The BTK model

G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

Incoherent transport

Z. Zheng et all., Phys. Rev. B 62, 14326 (2000).

$F \quad S \quad+\quad S \quad F$

Incoherent transport

S. Takahashi, I. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999).

The Model (झIS]F)

Scattering Problem

$$
\left(\begin{array}{cc}
H_{0}(\mathbf{r})-\rho_{\sigma} h(\mathbf{r}) & \Delta(\mathbf{r}) \\
\Delta^{*}(\mathbf{r}) & -H_{0}(\mathbf{r})+\rho_{\bar{\sigma}} h(\mathbf{r})
\end{array}\right) \Psi_{\sigma}(\mathbf{r})=E \Psi_{\sigma}(\mathbf{r})
$$

Exchange energy $h(\mathbf{r}) / E_{F}^{(F)}=X[\Theta(-z) \pm \Theta(z-l)] \quad \rho_{\uparrow, \downarrow}= \pm 1$
Stepwise pair potential $\Delta(\mathbf{r})=\Delta \Theta(z) \Theta(l-z)$
Interface potential $\hat{W}[\delta(z)+\delta(l-z)] \quad Z=2 m \hat{W} / \hbar^{2} k_{F}^{(S)}$
FWVM parameter $\quad \kappa=k_{F}^{(F)} / k_{F}^{(S)}$

Scattering Problem

A. Furusaki and M. Tsukada, Solid State Commun. 78, 299 (1991).

type 1

type 2

type 3
type 4

Solutions

$$
\begin{aligned}
& {\left[\exp \left(i k_{\sigma}^{+} z\right)+b_{\sigma}(E, \theta) \exp \left(-i k_{\sigma}^{-} z\right)\right]\binom{1}{0}+a_{\sigma}(E, \theta) \exp \left(i k_{\sigma}^{-} z\right)\binom{0}{1}, z<0} \\
& {\left[c_{1}(E, \theta) \exp \left(i q_{\sigma}^{+} z\right)+c_{2}(E, \theta) \exp \left(-i q_{\sigma}^{+} z\right)\right]\binom{\bar{u}}{\bar{v}}} \\
& +\left[c_{3}(E, \theta) \exp \left(i q_{\sigma}^{-} z\right)+c_{4}(E, \theta) \exp \left(-i q_{\sigma}^{-} z\right)\right]\binom{\bar{v}}{\bar{u}}, \\
& c_{\sigma}(E, \theta) \exp \left(i k_{\sigma[\bar{\sigma}]^{\prime}}^{+}\right)\binom{1}{0}+d_{\sigma}(E, \theta) \exp \left(-i k_{\sigma[\sigma]^{+}}^{+}\right)\binom{0}{1}, \\
& \bar{u}=\sqrt{(1+\Omega / E) / 2} \quad \bar{v}=\sqrt{(1-\Omega / E) / 2} \\
& \Omega=\sqrt{E^{2}-\Delta^{2}}
\end{aligned}
$$

Wave vector components

Perpendicular component in the ferromagnets

$$
k_{\sigma}^{ \pm}=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(F)}+\rho_{\sigma} h_{0} \pm E\right)-\mathbf{k}_{\|, \sigma}^{2}}
$$

Perpendicular component in the superconductor

$$
q_{\sigma}^{ \pm}=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(S)} \pm \Omega\right)-\mathbf{k}_{\|, \sigma}^{2}}
$$

Conserved parallel component

$$
\left|\mathbf{k}_{\|, \sigma}\right|=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(F)}+\rho_{\sigma} h_{0}+E\right)} \sin \theta
$$

Wave vector components

Neglecting $E / E_{F}^{(F)} \ll 1$ and $\Delta / E_{F}^{(S)} \ll 1$ except in the exponents $\zeta_{ \pm}=l\left(q_{\sigma}^{+} \pm q_{\sigma}^{-}\right)$
the approximated wave-vector components, in units of $k_{F}^{(S)}$ are

$$
\begin{aligned}
& \tilde{k}_{\sigma}=\lambda_{\sigma} \cos \theta \\
& \tilde{q}_{\sigma}=\sqrt{1-\tilde{\mathbf{k}}_{\| \cdot \sigma}^{2}} \\
& \left|\tilde{\mathbf{k}}_{\| \cdot \sigma}\right|=\lambda_{\sigma} \sin \theta \\
& \lambda_{\sigma}=\kappa \sqrt{1+\rho_{\sigma} X}
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
\left.\psi_{\sigma}(z)\right|_{z=0_{-}} & =\left.\psi_{\sigma}(z)\right|_{z=0_{+}} \\
\left.\frac{d \psi_{\sigma}(z)}{d z}\right|_{z=0_{-}} & =\left.\frac{d \psi_{\sigma}(z)}{d z}\right|_{z=0_{+}}-\frac{2 m \hat{W}}{\hbar^{2}} \psi_{\sigma}(0), \\
\left.\psi_{\sigma}(z)\right|_{z=l_{-}} & =\left.\psi_{\sigma}(z)\right|_{z=l_{+}}, \\
\left.\frac{d \psi_{\sigma}(z)}{d z}\right|_{z=l_{-}} & =\left.\frac{d \psi_{\sigma}(z)}{d z}\right|_{z=l_{+}}-\frac{2 m \hat{W}}{\hbar^{2}} \psi_{\sigma}(l) .
\end{aligned}
$$

$+\left(\mathcal{A}_{-}^{R} \mathcal{C}_{-}+\mathcal{B}_{-}^{R} \mathcal{D}_{-}\right) \Omega^{2} \mathrm{c}$
$\frac{1}{\Gamma}\left[\mathcal{A}_{+}^{R} \mathcal{C}_{+} \Delta^{2}\right.$
$+\left(\mathcal{A}_{-}^{R} \mathcal{C}_{-}+\right.$ ${ }_{-i}\left(\mathcal{B}_{-}^{R} \mathcal{C}_{-}\right.$ || \| $a_{\sigma}(E, \theta)$ $b_{\sigma}(E, \theta)$

$d_{\sigma}(E, \theta)=$
$\Gamma=\mathcal{A}_{+}^{L} \mathcal{A}_{+}^{R} \Delta^{2}-\left(\mathcal{A}_{+}^{L} \mathcal{A}_{+}^{R} E^{2}+\mathcal{B}_{\mathcal{B}^{L}}^{L} \mathcal{B}_{+}^{R} \Omega^{2}\right) \cos \left(\zeta_{-}\right)+\left(\mathcal{A}_{-}^{L} \mathcal{A}_{-}^{R}+\mathcal{B}_{-}^{L} \mathcal{B}^{R}\right) \Omega^{2} \cos \left(\zeta_{+}\right)$

$+i\left(\mathcal{A}_{+}^{L} \mathcal{B}_{+}^{R}+\mathcal{B}_{+}^{L} \mathcal{A}_{+}^{R}\right) E \Omega \sin \left(\zeta_{-}\right)-i\left(\mathcal{A}_{-}^{L} \mathcal{B}_{-}^{R}+\mathcal{B}_{-}^{L} \mathcal{A}_{-}^{R}\right) \Omega^{2} \sin \left(\zeta_{+}\right)$.

Scattering probabilities

$$
A_{\sigma}(E, \theta)+B_{\sigma}(E, \theta)+C_{\sigma}(E, \theta)+D_{\sigma}(E, \theta)=1
$$

$$
\begin{aligned}
A_{\sigma}(E, \theta) & =\operatorname{Re}\left(\frac{\tilde{k}_{\bar{\sigma}}}{\tilde{k}_{\sigma}}\right)\left|a_{\sigma}(E, \theta)\right|^{2} \\
B_{\sigma}(E, \theta) & =\left|b_{\sigma}(E, \theta)\right|^{2} \\
C_{\sigma}(E, \theta) & =\operatorname{Re}\left(\frac{\tilde{k}_{\sigma[\bar{\sigma}]}}{\tilde{k}_{\sigma}}\right)\left|c_{\sigma}(E, \theta)\right|^{2} \\
D_{\sigma}(E, \theta) & =\operatorname{Re}\left(\frac{\tilde{k}_{\bar{\sigma}[\sigma]}}{\tilde{k}_{\sigma}}\right)\left|d_{\sigma}(E, \theta)\right|^{2},
\end{aligned}
$$

Two limits

- Metallic limit ($Z=0$)

Andreev reflection vanishes at geometrical resonances:

$$
\begin{gathered}
A_{\sigma}=D_{\sigma}=0 \text { when } l\left(q_{\sigma}^{+}-q_{\sigma}^{-}\right)=2 n \pi \\
q_{\sigma}^{ \pm}=\sqrt{\left(2 m / \hbar^{2}\right)\left[E_{F}^{(S)} \pm \Omega\right]-\mathbf{k}_{\|, \sigma}^{2}} \quad \Omega=\sqrt{E^{2}-\Delta^{2}}
\end{gathered}
$$

- Tunnel limit $(Z \rightarrow \infty)$

Transport through the bound states:

$$
l q_{\sigma}^{+}=n_{1} \pi \quad l q_{\sigma}^{-}=n_{2} \pi \quad n_{1}-n_{2}=2 n
$$

Metallic vs. Tunnel NSN junction

M. Božović and Z. Radović in Supercond. and Rel. Ox.: Phys. and nanoeng. V, Proc. of SPIE, vol. 4811 (Seattle, 2002), p. 216.

FŞ double junction (P alignment)

$$
\begin{gathered}
l k_{F}^{(S)}=10^{3}\left[l / \xi_{0} \approx 1\right] \\
\theta=0 \\
\kappa=1, \Delta / E_{F}^{(S)}=10^{-3}
\end{gathered}
$$

M. Božović and Z. Radović, Phys. Rev. B 66, 134524 (2002)

Fsj double junction (P alignment)

$$
\begin{gathered}
l k_{F}^{(S)}=10^{4}\left[l / \xi_{0} \approx 10\right] \\
\theta=0 \\
\kappa=1, \Delta / E_{F}^{(S)}=10^{-3}
\end{gathered}
$$

M. Božović and Z. Radović, Phys. Rev. B 66, 134524 (2002)

Current

$$
j_{q}(V)=\sum_{\sigma=\mathbb{N}, \downarrow} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} e \mathbf{v}_{\sigma} \cdot \hat{\mathbf{z}} \delta f(\mathbf{k}, V)
$$

charge

$$
I_{q}(V)=\frac{1}{e} \int_{-\infty}^{\infty} d E\left[f_{0}(E-e V / 2)-f_{0}(E+e V / 2)\right] G_{q}(E)
$$

spin

$$
I_{s}(V)=\frac{1}{e} \int_{-\infty}^{\infty} d E\left[f_{0}(E-e V / 2)-f_{0}(E+e V / 2)\right] G_{s}(E)
$$

Differential conductances (at $T=0$)

charge

$$
G_{q}(E)=\frac{e^{2}}{2 h} \sum_{\sigma} \lambda_{\sigma}^{2} \int_{0}^{\theta_{c 1, \sigma}} d \theta \sin \theta \cos \theta\left[1+A_{\sigma}(E, \theta)-B_{\sigma}(E, \theta)\right]
$$

spin

$$
\begin{aligned}
G_{s}(E) & =\frac{e^{2}}{2 h} \sum_{\sigma} \rho_{\sigma} \lambda_{\sigma}^{2} \int_{0}^{\theta_{c 1, \sigma}} d \theta \sin \theta \cos \theta\left[1-A_{\sigma}(E, \theta)-B_{\sigma}(E, \theta)\right] \\
\lambda_{\sigma} & =\kappa \sqrt{1+\rho_{\sigma} X} \quad \theta_{c 1, \uparrow}=\arcsin \left(1 / \lambda_{\uparrow}\right) \quad \theta_{c 1, \downarrow}=\pi / 2
\end{aligned}
$$

double junction

 (thin S film)$$
Z=0, X=0.5
$$

$$
k_{F}^{(S)}=10^{4}\left[/ / \xi_{0} \approx 1\right]
$$

$$
\kappa=1, \Delta / E_{F}^{(S)}=10^{-3}
$$

M. Božović and Z. Radović, Phys. Rev. B 66, 134524 (2002)

FSF
 double junction (thick S film)

$Z=0, X=0.5$

$$
l k_{F}^{(S)}=10^{4}\left[l / \xi_{0} \approx 10\right]
$$

$$
\kappa=1, \Delta / E_{F}^{(S)}=10^{-3}
$$

M. Božović and Z. Radović, Phys. Rev. B 66, 134524 (2002)

FSF

double junction (thick S film)
$Z=1, X=0.5$

$$
1 k_{F}^{(S)}=10^{4}\left[l / \xi_{0} \approx 10\right]
$$

$$
\kappa=1, \Delta / E_{F}^{(S)}=10^{-3}
$$

M. Božović and Z. Radović, Phys. Rev. B 66, 134524 (2002)

Transparent NSN double junction

$$
A_{\sigma}(E, \theta)=\left|\frac{\Delta \sin \left(\zeta_{-} / 2\right)}{E \sin \left(\zeta_{-} / 2\right)+i \Omega \cos \left(\zeta_{-} / 2\right)}\right|^{2}
$$

$$
\begin{aligned}
& \tilde{N}(z, \theta, E)=\frac{1}{\Gamma(E) \cos \theta} \times \\
& \operatorname{Re}\left\{2 E^{2}\left(E^{2}+\Omega^{2}\right)+2 E^{2} \Delta^{2} \cos \zeta\right. \\
& \quad+[\cos (\zeta(z / d-1))+\cos (\zeta z / d)] \\
& \quad \times\left[\Delta^{4}-\Delta^{2}\left(E^{2}+\Omega^{2}\right) \cos \zeta\right] \\
& \left.+2 E^{2} \Delta^{2}[\sin (\zeta(z / d-1))-\sin (\zeta z / d)] \sin \zeta\right\}
\end{aligned}
$$

$$
\Gamma(E)=\left[\left(E^{2}+\Omega^{2}\right) \cos \zeta-\Delta^{2}\right]^{2}+4 E^{2} \Omega^{2} \sin ^{2} \zeta
$$

$$
\frac{N(z, E)}{N(0)}=\int_{0}^{\pi / 2} d \theta \sin \theta \cos \theta \tilde{N}(z, \theta, E)
$$

M. Božović, Z. Pajović, and Z. Radović, Physica C, in press (2003).

NSN

double junction (1D, thick S film)

$$
\begin{aligned}
\theta & =0 \\
Z & =0 \\
X & =0 \\
l / \xi_{0} & \approx 10
\end{aligned}
$$

$$
\kappa=1, \Delta_{0} / E_{F}^{(S)}=10^{-3}
$$

M. Božović, Z. Pajović, and Z. Radović, Physica C, in press (2003).

How to infer Δ and v_{F} in the superconductor?

Conductance minima satisfy: $E_{n}^{2}=\Delta^{2}+\left(\frac{\pi \hbar v_{F}^{(s)}}{l}\right)^{2} n^{2}$

Ballistic spectroscopy
 O. Nesher and G. Koren,

 Phys. Rev. B 60, 9287 (1999).M. Božović and Z. Radović in Supercond. and Rel. Ox.: Phys. and nanoeng. V, Proc. of SPIE, vol. 4811 (Seattle, 2002), p. 216.

Transparent NSN double junction: self-consistent pair potential in thin fillms

M. Božović, Z. Pajović, and Z. Radović, Physica C, in press (2003).

Transparent NSN double junction: the conductance spectra

$$
\begin{gathered}
3 \mathrm{D} \\
\mathrm{Z}=0 \\
X=0 \\
K=1 \\
\Delta / E_{F}^{(S)}=10^{-3}
\end{gathered}
$$

M. Božović, Z. Pajović, and Z. Radović, Physica C, in press (2003).

$$
\begin{aligned}
& \text { NSN } \\
& \text { Influence of } k \text { and } Z \\
& X=0 \\
& l k_{F}^{(S)}=10^{4}\left[l / \xi_{0} \approx 10\right] \\
& \Delta / E_{F}^{(S)}=10^{-3} \\
& \text { M. Božović and Z. Radović in } \\
& \text { Supercond. and Rel. Ox.: Phys. and } \\
& \text { nanoeng. V, Proc. of SPIE, vol. } 4811 \\
& \text { (Seattle, 2002), p. } 216 .
\end{aligned}
$$

The Model (S].F|S)

Scattering Problem

$$
\begin{gathered}
\left(\begin{array}{cc}
H_{0}(\mathbf{r})-\rho_{\sigma} h(\mathbf{r}) & \Delta(\mathbf{r}) \\
\Delta^{*}(\mathbf{r}) & -H_{0}(\mathbf{r})+\rho_{\bar{\sigma}} h(\mathbf{r})
\end{array}\right) \Psi_{\sigma}(\mathbf{r})=E \Psi_{\sigma}(\mathbf{r}) \\
\Psi_{\sigma}(\mathbf{r}) \equiv\binom{u_{\sigma}(\mathbf{r})}{v_{\bar{\sigma}}(\mathbf{r})}=\exp \left(i \mathbf{k}_{\|} \cdot \mathbf{r}\right) \psi_{\sigma}(z)
\end{gathered}
$$

Exchange energy $\quad h(\mathbf{r}) / E_{F}^{(F)}=X \Theta(z) \Theta(l-z) \quad \rho_{\uparrow, \downarrow}= \pm 1$
Stepwise pair potential $\Delta(\mathbf{r})=\Delta[\Theta(-z) \pm \Theta(z-l)]$
Interface potential $\hat{W}[\delta(z)+\delta(l-z)] \quad Z=2 m \hat{W} / \hbar^{2} k_{F}^{(S)}$
FWVM parameter $\kappa=k_{F}^{(F)} / k_{F}^{(S)} \quad Z_{\theta}=Z / \cos \theta$

Solutions

$$
\begin{aligned}
& {\left[\exp \left(i q^{+} z\right)+b_{1}(E, \theta) \exp \left(-i q^{+} z\right)\right]\binom{\bar{u} e^{i \phi_{l} / 2}}{\bar{v} e^{-i \phi_{l} / 2}}+a_{1}(E, \theta) \exp \left(i q^{-} z\right)\binom{\overline{v e} e^{i \phi_{l} / 2}}{\bar{u} e^{-i \phi_{l} / 2}}, z<0} \\
& {\left[C_{1}(E, \theta) \exp \left(i k_{\sigma}^{+} z\right)+C_{2}(E, \theta) \exp \left(-i k_{\sigma}^{+} z\right)\right]\binom{1}{0}} \\
& +\left[C_{3}(E, \theta) \exp \left(i k_{\bar{\sigma}}^{-} z\right)+C_{4}(E, \theta) \exp \left(-i k_{\bar{\sigma}}^{-} z\right)\right]\binom{0}{1}, \\
& c_{1}(E, \theta) \exp \left(i q^{+} z\right)\binom{\bar{u}^{i \phi_{k} / 2}}{\bar{v} e^{-i \phi_{k} / 2}}+d_{1}(E, \theta) \exp \left(-i q^{-} z\right)\binom{\bar{v} e^{i \phi_{k} / 2}}{\bar{u} e^{-i \phi_{k} / 2}}, \quad z>d \\
& \bar{u}=\sqrt{(1+\Omega / E) / 2} \quad \bar{v}=\sqrt{(1-\Omega / E) / 2} \\
& \Omega=\sqrt{E^{2}-\Delta^{2}}
\end{aligned}
$$

Wave vector components

Perpendicular component in the ferromagnet

$$
k_{\sigma}^{ \pm}=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(F)}+\rho_{\sigma} h_{0} \pm E\right)-\mathbf{k}_{\|}^{2}}
$$

Perpendicular component in the superconductors

$$
q_{\sigma}^{ \pm}=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(S)} \pm \Omega\right)-\mathbf{k}_{\|}^{2}}
$$

Conserved parallel component

$$
\left|\mathbf{k}_{\|}\right|=\sqrt{\left(2 m / \hbar^{2}\right)\left(E_{F}^{(S)}+\Omega\right)} \sin \theta
$$

Wave vector components

Neglecting $\Omega / E_{F}^{(S)} \ll 1$ and $\Delta / E_{F}^{(S)} \ll 1$ except in the exponents $\zeta_{\sigma}^{ \pm}=d\left(k_{\sigma}^{+} \pm k_{\sigma}^{-}\right)$ the reduced wave-vector components, in units of $k_{F}^{(S)} \cos \theta$ are

$$
\beta_{\sigma}=\frac{\sqrt{\lambda_{\sigma}^{2}-\sin ^{2} \theta}}{\cos \theta}
$$

where

$$
\lambda_{\sigma}=\kappa \sqrt{1+\rho_{\sigma} X}
$$

The Josephson current

$$
I=\frac{4 \pi k_{B} T \Delta^{2}}{e R} \int_{0}^{\pi / 2} d \theta \sin \theta \cos \theta \sum_{\omega_{n}, \sigma} \frac{\beta_{\sigma} \beta_{\bar{\sigma}} \sin \phi}{G_{n}}
$$

$$
G_{n}=8 \Delta^{2} \beta_{\sigma} \beta_{\bar{\sigma}} \cos \phi-\mathcal{G}_{1}^{-} \cos \left(\zeta_{\sigma}^{-}\right)+\mathcal{G}_{1}^{+} \cos \left(\zeta_{\sigma}^{+}\right)+i \mathcal{G}_{2}^{-} \sin \left(\zeta_{\sigma}^{-}\right)-i \mathcal{G}_{2}^{+} \sin \left(\zeta_{\sigma}^{+}\right)
$$

$$
\begin{aligned}
\mathcal{G}_{1}^{ \pm} & =-\left\{\omega_{n}\left(\beta_{\sigma} \mp \beta_{\bar{\sigma}}\right)+\Omega_{n}\left[1+Z_{\theta}^{2}-i Z_{\theta}\left(\beta_{\sigma} \pm \beta_{\bar{\sigma}}\right) \mp \beta_{\sigma} \beta_{\bar{\sigma}}\right]\right\}^{2} \\
& -\left\{\omega_{n}\left(\beta_{\sigma} \mp \beta_{\bar{\sigma}}\right)-\Omega_{n}\left[1+Z_{\theta}^{2}+i Z_{\theta}\left(\beta_{\sigma} \pm \beta_{\bar{\sigma}}\right) \mp \beta_{\sigma} \beta_{\bar{\sigma}}\right]\right\}^{2} \\
\mathcal{G}_{2}^{ \pm} & =4 i \Omega_{n}\left(1+Z_{\theta}^{2} \mp \beta_{\sigma} \beta_{\bar{\sigma}}\right)\left[i \omega_{n}\left(\beta_{\sigma} \mp \beta_{\bar{\sigma}}\right)+\Omega_{n} Z_{\theta}\left(\beta_{\sigma} \pm \beta_{\bar{\sigma}}\right)\right]
\end{aligned}
$$

$$
\Omega_{n}=\sqrt{\omega_{n}^{2}+\Delta^{2}} \quad \omega_{n}=\pi k_{B} T(2 n+1)
$$

The normal resistance

$$
\frac{R}{R_{N}}=\int_{0}^{\pi / 2} d \theta \sin \theta \cos \theta \sum_{\sigma}\left(1-\left|b_{N}\right|^{2}\right)
$$

$$
b_{N}=\frac{2 Z_{\theta} \beta_{\sigma} \cos \left(d k_{\sigma}^{+}\right)+\left(1+Z_{\theta}^{2}-\beta_{\sigma}^{2}\right) \sin \left(d k_{\sigma}^{+}\right)}{2 i\left(1+i Z_{\theta}\right) \beta_{\sigma} \cos \left(d k_{\sigma}^{+}\right)+\left(1+2 i Z_{\theta}-Z_{\theta}^{2}+\beta_{\sigma}^{2}\right) \sin \left(d k_{\sigma}^{+}\right)}
$$

$$
R=2 \pi^{2} \hbar / S e^{2} k_{F}^{(F)^{2}}
$$

Generalization of the Furusaki-Tsukada formula...

A. Furusaki and M. Tsukada, Phys. Rev. B 43, 10164 (1991).
... to the ballistic double-barrier SNS junction
Z. Radović, N. Lazarides, and N. Flytzanis, Phys. Rev. B, in press (2003)

Sijs junction ($x=0$)

$$
I=\frac{\pi k_{B} T \Delta^{2}}{e R} \int_{0}^{\pi / 2} d \theta \sin \theta \cos \theta \sum_{\omega_{n}} \frac{\sin \phi}{\Gamma_{n}}
$$

$$
\begin{aligned}
\Gamma_{n}= & \Delta^{2} \cos \phi+\left(K^{2} \Omega_{n}^{2}+\omega_{n}^{2}\right) \cosh \left(\frac{2 \omega_{n} d}{\hbar v_{N}}\right)+2 K \omega_{n} \Omega_{n} \sinh \left(\frac{2 \omega_{n} d}{\hbar v_{N}}\right) \\
& -\left(K^{2}-1-2 Z_{\theta}^{-}\right) \Omega_{n}^{2} \cos \left(2 k_{N} d\right)+2 Z_{\theta}\left(K^{2}-1-Z_{\theta}^{2}\right)^{1 / 2} \Omega_{n}^{2} \sin \left(2 k_{N} d\right)
\end{aligned}
$$

$$
K=\frac{1}{2}\left(\beta+\frac{1+\not Z_{0}^{\ell}}{\beta}\right) \quad \beta=\frac{k_{N}}{k_{S}} \quad v_{N}=\frac{\hbar k_{N}}{m}
$$

$$
k_{N}=\sqrt{k_{F}^{(N)^{2}}-\mathbf{k}_{\|}^{2}} \quad k_{S}=\sqrt{k_{F}^{(S)^{2}}-\mathbf{k}_{\|}^{2}}
$$

$$
\left|\mathbf{k}_{\|}\right|=k_{F}^{(S)} \sin \theta
$$

SFs double junction: the maximum current I_{c}

$$
\begin{gathered}
T / T_{c}=0.1 \\
Z=1 \\
X=0.01 \text { (solid) } \\
X=0 \text { (dotted) } \\
K=1 \\
\Delta / E_{F}^{(S)}=10^{-3} \\
\\
\text { Z. Radović, N. Lazarides, } \\
\text { and N. Flytzanis, } \\
\text { Phys. Rev. B, in press (2003) }
\end{gathered}
$$

Strong ferromagnet

$$
\begin{gathered}
X=0.9 \\
\Delta / E_{F}^{(S)}=10^{-3}
\end{gathered}
$$

Top panel:
$Z=0$
$\kappa=1$
$T / T_{c}=0.1$ (solid)
$T / T_{c}=0.7$ (dotted)

Bottom panel:

$$
\begin{gathered}
\mathrm{Z}=1 \\
T / T_{c}=0.1
\end{gathered}
$$

$$
\kappa=0.7(\text { solid })
$$

$$
\kappa=1(\text { dotted })
$$

Z. Radović, N. Lazarides, and N. Flytzanis, Phys. Rev. B, in press (2003)

SFs double junction: the current-phase relation close to the transition

$$
\begin{gathered}
Z=1 \\
X=0.9 \\
K=0.7 \\
\Delta / E_{F}^{(S)}=10^{-3} \\
\\
\text { Z. Radović, N. Lazarides, } \\
\text { and N. Flytzanis, } \\
\text { Phys. Rev. B, in press (2003) }
\end{gathered}
$$

Coexistence of stable and metastable 0 and ir states

$$
Z=X d k_{\mathrm{F}}
$$

Z. Radović et al., Phys. Rev. B 63, 214512 (2001).

Magnetic flux vs. external flux in SQUIDs

Effectively two times smaller flux quantum

$$
l=\frac{2 \pi}{\Phi_{0}} L I_{c}
$$

Z. Radović et al.,

Phys. Rev. B 63, 214512 (2001).

Temperature-induced 0 -m transition

FIG. 3. Critical current I_{c} as a function of temperature T for two junctions with $\mathrm{Cu}_{0.48} \mathrm{Ni}_{0.52}$ and $d_{F}=22 \mathrm{~nm}$ [17]. Inset: I_{c} versus magnetic field H for the temperatures around the crossover to the π state as indicated on curve b : (1) $T=4.19 \mathrm{~K}$, (2) $T=3.45 \mathrm{~K}$, (3) $T=2.61 \mathrm{~K}$.
V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001).

Temperature-induced 0 -II transition

$$
\begin{gathered}
\begin{array}{c}
\text { finite } \\
\text { transparency }
\end{array} \\
\Delta / E_{F}^{(S)}=10^{-3}
\end{gathered}
$$

Top panel:
Bottom panel:

$$
d k_{F}^{(F)}=17(\text { dotted }) \quad d k_{F}^{(F)}=17.23
$$

$d k_{F}^{(F)}=17.23$ (solid) five values of T
$d k_{F}^{(F)}=17.4$ (dashed)
Z. Radović, N. Lazarides, and N. Flytzanis, Phys. Rev. B, in press (2003)

Conclusion

- Features of finite size and coherency in clean FISIF:
(1) Subgap transport of electrons (reduction of the excess current in thin S film)
(2) Oscillations of differential conductances
(vanishing of the Andreev reflection at geometrical resonances)
(3) Resonances in metallic vs. bound states in tunnel junctions

Conclusion

- Non-trivial spin polarization of the current without excess spin accumulation in S, i.e. without destruction of superconductivity, even in the AP alignment.
- Reliable ballistic spectroscopy
of quasiparticle excitations in superconductors
- measurements of Δ and v_{F}.

Conclusion

- Features of finitie size and coherency in clean SIFIS:
(1) Geometrical oscillations of the maximum Josephson current
(2) Oscillations related to the crossovers between 0 and π states
(3) Temperature-induced 0 - π transition when junction is close to the crossover at $T=0$, with finite transparency and strong ferromagnet

Conclusion

- Region of coexisting 0 and π states is considerably large.
Possible application:
π SQUID with improved accuracy which operates with effectively $2 x$ smaller flux quantum

