COLLABORATIONS

2D holes & 2D electrons in GaAs

Y.Y. Proskuryakov S.S. Safonov L. Li M. Pepper M.Y. Simmons E.H. Linfield D.A. Ritchie

University of Exeter

Cavendish Laboratory, Cambridge

2D electrons S.S in Si S.J A.

S.S.Safonov S.H.Roshko A.G.Pogosov Z.D.Kvon

University of Exeter

Institute of Semiconductor Physics, Novosibirsk **Disorder and Interactions**

Total quantum correction to the Drude conductivity:

For large
$$r_s = \frac{U_C}{E_F} \propto \frac{m^*}{n^{1/2}}$$
 the

the value of F is not known.

Electron-electron interactions in the diffusive regime, $k_B T \tau / \hbar < 1$

Altshuler, Aronov; Finkelstein.

Quasi-particle interaction time, $\Delta \tau = \hbar/(k_B T)$,

is larger than the momentum relaxation time, $\tau : \Delta \tau > \tau$.

Diffusive motion enhances the interaction strength:

 $\tau_{ee}^{-1}(T) \propto T$, instead of $\tau_{ee}^{-1}(T) \propto T^2$

• *Logarithmic* correction to the conductance:

$$\delta\sigma(T) = \frac{e^2}{2\pi^2\hbar} \left(1 - \frac{3}{4}F\right) \ln T\tau$$

Interactions in 2D systems in the ballistic regime

A.K.Savchenko

School of Physics, University of Exeter, Exeter EX4 4QL, UK

- Diffusive and ballistic regimes: $T\tau < 1$ and $T\tau > 1$.
- Hole-hole interactions in a 2DHG in GaAs and 'metallic' $\rho_{xx}(T)$ with $d\rho_{xx}/dT > 0$.
- Electron interactions in a 2DEG in *Si* in the ballistic regime.
- Electron interactions in a 2DEG in *GaAs* in the ballistic regime in the presence of a long-range fluctuation potential.

Interaction corrections to σ_D in the ballistic regime $T\tau > 1$.

Zala, Narozhny, Aleiner (2001)

Physics: Coherent electron scattering by *Friedel oscillation* produced by a *point scatterer*.

$$\delta \rho(r) \propto \frac{1}{r^2} \exp(i2k_F r)$$

Phase difference is cancelled by the phase of the Friedel oscillation \implies *interference*.

• Prediction:

$$\delta\sigma(T) = \frac{e^2}{\pi\hbar} \left(1 + \frac{3F_o^{\sigma}}{1 + F_o^{\sigma}} \right) \cdot T\tau$$

- *linear* correction to the conductance.

2D structures

2DEG in

GaAs/AlGaAs

Point-like scatterers (background impurities) **Point-like scatterers**

Long-range potential (correlation length *d* - *spacer thickness*)

Temperature dependence of resistivity near the crossover.

Phonon and impurity scattering in 'metallic' R(T)

Theory of phonon scattering: Karpus (1990) The phonon contribution to $\rho_{xx}(T)$.

Interaction correction in the *ballistic* regime, $k_B T \tau / \hbar > 1$.

Interaction constant F as a function of the hole density

Positive magnetoresistance in parallel field

 B_s is the field of full spin polarisation, $B_s = 2E_F/g^* \mu_B$.

$$\boldsymbol{B} = \boldsymbol{B}_{s}$$
$$\delta \boldsymbol{\sigma}(T) = \boldsymbol{\alpha} \boldsymbol{\sigma}_{o} \cdot \frac{\boldsymbol{k}_{B}T}{\boldsymbol{E}_{F}}$$

 $p = 1.43 - 1.75 \cdot 10^{10} \text{ cm}^{-2}$ $p = 2.49 \cdot 10^{10} \text{ cm}^{-2}$

General view on the PMR and the g-factor

Positive magnetoresistance in small parallel field

Zala, Narozhny, Aleiner (2001)

$$at \quad \frac{g^* \mu_B B}{2T} < 1 + F_o^{\sigma}$$

$$\sigma(B) - \sigma(0) \approx \frac{e^2}{\pi \hbar} \frac{2F_o^{\sigma}}{\left(1 + F_o^{\sigma}\right)} \frac{T\tau}{\hbar} \frac{\left(g^* \mu_B B / 2T\right)^2}{3} f\left(F_o^{\sigma}\right)$$

Interaction constant in the triplet channel $F_o^{\sigma}(p)$.

Magnetic
susceptibility: $\chi = \frac{\chi_o}{1 + F_o^{\sigma}}$ (Stoner instability $F_o^{\sigma} = -1$)

 $\Box \quad from \ \sigma(T) \\ at \ B = 0$

from
$$\sigma(B,T)$$

at $\frac{g^* \mu B}{2T} < 1 + F_o^{\sigma}$

Proskuryakov, Savchenko, Safonov, Pepper, Simmons, D. A. Ritchie, Phys. Rev. Lett. 89, 076406 (2002)

Short-range scattering in the 2DHG in GaAs

Crossover in the sign of dR/dTfor different directions of V_g sweep

A narrow impurity band in the origin of the 'MIT' in the 2DEG on vicinal Si.

Temperature dependence of resistance of a 2DEG in vicinal Si

Interaction constant $F_0^{\sigma}(n)$ of the 2DEG in vicinal Si

Ballistic regime, $T\tau > 1$, in short- and long-range fluctuation potential

Short-range potential

Long-range potential

(essential for Zala, Narozhny, Aleiner (2001))

(discussed by Gornyi and Mirlin (2002))

• Smooth scattering potential **suppresses** interaction correction (at *B*=0).

Measurements of the **interaction correction** by the **parabolic** *NMR* was discussed in relation to the *diffusive* regime:

Paalanen, Tsui, Hwang, PRL (1983).

• Strong field, $\omega_c \tau > 1$, restores interactions:

$$\rho_{xx} = \frac{1}{\sigma_o} + \frac{1}{\sigma_o^2} (\omega_c \tau)^2 \left(\delta \sigma_{xx}^{ee}(T) \right)$$

Electron interactions in the ballistic regime *in the long-range fluctuation potential*

Theory: Gornyi, Mirlin, PRL (2003)

Experiment: *Li, Proskuryakov, Savchenko, Linfield, Ritchie, PRL (2003)*

2DEG in GaAs/AlGaAs

Interaction correction $\delta\sigma^{ee}(T)$ in strong magnetic fields

Interaction parameter F_o^{σ} as a function of r_s in different 2D systems

Interaction parameter F_o^{σ} as a function of r_s in different 2D systems

Conclusions

- Interaction effects in the *ballistic regime* contribute to the 'metallic' ρ_{xx}(T) in the systems with short-range scatterers:
 2DHG in *GaAs/AlGaAs* and 2DEG in *Si*.
- Interaction effects in the *ballistic regime* depend on the character of the fluctuation potential. They have different manifestation in the situation of long-range potential: as a negative magnetoresistance of
 - a 2DEG in GaAs/AlGaAs.