Quantum dynamics of Josephson vortices

A. Wallraff, M.V. Fistul, A. Lukashenko A. Kemp, J. Lisenfeld, and <u>A. V. Ustinov</u>

Physikalisches Institut Universität Erlangen-Nürnberg Erlangen, Germany

June 8, 2003

Outline

- A single vortex in the quantum regime
 - Creating a potential well
 - Observation of quantum tunneling
 - Spectroscopy of energy levels
- Quantum dissociation of a vortex-antivortex pair
- Vortex qubit
 - Designing double-well potential
 - Operation and readout scheme
 - Interface to RSFQ
- Summary

Josephson vortex (fluxon)

$$\varphi_{xx} - \varphi_{tt} = \sin \varphi + \alpha \varphi_t - \beta \varphi_{xxt} - \gamma$$

Normalized units:

 $x \rightarrow \lambda_J \sim 10 \,\mu \mathrm{m}$

$$t \rightarrow \omega_p^{-1} \sim 10 \,\mathrm{ps}$$

- α quasiparticle tunneling
- eta surface losses
- γ bias current

Vortex is the soliton solution for
$$\alpha = \beta = \gamma = 0$$

$$\varphi = 4 \arctan\left(\frac{x - vt}{\sqrt{1 - v^2}}\right)$$

$$\varphi$$
 $1 2\pi$

Annular Josephson junction

vortex trapped in annular junction at 4.2K

driving force

60

Vortex as a quantum particle

T.Kato and M. Imada, J. Phys. Soc. Japan 65, 2963 (1996)
A. Shnirman, E. Ben-Jacob, and B. Malomed, Phys. Rev. B 56, 14677 (1997)

"Fingerprint" of a trapped vortex

Vortex in the washboard potential

Vortex escape from a potential well

Experiments with ultra-narrow long annular Josephson junctions

Observation of quantum tunneling of a Josephson vortex

Measurements of vortex energy levels

Energy level separation

Reconstructed potential

Excellent agreement !

Two different escape processes?

Annular junction without trapped vortex

M. Fistul, A. Wallraff, Y. Koval, A. Lukashenko, and A.V.Ustinov, unpublished (2003)

$I_P(H)$: no trapped vortex

Dissociation of a vortex-antivortex pair at $I=I_C$

Numerical simulation:

h = 0.5 $\gamma = 0.77$ magnetic field $\phi_x(x,t)$ έ ο ω magnetic field _{φ_x} 10^{2} vortex time ,15 ()antivortex coordinate x 10

Switching current measurements

P(I) distributions versus bath temperature

Experimental data: standard deviation of P(I) distributions vs T and H

theory: M. Fistul

- dissociation of a vortexantivortex pair
- decay of a "stretched breather" state

thermal decay

quantum decay

Summary

- Quantum tunneling of a single Josephson vortex is observed for the first time
- Vortex energy levels in a potential well are measured by microwave spectroscopy
- Quantum dissociation of vortex-antivortex pairs is observed in annular junctions with no trapped vortices
- Vortex qubit state can be designed by tailoring the junction shape

Catching a vortex

- <u>Trick 1</u>:
- 1. Heat above T_c
- 2. (Apply current)
- 3. Cool below T_c
- 4. Pray

Success rate: < 5-10%

• A. Davidson, B. Dueholm, B. Kryger, and N. F. Pedersen, *Phys. Rev. Lett.* 55, 2059 (1985)