
Supplementary Figure 1: Longitudinal power distribution over the random fibre laser.

Supplementary Figure 2: Random fibre laser. (a) The experimental setup. (b) The

equivalent configuration of twice the length.
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Supplementary Figure 3: (a) Wave spectrum at different power levels (b) Spectral full

width at half maximum. The data are numerically calculated from Eq. (47).
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Supplementary Note 1. Basic dynamic equations

Here, we provide details of the formalism for describing wave kinetics in active cycled

systems. We illustrate our method with an example of a random distributed feedback

fibre laser. However, the approach is general. The random laser here is a span of optical

fibre of length L that is optically pumped from fibre ends. The randomly backscattered

light in the waveguide is amplified by the Raman effect, and the system starts to lase.

See more about random fibre lasers in the recent review [1].

A schematic distribution of the generated wave power along the fibre span is presented

in Supplementary Figure 1. Two electromagnetic waves, – propagating to the right and

the left, are generated in the fibre. Due to amplification, their amplitudes are increased

during the propagation and achieve maxima near the ends of the fibre, before passing

outside the fibre. Let us stress that nonlinear interaction between counter-propagating

waves is weak, since their amplitude maxima are achieved at opposite ends of the fibre.

Therefore, they can be considered independently.

We begin with the dynamic model describing the evolution of the envelope of the

generation electromagnetic field, ψ, over the coordinate z within the fibre, at 0 < z < L,

in which L is the span length. The equation for the generation wave propagating in the

fibre to the right is

i (∂z − ĝ)ψ = β∂2
t ψ +

γ

2
ψ|ψ|2, (1)

in which t stands for time, γ is the Kerr nonlinear coefficient, and β is the quadratic

dispersion coefficient. We consider the generation processes high above the threshold, so

we neglect noise terms in Eq. (1). An equation similar to Eq. (1) describes the signal

propagating to the left. The only difference is in the sign of the derivative ∂z.

The effective gain operator ĝ is determined by the energy pumping and attenuation of

the signal. In the frequency domain, it is a frequency-dependent function g = gRP (z)−α,

in which gR is the Raman gain coefficient, P (z) is the power of the pumping wave, and α is

the linear attenuation coefficient in the fibre. The distribution of energy pumping over the

evolution coordinate z is defined by the factor P (z) that is assumed to be known (it can

be consistently found from the power balance equations). Lasing occurs for frequencies

near the maximum of the effective gain g. We can approximate spectral dependence of

the effective gain by the Taylor expansion of the gain coefficient near its maximum:

g(ω) = gRP (z)− α− aP (z)ω2 (2)

Further we use a notation g0 = gRP (z) − α. Note that above the generation threshold,
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the condition g0 > 0 must be fulfilled.

In reality, the power of the pumping wave P (z) depends on the generation wave ψ.

They are related via the power balance equations [2, 1]. Therefore, the problem should

be solved in two steps. First, we must find ψ at a given P and then self-consistently find

P (z), using the balance equation. Here, we concentrate on the most challenging first step.

In a random fibre almost all generated radiation goes out from the fibre end. Only

a small part of the energy is reflected back via weak Rayleigh back scattering processes.

Due to spatial distribution of the gain, amplitudes of generated waves are increased during

evolution, making the scattering process feedback most effective only at the very end of the

fibre. This implies an effective initial condition for the generation wave ψ+, propagating

to the right, through the amplitude of the generation wave ψ−, propagating to the left.

Formally, the effective initial conditions for the waves can be introduced as

ψ+(0, t) = R̂lψ−(0, t), ψ−(L, t) = R̂r(ω)ψ+(L, t), (3)

in which Rl and Rr – reflection coefficients on the respective left end and the right end

of the fibre are defined in the frequency domain. These coefficients may have different

ω-dependence in different schemes. In the case of the random fibre laser, |R| � 1, the

reflection smallness leads to the conclusion that the signal is only weakly disturbed by

the reflection, thus justifying the conditions (3).

The spectrum of the generated wave in the random fibre laser is relatively broad (in

comparison to few-mode lasers) and consists of a high number of spectral components near

the carrying frequency ω0 (see [1]). The main challenge here is to describe an influence

of non-linearity on the generation spectrum. To do that, we use the standard kinetic

approach dealing with averaged quantities. We assume that the dispersion length (β∆2)−1

(in which ∆ is the spectral width) is small in comparison to the fibre length L. Then

phases of the harmonics with different frequencies possess essentially different phases.

Therefore, at averaging over a length larger than the dispersion length the harmonics can

be treated as approximately independent.

The main object in kinetic theory is the pair correlation function

〈ψ(z, t1 + t)ψ?(z, t1)〉 =

∫
dω

2π
exp(−iωt)F (z, ω), (4)

in which angular brackets mean averaging over distances larger than the dispersion length

and ψ? designates complex conjugation. Due to assumed time homogeneity, the average

(4) solely depends on the time difference t and is independent of t1. However, when
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examining real fibres, it is useful to average over time (integrate over t1) to eliminate

effects related to different fluctuations (noises) neglected in our formalism. Let us stress

that due to z-dependence of the generation wave, the system is not homogeneous in space,

in contrast to the time behavior. The function F is nothing else but the spectrum of the

generated signal. Note that the signal intensity I can be expressed via the spectrum, it

is the integral

I ≡ 〈|ψ|2〉 =

∫
dω

2π
F (ω). (5)

The boundary conditions (3) lead to the following relations for the averages

F+(0, ω) = |Rl(ω)|2F−(0, ω), F−(L, ω) = |Rr(ω)|2F+(L, ω), (6)

in which F+ and F− correspond to the generation waves respectively propagating to the

right and the left. Further, we consider the symmetric stationary situation in which

Rl = Rr and F+(z) = F−(L− z). Then we come to the condition

F (0, ω) = |R(ω)|2F (L, ω), (7)

for the signal propagating to the right. The condition relates values of the correlation func-

tion F taken at different ends of the fibre. Therefore, it can be considered as a closed loop.

Supplementary Note 2. Kinetics

To examine non-linear effects in the random laser, a perturbation theory must be

developed. The starting point for the theory is the basic equation (1) for the envelope

ψ(z, t). We treat the non-linear term in Eq. (1) as a perturbation and expand the

solution of the equation over the non-linearity. Then we use the expansion for calculating

the average (4). Effectively, we apply a diagrammatic technique of the type developed

first by Wyld [3] in the context of hydrodynamic turbulence. The diagrammatic technique

enables us to calculate correlation functions of the field ψ.

Below, we aim to derive an evolution equation for the spectrum F . The equation

enables us to analyze the form of the spectrum and its dependence on the system param-

eters. Our derivation is performed in the spirit of the derivation of the standard kinetic

equation [4, 5] for classic waves. However, our system is close to an integrable one since

at g = 0, the basic equation (1) is the non-linear Schrödinger equation that is completely

integrable and possesses an infinite number of integrals of motion. There are no kinetics

in the system of waves described by the non-linear Schrödinger equation [6]. Therefore,
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non-trivial kinetics is related to the presence of the gain term g that makes the situa-

tion qualitatively different from the standard kinetic equation and requires a consistent

derivation of a generalized kinetic equation.

A formal solution of the equation (1) can be written as

ψ(z, t) =

∫
dt′G(z, z?, t− t′)ψ(z?, t

′)

−iγ
2

∫
dt′
∫ z

z?

dz′G(z, z′, t− t′)ψ(z′, t′)|ψ(z′, t′)|2, (8)

in which z? is an arbitrary point and

G0(z, z′, t) = θ(z − z′)
∫
dω

2π
exp

[
−iωt+

∫ z

z′
dz′′ (g + iβω2)

]
(9)

is the Green function determining a linear response of the system to an external influence.

Analogously, it is possible to consider the “back” in z evolution. For example, in the linear

approximation

ψ(z′, t′) ≈
∫
dt G(z, z′, t− t′)ψ(z, t). (10)

As a next step, we derive an equation for the function F (4). Eq. (1) yields

∂zF (z, ω) = 2gF − iγ

2

∫
dt exp(iωt)〈

ψ(z, t)ψ?(z, 0)
[
|ψ(z, t)|2 − |ψ(z, 0)|2

]〉
. (11)

Here, as above, the angular brackets mean averaging over distance larger than the dis-

persion length. The equation (11) implies that both g and F are slowly varying at the

length of averaging. We assume β∆2 � g0. We can then choose the averaging length

l much smaller than g−1
0 . In addition, the inequality aP∆2 � g0 must be satisfied

as a manifestation of the spectrum narrowness in comparison with the characteristic fre-

quency range of the Raman scattering. Therefore, we come to the chain of the inequalities

aP∆2 � g0 � β∆2 that must be satisfied for our theoretical scheme to be valid.

The phase randomization caused by dispersion leads to approximately Gaussian statis-

tics of the field ψ, since it appears to be a sum of a large number of independent terms.

Therefore, by calculating averages like (11), we can use the Wick theorem (the presenta-

tion of the average of some product of ψ fields via its pair correlation functions). However,

application of the Wick theorem to the combination on the right-hand side of Eq. (11)

gives zero. Therefore, we must take into account a weak correlation between different

harmonics caused by non-linearity. Technically, one should exploit the non-linear contri-
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bution to ψ from Eq. (8)

ψnon(z, t) = −iγ
2

∫
dt′
∫ z

0

dz′G(z, z′, t− t′)∫
dt1 G(z, z′, t1 − t′)ψ(z, t1)

∣∣∣∣∫ dt2 G(z, z′, t2 − t′)ψ(z, t2)

∣∣∣∣2 , (12)

in which we substitute the expression (10). The goal of the substitution is to express δψ

in terms of ψ(z, t). Then averages in the right-hand side of Eq. (12) are expressed in

terms of the function F (z, ω) (4).

Using the Wick theorem, substituting the expression (9) and taking integrals over

time, we obtain from Eq. (12)

(∂z − 2g)F = γ2

∫
dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)[

ga FF2F3

g2
a + Ω2

+
gc F1F2F3

g2
c + Ω2

− 2gb FF1F3

g2
b + Ω2

]
. (13)

Here, F = F (z, ω), F1 = F (z, ω1), so the following notations are introduced

Ω = β(ω2 + ω2
1 − ω2

2 − ω2
3), ga = g(ω) + g(ω2) + g(ω3)− g(ω1),

gb = g(ω) + g(ω1) + g(ω3)− g(ω2), gc = g(ω1) + g(ω2) + g(ω3)− g(ω).

The equation (13) is the generalized kinetic equation derived for interacting waves in

an unstable medium (due to pumping). In Eq. (13), the usual δ-functions, which ensure

the wave vector conservation in the collision integral (right-hand side), are substituted by

Lorentzians, in which the gain g is presented. It is a manifestation of the system non-

homogeneity in z that is caused by the gain. Other properties of the generalized kinetic

equation are close to one of the usual wave kinetic equations. For example, an integral

over ω of the collision integral is equal to zero. This is a consequence of the conservation

law of wave action (number of waves), which is valid without gain.

Note that similar kinetic equation with Lorentzians was found in the paper [7] where

finite wave damping was taken into account. However, there is a principal and fundamen-

tal difference. In our case one cannot substitute the Lorentzians by δ-functions (as it was

made in the cited work) even for the case of narrow Lorentzians since then the collision

integral becomes zero due to complete integrability of the 1D Schrodinger equation. This

makes our result special and very different.

It is instructive to compare our generalized equation with usual kinetic equation for

weak wave turbulence [5]. The latter has two types of solutions: Equilibrium solution and

flux solution, both with power spectra. In our case, the collision integral is non-zero, since
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it should be balanced by some additional term appearing due to the space inhomogeneity

of the system. That leads to a z-dependent characteristic spectrum width. Formally,

it is a consequence of the “locality” property of our collision integral (it is determined

by frequencies of the order of the external frequency). The “locality” property is also

characteristic of the collision integral in usual weak wave turbulence. Our results are not

limited to optics, but are relevant to many other areas of science in which the non-linear

Schrödinger equation is a master model and four-wave mixing of a large number of waves

occurs, such as in ocean waves science [14].

It is possible to substitute g → g0 in the collision integral since we assumed aP∆2 � g0

and explained relative shortness of the non-linear stage (where the collision integral is

relevant). However, generally, we should generally keep the term aPω2 in the left-hand

side of Eq. (13), since it is relevant at the linear stage. As a result, we find

(
∂z − 2g0 + 2aPω2

)
F = γ2

∫
dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)

2g0

4g2
0 + Ω2

[FF2F3 + F1F2F3 − FF1F2 − FωF1F3] . (14)

In the paper we examine the case of relatively strong dispersion (wide spectrum), in

which β∆2 � g0 (here, ∆ is the spectrum width). The inequality β∆2 � g0 means that

we can pass to the limit of small g in Eq. (13) or (14). However, we should be careful

because of the above-mentioned cancellations. In the limit g0 → 0, the Lorentzian in the

collision integral (the right-hand side of Eq.(14)), turns to δ-function of Ω, acquiring the

form of the usual collision integral [5]. However, in this limit, the collision integral turns

to zero. It is a consequence of the complete integrability of the one-dimensional non-linear

Schrödinger equation. An existence of an infinite number of integrals of motion in this

case leads to an absence of kinetics in all orders in non-linearity [6].

Therefore, we should go beyond the zero order in g0 (that gives δ-function) and keep

the first order in g0. Thus we can neglect g0 in comparison to Ω in the denominator in

Eq. (14) and keep g0 in the nominator to obtain

(∂z − 2g)F (z) =
2g0γ

2

β2

∫
dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)

(ω2 + ω2
1 − ω2

2 − ω2
3)−2 (FF2F3 + F1F2F3 − FF1F2 − FF1F3) . (15)

Note the presence of the singular denominator in Eq. (15). This does not lead to any

divergency because of integrability (any divergency would mean that the coefficient at the

δ-function is not zero). The equation is a starting point of subsequent calculations.

7



As it follows from Eq. (15), in the linear approximation

Flin(z, ω) ∝ exp

[
2

∫
dz (g0 − aPω2)

]
. (16)

The expression describes the exponential growth of the signal amplitude. Besides, the

relation (16) shows that in the linear regime, the laser spectrum becomes narrower fol-

lowing the gain spectral shape g(ω). If factor A > ∆−2
0 , in which A =

∫
dz aP and ∆0

are the initial spectrum width at z = 0. The spectrum width ∆ at the end of the linear

stage can be estimated as ∆ ∼ A−1/2. Note that the spectral width in this case does not

depend on the initial spectral width at z = 0.

Supplementary Note 3. Diagrammatic expansion

The generalized kinetic equation (13) is derived in the lowest order of the perturbation

theory. To examine higher-order corrections, we need to use more powerful tool that is

the Wyld diagrammatic technique. Here, we outline this technique, as applied to the

considered problem. For illustration purposes, we will re-derive the generalized kinetic

equation (13) using the diagrammatic technique.

Correlation functions of the field ψ governed by the equation (1) can be calculated

using the diagrammatic technique of the type developed first by Wyld [3] in the context

of hydrodynamic turbulence. In the technique, the correlation functions are presented as

a series over the non-linearity in the dynamic equation for the field (over γ). We use the

version of the formalism developed in works [8, 9, 10, 11] in which the Wyld diagrammatic

technique is reduced to a quantum field theory.

The correlation functions are then calculated as functional integrals over the fields ψ,

ψ? and auxiliary fields p and p? with the weight exp(−A), in which A is the “action”

A =

L∫
0

dz

∫
dt
{
p?
[
(∂z − ĝ)ψ + i∂2

t ψ + i
γ

2
ψ|ψ|2

]
+p
[
(∂z − ĝ)ψ? − i∂2

t ψ
? − iγ

2
ψ?|ψ|2

]}
. (17)

(Without losing generality, this section uses β = 1.) Note that an integration over the

auxiliary fields guarantees validity of the equation (1) and the complex conjugated equa-

tion.

The perturbation expansion is introduced for the pair correlation function

〈ψ(z, t)ψ?(z′, t′)〉 =

∫
dω

2π
exp[−iω(t− t′)]F (z, z′, ω), (18)
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and for the Green functions

〈ψ(z, t)p?(z′, t′)〉 = G(z, z′, t− t′), (19)

〈ψ?(z, t)p(z′, t′)〉 = Ḡ(z, z′, t− t′). (20)

Due to space inhomogeneity, the pair correlation function (18) depends on both coordi-

nates (the correlation function introduced in the previous section is taken at coinciding

points, z = z′). The functions (19,20) determine a linear response of the system to an

external influence. Therefore they should possess corresponding causality properties. We

formulate dynamics in terms of z, therefore G(z, z′, t) = 0 = Ḡ(z, z′, t) if z < z′. Note

that the correlation functions of the type 〈pp?〉 are zero.

In the framework of the perturbation theory, the functions F and G, Ḡ are repre-

sented as infinite series over γ, in which different terms are determined by bare functions

(obtained at γ = 0). The bare values of the Green functions, G0 and Ḡ0, are written as

G0 = θ(z − z′)
∫
dω

2π
exp

[
−iω(t− t′) +

(
g + iω2

)
(z − z′)

]
, (21)

Ḡ0 = θ(z − z′)
∫
dω

2π
exp

[
iω(t− t′) +

(
g − iω2

)
(z − z′)

]
. (22)

After substitution g = g0 − aPω2, the integrals (21,22) can be taken explicitly. Note

that G, Ḡ grow exponentially as z − z′ increases. The bare value of the function F is

determined by the boundary condition (3).

It is convenient to introduce a graphical representation. The Green functions are

depicted by double lines directed to complex conjugated fields

G =
z,t
mM

z′,t′
Ḡ =

z′,t′
mxM

z,t
(23)

The bare Green functions G0, Ḡ0 are depicted by single lines

G0 =
z,t
fF

z′,t′
Ḡ0 =

z′,t′
fxF

z,t
(24)

The pair correlation function (18) is depicted by a wavy line

F (z, z′, ω) =
z
gωG

z′
(25)

To construct the perturbation expansion for D,G, Ḡ, we must expand the exponent

exp(−A) in the respective functional integrals in the series over the interaction term

Aint =
iγ

2

L∫
0

dz

∫
dt
(
p?ψ|ψ|2 − pψ?|ψ|2

)
, (26)
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and then express the terms of the expansion via the bare objects (which can be done

explicitly). The terms of the expansion can be depicted as Feynman diagrams with

vertices of the fourth order (corresponding to the factor γ).

A partial summation of the diagrams leads to the following formally exact relations

mM =fF+fF�� ��ΣωmM, (27)

gG =mM ΠωmxM, (28)

which is characteristic of the Wyld technique. Here, the blocks Σ (self-energy function)

and Πω (polarization operator) are subjects of calculation. The quantities in the first

non-trivial order are given by two-loop diagrams (that can be obtained in the second

order in Aint)

Σω = −i • Yz`+
1

2
�xQrTsf−F�rTsf + . . . , (29)

Πω =�QrTsg + . . . , (30)

The equation (27) can be analytically rewritten as

[G−1
0 − Σ(ω)]G(ω) = δ(z − z′), (31)

G−1
0 = ∂z − g − iω2. (32)

A similar relation is valid for Ḡ. Next, applying to the equation (28) the operator G−1
0

we find

(
∂z − g − iω2

)
F (z, z′, ω) =

z∫
0

dy
[
Σ(z, y, ω)F (y, z′, ω) + Ḡ(y, z′, ω)Π(z, y, ω)

]
. (33)

An analogous equation can be obtained for the second argument, z′. It follows from Eq.

(33) that if the z-interval is small enough and if the non-linearity is weak then

F (y, z, ω) ≈ F (z, z, ω) exp
[(
iω2 + g

)
(y − z)

]
, F (z, y, ω) = F̄ (y, z, ω). (34)
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Summing the equation (33), and a similar one for z′, we obtain

(∂z − 2g)F (z, z, ω) =

z∫
0

dy [Σ(z, y, ω)F (y, z, ω) +G(z, y, ω)Π(y, z, ω) + c.c.] , (35)

in which c.c. means a complex conjugated quantity. The next step is substituting into Eq.

(35) expressions corresponding to two-loop diagrams (29) and (30) as Σ and Π. We then

use the expressions (21,22) for the Green functions and reduce two-point pair correlation

functions F to single-point ones by using Eq. (34). We can then calculate the integral

over y in Eq. (35) to obtain the equation (13).

Supplementary Note 4. Solution

The right-hand side of Eq. (15) can be estimated as g0F (γI/β∆2)2. We first analyze

the case in which γI � β∆2 at the end of the fibre. That means that the inequality

is satisfied everywhere because I monotonically grows as z increases. The inequality

γI � β∆2 means that the linear term 2g in the left-hand side of Eq. (15) is larger than

the collision integral (right-hand side of the equation). The main contribution to the

F -evolution by the collision integral is produced at the nearest to the fibre end interval

of the length ∼ g−1
0 .

To calculate the non-linear (collision) contribution to F (L), we can exploit the linear

law (16) (in which the term with a can be neglected) to obtain F (z) = exp[2g0(z−L)]F (L).

Then in accordance with Eq. (15), the non-linear correction to F can be written as

Fnon =
γ2

3β2

∫
dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)

(ω2 + ω2
1 − ω2

2 − ω2
3)−2 (FF2F3 + F1F2F3 − FF1F2 − FF1F3) , (36)

in which all functions, F, F1, . . . , are taken at z = L.

To achieve a statistically steady state, we must satisfy the relation (7). We assume

here that the signal scattering is produced by impurities. The reflection coefficient R then

weakly depends on the frequency ω, because the impurity size is much smaller than the

wavelength. In this case the only parameter coming into the game is κ = |Rω|2 � 1. It

then follows from Eq. (7)

F (0, ω) = κF (L, ω). (37)

To satisfy Eq. (37), we must assume that the aω2-contribution to the law (16) is small.

Therefore:

κ exp

(
2

∫ L

0

dz g0

)
= 1 + η, (38)
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in which η � 1.

Using the relations (16,36,38), we find from the condition (37)

(η − 2Aω2)F +
γ2

3β2

∫
dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)

1

(ω2 + ω2
1 − ω2

2 − ω2
3)2

[FF2F3 + F1F2F3 − FF1F2 − FF1F3] = 0, (39)

in which all functions are taken at z = L and A =
∫ L

0
dz aP . As follows from Eq. (39),

the spectrum width is determined by the balance of the terms in the left-hand side:

∆ =

√
η

2A
. (40)

Note the smallness of ∆ in η. Comparing different terms in Eq. (39), we find I ∼

βη3/2/(γA) and

I ∼ β

γ

√
A∆3. (41)

Therefore, ∆ ∝ I1/3 in this regime.

The equation (39) admits a self-similar substitution

F (L, ω) =

√
3

2

βη

γ
√
A
φ
( ω

∆

)
, (42)

in which ∆ is determined by Eq. (40). The equation (39) then leads to the universal form

of the equation for the self-similar function

(x2 − 1)φ(x) =

∫
dx2dx3

(4π)2

φφ2φ3 + φ1φ2φ3 − φφ1φ2 − φφ1φ3

(x− x2)2(x− x3)2
, (43)

in which x1 = x2 +x3−x. The numerical solution of the equation gives the normalization

factor ∫
dx φ(x) ≈ 23.8.

We see from Eq. (41) that the spectral width ∆ grows as the intensity I increases.

At some level of pumping, γI becomes of the order of β∆2. At higher pumping levels

the lasing regime completely changes. This regime needs a separate consideration. Our

preliminary analysis shows that in this regime, the relation γI ∼ β∆2 is satisfied during

the non-linear stage of the generation wave propagation (near the fibre span end). These

results will be presented elsewhere.

Using equation (43) the generation spectrum shape can be numerically calculated and

different ratios between gain and dispersion, λ = 2g/β∆2, see Fig.2 of the main text.

Note that in the limiting case of small dispersion, the generation spectrum of random

laser approaches the hyperbolic secant shape. Note that in the case of long Raman fibre
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laser with a conventional linear cavity, similar hyperbolic secant spectrum shape was ob-

served and introduced in a phenomenological way in the limiting case of the dispersion

much bigger than nonlinearity [2]. The fact that the hyperbolic secant shape of the wave

spectrum being derived with the help of classical wave kinetics in [2] conventional fiber

laser coincides with the spectrum shape derived within the new approach of active cycled

wave kinetics for a very different system (random lasers with no cavity) is intriguing and

should be further investigated.

Supplementary Note 5. Experimental verification

To experimentally verify the predictions of the developed nonlinear kinetic theory, we

designed a random fibre laser (Supplementary Figure 2).

The random fibre laser is built using 850 meters of a phosphosilicate fibre [12]. We

choose the phosphosilicate fibre because of specific Raman gain profile. There is a single

Raman gain peak with a spectral shape close to be Gaussian (i.e. parabolic in logarithmic

scale). The frequency shift between generation wave and pump wave is about 1,330 cm−1.

The full width at half the maximum of the gain profile is around 8 nm. Under pumping at

1,115 nm, the laser generates at 1,308 nm. We use a random fibre laser configuration with

a broadband mirror of a reflectivity close to 100% from one fibre end and only random

feedback from other fibre end. The pump wave is coupled from the free fibre end. We use

following fiber parameters (in accordance with notations in eq.(1) and (2)): linear losses

α = 0.09 km−1, dispersion β = 4.3ps2km−1, Kerr coefficient γ = 7 (km·W)−1, Raman gain

coefficient gR = 0.68 (km·W)−1, coefficient a = 0.026ps2W−1km−1.

Due to the symmetry, the configuration with a broadband mirror placed at z=0 is

equivalent to the configuration of the laser having twice a fibre length, no point-based

reflectors, and pumped from both fibre ends (Supplementary Figure 2b), see review [1] for

details. Using a balance equations set [1], we can model the pump and generation power

distributions. Generation waves are strongly amplified in the small region near fibre ends.

Thus, the main contribution to the backscattered wave also occurs only in the same region

near fibre ends. As a result, the theoretical assumption that the feedback in the system

is provided by an effective point-based reflector, I−(L) = ReffI+(L), with some random

reflection coefficient R(ω), is well-justified under our experimental conditions. Here, I+

and I− are intensities of forward- and backward-propagating waves (see Supplementary

Figure 1). The laser is designed in the way that the generation power satisfies the inequal-
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ity (γIout)
2 /
(

(gRPin)2 + (0.5β2∆2)
2
)
< 1 in a sufficiently broad range of pump powers

above the threshold, allowing use of the perturbation theory for kinetic equation.

Supplementary Note 6. Linear kinetic theory near the generation thresh-

old: Schawlow-Townes limit

The wave kinetic approach developed here for active cyclic systems provides an in-

teresting possibility to expand the seminal result by Schawlow-Townes. It also describes

how, after the initial linear spectral narrowing, the wave spectrum of random fibre laser

becomes broader due to the nonlinear interactions, when power increases well above the

generation threshold. It is common knowledge laser physics that the lasing spectrum

becomes narrower while the pump power increases inversely proportional to the power

[13]. This is true when there are no nonlinear interactions [13]. In our experiments, both

spectrum narrowing at low powers and nonlinear spectrum broadening at high power are

observed (see Fig. 3b in the main text).

At very low pump power gRPL� 1, the emission spectrum shape repeats the spectral

shape of the gain profile, which we define in this section as a generalized form of (2)

g(ω) = gRPe
−ω2/Γ2

R (44)

with a width Γ2
R = gR/a, in which a is defined in (2). Note that we don’t include linear

losses α into the definition of g(ω) (44) for the sake of further simplicity.

Further, we use a configuration from Supplementary Figure 2a with a highly reflective

mirror. The starting point of the consideration is the power balance equation on the

spectrum of the backward wave I−ω propagating from the output z = L towards the

mirror z = L/2

−dI
−
ω

dz
= 2(g − α)I−ω + 4g~ω0 + εI+

ω (45)

with a zero initial condition. Here, ε is a Rayleigh scattering coefficient, ε = 0.001 · α,

[1], 4g~ω0 is the term considering energy input from spontaneous emission with Planck

constant ~ and carrier angular frequency is ω0. We remind that frequency ω is frequency

detuning from the center of the gain profile.

The wave propagating in the forward direction (from L/2 to L) obeys a similar equa-

tion, but we can neglect a Rayleigh backscattering, as it has a small impact on a wave of

high enough intensity. Thus, we can describe its evolution as an exponential growth due
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to Raman amplification
dI+

ω

dz
= 2(g − α)I+

ω + 4g~ω0 (46)

Using its approximate solution I+
ω (z) = Ioutω e2(g−α)(z−L) in (45), and relying on boundary

conditions at z = L/2: I+
ω (L/2) = I−ω (L/2), we can finally obtain the formula for the

output spectrum Ioutω

I+
ω (L) = 2~ω0

g(e2(g−α)L/2 − 1)

g − α
e2(g−α)L/2 + 1

1− ε(e4(g−α)L/2−1)
4(g−α)

(47)

The equation (47) defines the spectrum shape and spectral width in Schawlow-Townes

limit. We can numerically find the wave spectrum shape (Supplementary Figure 3a), and

determine the spectral width from it (Supplementary Figure 3b).

Note that the lasing threshold defined by random distributed feedback is clearly

marked on this graph at generation power around 0.01 W by abrupt changes in the

spectrum narrowing law. As a result, the spectrum becomes narrower inversely propor-

tional to the generation power, similar to the Schawlow-Townes law [13]. Therefore, we

extend Schawlow and Townes’ approach to describe spectrum narrowing in random fibre

lasers near the generation threshold.
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