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Allowable number of plasmons in nanoparticle
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We address thermal and strength phenomena occurring in metal nanoparticles due to excitation of surface

plasmons. The temperature of the nanoparticle is found as a function of the plasmon population, allowing for

the Kapitza heat boundary resistance and temperature dependencies of the host dielectric heat conductivity

and the metal electrical conductivity. The latter is shown to result in the positive thermal feedback which

leads to appearance of the maximum possible number of plasmon quanta in the steady-state regime. In the

pulsed regime the number of plasmon quanta is shown to be restricted from above also by the ponderomotive

forces, which tend to deform the nanoparticle. Obtained results provide instruments for the heat and strength

management in the plasmonic engineering.
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A decade ago the enhancement of surface plasmons

in metal nanoparticles (NPs) by optical gain was pre-

dicted theoretically [1–3] and demonstrated in the ex-

periments [4, 5]. These results opened venue of construc-

tion the loss-free optical metamaterials [6], subwave-

length waveguides [7], nanosensors [8], etc. Recently a

lot of work was focused on nano-sized sources of light,

see, e.g., [9]. A metal NP embedded in the dielectric en-

vironment is a unit cell of almost all these applications.

Extensive heat generation near the plasmonic resonance

of the metal NPs is a limiting factor in a lot of exper-

iments [9]. The heat management will increase its ur-

gency as the plasmonic technology will mature and find

a widespread commercial use. Here we present a basic

theoretical ground for analysis of the thermal and the

strength phenomena. The latter is produced by the pon-

deromotive forces and can be a limitation factor for the

plasmon population as well.

The surface plasmon has two channels of decay.

Firstly, the plasmonic oscillator is coupled to the far field

modes. This provides the possibility for the plasmon to

release its energy by emitting a photon, without contri-

bution to the temperature of the system. Secondly, the

electromechanical energy of the plasmon is converted to

the heating of the particle. In the letter, we consider

1)e-mail: parfenius@gmail.com

the heat processes in NP when the plasmon mode is ex-

cited in continuous and pulsed regimes and obtain the

temperature of the NP versus the number of plasmon

quanta. We show, that the NP can readily heat up to the

melting point, and thus the admissible plasmon popula-

tion is limited. We also consider another limiting factor

caused by ponderomotive force, which tries to deform

the NP mechanically. The force is proportional to the

energy density and it is huge due to the nanoscale mode

confinement.

Let us first consider the heat transfer from the NP

when the plasmon is excited externally in the continu-

ous wave regime (CW). We assume the simplest experi-

mental arrangement, when the spherical NP of radius a

is placed inside the massive bulk of the host dielectric,

and the fundamental plasmon mode of frequency ω is

permanently populated by n quanta. For simplicity we

disregard possible photothermal effect presented in the

pumping process and focus on the heat generation due

to plasmon decay. Power losses P of plasmon mode are

determined by the Q-factor and can be split in heat and

radiation losses:

n~ω2

Q
= n~ω (γheat + γrad) = Pheat + Prad, (1)

where γ’s are decay rates. In most cases of interest, Prad

is the dipole radiation and thus γrad/γheat ∝ (ka)3/ε′′m
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[10], where k =
√
εd ω/c is the corresponding wave vec-

tor, εd is the dielectric permittivity of the surrounding

medium, and ε′′m is the imaginary part of the dielec-

tric permittivity of the NP. For gold NPs in the opti-

cal range dipole radiation comes into play at the ra-

dius of a ∼ 20 nm. Below this size, γrad ≪ γheat, and

Q ≃ ω/γheat. In the case of multipolar modes (so called

dark modes) the evaluation is valid for wider range of

sizes, due to the modes are poorly coupled to the far

field, and ratio ω/γheat is nearly the same for different

modes [11].

The heat transfer from the NP occurs both through

the diffusive and ballistic mechanisms. We shall take

into account only the former, which leads to the upper

estimation of the real heat flux, see [12, 13]. Then, the

temperature profile is determined by the heat conduc-

tivity χ of the surrounding medium and the Kapitza

conductance h of the NP interface [14], which is rel-

evant at nanoscales [15]. We start with the simplest

model, when χ is assumed to be temperature indepen-

dent. Then, the temperature difference between the NP

surface (T ) and infinity (T0), caused by the heat gen-

eration power Pheat, is found via the standard Fourier

law:

δT = T − T0 =
n~ωγheat

4πa2hNP

, (2)

where 1/hNP = 1/h+ a/χ. Temperature inside the NP

can be regarded as uniform since the thermal conduc-

tivity of the metal is much larger than that of the di-

electric host. To establish the NP temperature T from

(2), we take into account the temperature dependence

of the plasmon decay rate γheat(T ). It can be approxi-

mated by linear dependence, which stems mainly from

the electron-phonon scattering:

~γheat(T ) = α+ βT. (3)

Considering gold as the most studied plasmonic metal

and using data from [16–19] we adopt β = 10−4 eV/K

and α = 0.07 eV for ~ω = 1.9 eV. Approximation (3) is

valid from ∼ 50K up to ∼1100K, where premelting or

melting of gold starts [18, 20].

The temperature of the NP as a function of the

plasmon population in the steady state is shown in the

Fig. 1. The red line corresponds to the toy model, where

we neglect the Kapitza heat resistance h → ∞ and as-

sume χ = 1.4W/(m ·K) as for vitreous silica at stan-

dard conditions. Its superlinear behavior is the result

of the temperature-dependent γheat (3), which realizes

a thermal positive feedback. This is expected to take

place in other metals as well, though the dependence

can be more complicated, as it is found for silver [21].

Note, that the temperature tends to infinity at some

critical plasmon number

ncrit =
4πa2hNP

ωβ
, (4)

which gives the upper limit of the plasmonic population

per NP.

Actual the value of the heat conductance χ is seen

to depend on the temperature for the typical host mate-

rials. In the following, we consider the cases of vitreous

silica and crystalline quartz, adopting χ(T ) from papers

[22, 23]. Numerical solution of the resulting heat bal-

ance equation is shown as dashed and dot-dashed lines,

which stand for the Kapitza conductance of h = ∞ and

h = 108 W/(m2 ·K). The latter value is taken from [14]

in absence of direct experimental data. The real depen-

dencies are expected to lie between these pairs of refer-

ence lines.

For vitreous silica, χ increases with temperature [22]

and thereby suppresses the positive thermal feedback,

while the crystalline quartz behaves oppositely [23], see

dashed lines in the Fig. 1. In the crystalline case the de-

pendence χ(T ) can be approximated as χ0Θ/T (where

χ0 and Θ are constants, see, e.g., [23]). In that case

the heat equation can be solved analytically, under the

assumption that h → ∞. One arrives to the same ex-

pression (4) for the critical plasmon number, where the

heat conductivity χ should be taken at the temper-

ature T ∗, which satisfies the transcendental equation

1 + α/(βT ∗) = log(T ∗/T ).

Note that the temperature divergence at some crit-

ical point remains valid for most of the calculations

with real χ(T ), though the value of ncrit may shift. As

such, existence of ncrit (4) is not an artifact of out toy

model, but relevant practical prediction. Direct exper-

imental examination of this phenomenon would be of

great importance for the future study. More practically

important, though, may be threshold of achieving some

specific temperature, say the metal melting point Tmelt,

which may cause destruction of the plasmonic system.

As appears from the Fig. 1, for different conditions this

is expected to occur at the plasmon populations ranging

from nmelt ∼ 1 up to ∼ 6. Note that sometimes nmelt can

be successfully estimated in the most naive way, with

h → ∞ and γheat taken at room temperature, see black

line in the Fig. 1.

Above, we have disregarded the thermal radiation

power PT . To estimate it note, that Stefan–Boltzman

law is not applicable in the case due to the skin layer

depth is greater than the NP size and PT is produced

by the dipole radiation rate [24]. Using fluctuation-

dissipation theorem (see e.g. [25]), we obtain PT ∼
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Fig. 1. (Color online) The steady-state temperature of the NP versus the number of plasmons. Parameters used: a = 10 nm,

~ω = 1.9 eV, and T0 = 300K. The gold melting point is taken to be Tmelt ≈ 1270K [20]

∼ T 5α′′/~4c3, where α′′ is the imaginary part of the

NP electrical polarizability at frequency ωT = T/~. The

upper estimation for it is a3 out of resonance, thus we ar-

rive to PT ∼ (aωT /c)
3T 2/~ that is negligible compared

to total power losses P .

To overcome the thermal limitations, discussed

above, the pulse pumping of a plasmon resonator can

be used. We consider step-like approximation for tempo-

ral number of plasmons profile with duration τp, which

is valid if τp is greater than the establishing time of

the plasmon oscillations Q/ω ∼ 10 fs. Note that the

steady-state consideration is admissible if the pulse du-

ration is larger than the thermal equilibration time

τss, which is the time of the thermal diffusion τss ∼
∼ CNP/(4πa

2hNP) ∼ 0.5 ns, where CNP ∼ 60 eV/K is

the heat capacity of the gold NP of the radius a =

10 nm.

Consider the case of short pulses with τp ≪ τss. The

power loss Pheat is absorbed first by electrons inside the

NP. Then the heat is transmitted to the lattice during

the electron-phonon interaction time τep, which is re-

sponsible for the equilibration of electrons and lattice

temperatures and could be estimated as τep ∼ 3 ps for

the gold NP [26]. We consider short pulses with the du-

ration τp ≪ τep, since the pulses allow to achieve the

highest plasmon population number. At the timescale,

electron system of the NP is uncoupled from the metal

lattice and dielectric environment, which hold their ini-

tial temperature T0.

The total energy stored in the electronic system by

the end of the pulse consists of the chaotic contribution

of the decayed plasmons and the coherent plasmonic os-

cillation, W = n~ωτpγheat(T0)+n~ω. The energy, accu-

mulated in the electronic system, redistributes between

the electrons and metal lattice within the next several

τep. For example, the melting time of a gold nanorod sat-

urates at ∼ 30 ps [27] when the laser power increases.

The stay-solid condition then reads

W 6 CNP(Tmelt − T0) [+M ] , (5)

where term in the square brackets is the full fusion heat

of the NP and should be included if the full melting

occurs. Note, that the possible excitation of high-order

dark modes due to nonlinear processes [28] does not

affect the heating kinetics, because multipole plasmon

life-time 1/γheat ≪ τep [11].

Fig. 2 shows the change of temperature for the NP

on the τp−n plane. The partial melting condition corre-

sponds to the area between dashed lines. Large number

of quanta ∼ 103 is not forbidden in the short-pulsed

regime, at least due to the thermal limitations. Maxi-

mum possible repetition rate can be estimated as the

inverse equilibration time τ−1
ss ∼ 1GHz.
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Fig. 2. The temperature change of the NP for its plasmon

population during the pulse versus the pulse duration. The

area between dashed lines denotes the partial melting re-

gion. Right axis shows corresponding power of the driving

laser beam. The parameters are as for the Fig. 1, with the

standard thermal constants of gold [20]

Anomalous large electric field in NP, which contains

finite number of the plasmons, results in appreciable

ponderomotive force [29], which can pose a threat of the

mechanical damage of the NP. To estimate the influence

of this force we consider the NP placed inside liquid or

gaseous medium, which does not prevent the deforma-

tion of the particle. If the temperature of NP changes

insignificantly over period of plasmonic oscillations, i.e.

n ≪ CNPT/(2π~γheat) ∼ 2.2 · 104, than the NP can be

treated to be in thermal and mechanical equilibrium.

Electric force density is f = (ε− 1)∇E2/8π, where E is

the electric field, overline stands for time averaging and

ε is the local dielectric permittivity. Here we adopted

the simplest model, when the dielectric susceptibility

ε− 1 is proportional to total density of the medium and

there is no influence on the susceptibility from the shear

deformations, i.e. ρ dε/dρ = ε− 1.

In the case of NP with the most-used dipole mode,

the electric force per unit area acting on the boundary

between NP and dielectric environment at poles is given

by

Fp =
(εd + εm − 2εdεm)(εd − εm)

8πε2d
E2

0, (6)

and the force is zero at the equator, where E0 is the

electric field inside the nanoparticle. Here we assumed

that the particle size is less than skin depth, and there-

fore, the electric field inside the NP is uniform for a

dipole mode. The forces compel the NP to elongate

along the dipole direction. The electric field E0 can

be expressed through the number of plasmons, E2
0 =

= −4πn~ω/(εma3). The resonance condition on spher-

ical nanoparticle is 2εd + εm = 0. Setting ~ω = 1.9 eV

and a = 10 nm, one can obtain Fp ≈ n × 106 Pa. For

number n ∼ 102 of plasmons, this value is about the

initial yield stress of the nano-sized gold [30]. However,

under the picosecond loads metals go to the plastic state

at stresses 10–30 times higher than in the static case

[31, 32]. Thus at the short-pulsed regime of exitation the

existence of several thousands of plasmon quanta is ad-

missible. Note that the elastic properties of gold are also

known to depend strongly on temperature [33]. Simul-

taneous considering of both the plasmon-induced pon-

deromotive stress and heating at picosecond timescale

may improve the above estimations significantly.

Temperature dependence of the plasmon decay rate

in metal is shown to play a crucial role in the heat

processes occuring in the plasmonic nanosystems. Re-

sulting nonlinearities lead to the finite number (around

unity) of plasmon quanta needed to melt the nanoparti-

cle in CW-regime for real experimental setups. However,

the pulsed operation regime allows one to populate the

NP with large number of plasmons on the femtosecond

timescale. On the other hand, population of the plas-

mons in the NP is restricted from above by the pon-

deromotive forces. In the pulsed mode these forces may

be large enough to damage the nanosystem. There is

still lack of the experimental data for the thermal and

strength phenomena in nanoplasmonics; we hope that

this paper will motivate further research in that direc-

tion.
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