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Abstract The optical response of an array of metal nano-
rods is studied in the case when the cylinders almost touch
by their generatrices. As the cylinders approach each other,
a series of surface plasmon resonances are excited. The first
longitudinal mode is different from the higher-order lat-
eral modes. The lateral resonances occur near the frequency
where the real part of the metal permittivity changes sign.
The plasmon resonances result in maxima and minima in
the reflectance and transmittance. The resonances also re-
sult in a huge enhancement of the local electric field in the
gap between cylinders.

1 Introduction

The fundamental optical properties of nanometer-size metal
particles have been intensively studied for the last hundred
years [1, 2]. Until recently, most effort focused on statisti-
cally large numbers of particles in disordered arrays. Mod-
ern technology has allowed research and design of regular
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chains and arrays of metal nanoparticles. The investigation
of the periodic chains started in the seminal works [3, 4].
The surface plasmon (SP) excitations in the ordered one-
dimensional arrays of nanoparticles have attracted signifi-
cant attention in recent years due to numerous potential ap-
plications in nanoplasmonics [5–7]. The chains of nanopar-
ticles can be used for transmitting and processing optical
signals on a scale much smaller than the wavelength λ. The
plasmon modes propagating in the chain, where the radius a

of the particle is on the order of the distance δ between par-
ticles, are investigated in most detail (see e.g., [8]). In this
mode the dipole excitation jumps between particles due to
the near field interaction. Electromagnetic (em) energy con-
centrates in the vicinity a of the chain. Guided modes, where
the em field propagates in the region ∼λ � a around the
chain, were investigated in [9–11]. Scattering and diffrac-
tion of the electromagnetic wave on a periodical array of
separated metal nanorods was experimentally investigated,
for example, in the papers [12, 13]. Recently much atten-
tion attracts problem of the wave propagation along metal
nanorods since the optical negative refraction was obtained
in these systems [14–16]. Stacked nanorods are also pro-
posed for the superlensing, i.e., imaging with subwavelength
resolution [17–23]. The field distribution in the close-packed
array of nanoparticles and nanoshells were considered in the
works [24] and [25], respectively. Our results are in qualita-
tive agreement with these computer simulations.

2 Local electric field between nanorods

We investigate various SP modes propagating in the gap be-
tween closely packed metal nanorods provided the distance
δ between them is much smaller than the radius a, as is
shown in Fig. 1. The rods are infinitely long. The lateral
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Fig. 1 (a) TE-wave
propagation through array of
pairs (dimers) of nanocylinders.
(b) TE-wave propagation
through array of closely packed
nanocylinders

mode propagates in the direction perpendicular to the axis
connecting the centers of the cylinders. The electric field of
the SP concentrates in the gaps between cylinders. Thus the
local electric field can be controllably concentrated on the
sub nanometer scale, which is much smaller than the ra-
dius a. The excitation of the SP results in a series of res-
onances in the optical transmittance of the periodic planar
(2d) array of metal cylinders whose period is much smaller
than wavelength λ of the incident light (Fig. 1b). The en-
hancement of the local electric field and corresponding plas-
monic extra ordinary transmittance (EOT) depends on the
ratio δ/a, while the period 2a + δ of the nanostructure can
be arbitrary small. The modes propagating around the metal
nanoparticles have been observed in the computer simula-
tions [26, 27]. SP oscillations in a cluster of two nearly
touching metallic nanospheres, resonant optical antennas,
and crescent shaped cylinders, were discussed in the works
[28–30], [31, 32], and [33] correspondingly.

At the beginning we consider periodic array of cylinder
dimers shown in Fig. 1a. The lateral size l of the region be-
tween two cylinder, where the SP is localized, estimates as
l = √

δ(4a + δ)/2 ∼= √
aδ so that δ � l � a. This estimate

follows from the conformal map

w = u + iv = ln
[(

x + i(y − l)
)/(

x + i(y + l)
)]

, (1)

which gives the potential u of two perfect conductors axi-
ally aligned cylinders, provided the centers of the cylinders
are placed at the coordinates x = 0, y = ±(a + δ/2) and
the cylinders have charges 1/2 and −1/2 per unit length.
The conformal map (1) transforms the plane {x, y} into the
strip 0 < v < 2π . The left end of the strip (u < −u0, u0 =
arcsinh l) represents upper cylinder. The right dead end (u >

u0) represents the lower cylinder. Then the capacitance be-
tween cylinders equals to C = 1/(4 arcsinh l)per unit length
[34].

The map (1) solves the problem of the field distribu-
tion between two metal or dielectric cylinders excited by
the external electric field E0 = {0,E0,0}. The centers of
the cylinders are still placed at y1,2 = ±(a + δ/2) and
we assume that the y1,2 cylinders have permittivity εm

while the space between cylinders is filled by dielectric
with permittivity εd . To find the electric field inside and

between the cylinders it is enough to express the poten-
tial Φ0 = izE0 = E0l coth(w/2) of the external field in
terms of the harmonics exp(±kw), namely Φ0 = E0l[1 +
2
∑∞

k=1 exp(−kw)] for 0 < u < u0, and Φ0 = −E0l[1 +
2
∑∞

k=1 exp(kw)] for −u0 < u < 0. Then the complex po-
tential Φ takes the following form: Φ = ∑

Ak exp(kw) for
u < −u0,Φ = Φ0 + ∑[Bk exp(kw) + Ck exp(−kw)] for
−u0 < u < u0, and Φ = ∑

Hk exp(−kw) for u > u0. The
coefficients Ak,Bk,Ck , and Hk , we find by matching the
real part of the potential ϕ = Re[Φ(w)] at u = ±u0 and
matching normal components of the electric displacement
Dn = εRe[dΦ(w)/dw]|dw/dz| at u = ±u0. It follows from
the above equations that the length l is the characteristic
length for the field distribution and that the electric field os-
cillates as E ∝ Bk exp(ikv)−Ck exp(−ikv) along the x axis
(u = 0) between the cylinders. Thus we obtain equation for
the resonance frequencies ωn:

Re
[
εm(ωn)

] = −εd

(
γ 2n + 1

)/(
γ 2n − 1

)
, (2)

where γ = (l/a)[1 + √
1 + (a/ l)2] ∼ 1 + l/a. Let us con-

sider, for example, the resonance in the dimer of two sil-
ver nanorods in the vacuum (εd = 1). We approximate the
metal optical permittivity εm in (2) by the Drude formula
εm = εb − (ωp/ω)2/(1 + iωτ /ω), where the optical con-
stants for silver are taken from experimental results [35, 36]:
εb = 5,ωp = 9.1 eV, ωτ = 0.02 eV. The cylinders in the
dimer are separated by the distance δ = 0.2a. Then the reso-
nance frequencies equal to 3.35, 3.6, 3.67, . . . eV (cf. Fig. 3).

We use the COMSOL Multiphysics package to calculate
the electric field for the dimers of almost touching nanorods
shown in Fig. 1a. In Fig. 2 we compare the analytical so-
lution for the enhancement of the electric field in the gap
between the nanorods with results of electrodynamics sim-
ulations. In the quasistatic limit D = 2a � λ numerical and
analytical results are in a good agreement. We observe huge
enhancement of the local field. The frequency dependence
of the enhancement is shown in Fig. 3, where we see the se-
ries of the resonances. Note that positions of the resonances
can be tuned by variation of the ratio δ/a.

Consider now the planar array of closely packed nanorods
(Fig. 1b). The presence of other cylinders cannot qualita-
tively change the field distribution between two neighboring
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Fig. 2 Electric field enhancement |Em(ω1)/E0|2 in the central
point between nanocylinders as function of the cylinder diameter
D: δ/D = 0.1;E0 is amplitude of the incident field; distance between
dimers 300 nm; red line corresponds to analytical results: ω = 3.35 eV;
blue disks results of numerical simulation: for each D frequency ω1
is fitted to maximum enhancement: ω1 = 3.34 eV for D = 10 nm,
ω1 = 2.85 eV for D = 100 nm

Fig. 3 Comparison of analytical (purple line) and numerical (blue and
red dashed lines) enhancement |Em/E0|2 of the electric field in the
middle of dimer; δ/D = 0.1, diameter of nanorods in COMSOL sim-
ulations is D = 10 nm, 1 nm; distance between dimers 300 nm; E0 is
amplitude of the incident field

cylinders since we consider the case when l � a. There-
fore, l remains to be the lateral field characteristic length
in the array of the metal nanorods. Since we consider the
metal nanorods where a � λ we use the Laplace equation
∇2ϕ = 0 to calculate the SP potential ϕ. Then the potential
in the gap between the cylinders (|x| < l) approximately is

ϕout = ϕ0 exp(iβx) sinh(βy)/ sinh(βδ/2) (3)

and inside the metal

ϕin = ϕ0 exp(iβx) exp
(−β|y|). (4)

Matching the solutions (3) and (4) at y = ±δ/2 we ob-
tain the dispersion equation coth(βδ/2) ∼= 2/βδ = −εd/εm,
where we take into account that βδ ∝ δ/ l � 1. The reso-
nance condition 2βl ∼= n,n = 1,2, . . . gives the resonance
values of the metal permittivity

εm(ωn) ∼= −εda/(nl), (5)

which coincides with (2) in the limit δ/a � 1. Thus we ob-
tain the estimate of the resonance frequencies ωn for the

Fig. 4 Reflectance R(ω) (blue line) and transmittance T (ω) (red line)
of array of silver cylinders with radius a = 5 nm and inter-rod spacing
δ = 1 nm

lateral SP resonances in the array of the metal nanocylin-
ders. In the case of the metal sphere the radial distribution
is given by the Bessel function ϕ = ϕ0Jn(βr) exp(inϕ) and
the resonance condition is βl ∝ μnp , where μpn is a pth
zero of the Bessel of the order n = 1,2, . . . . Therefore the
resonance frequencies ωn for the chain or array of the touch-
ing metal nano spheres can be estimated from the condi-
tion εm(ω) ∼= −μ−1

pn(a/l). Note that the potential distribu-
tion between two spheres can be found from Laplace equa-
tion, which can be solved by separation of variables in the
bispherical system of coordinates [37, 38].

3 Reflection and transmission in array of nanorods

The discussed resonances result in anomalous optical be-
havior of the array of metal nanorods shown in Fig. 1b.
The centers of the cylinders are placed at coordinates
x = 0, y = δ/2 + a ± n(δ + 2a), δ � a. The light impinges
normal to the film. The surface conductivity is defined as
〈j〉 = σ 〈E〉, where current density j and local electric field
E are averaged over the layer −a < y < a. The transmit-
tance and reflectance estimate as T ∼= |1/(1 + 2πσ/c)|2 and
R ∼= |(2πσ/c)/(1 + 2πσ/c)|2, respectively, where c is the
speed of light. At a resonance the current density and, there-
fore, the surface conductivity is much enhanced. The abso-
lute value of the conductivity σ reaches a maximum. Then
the reflectance also has a maximum while the transmittance
goes down. The full scale electrodynamics simulations re-
veal maxima and minima in reflectance and transmittance as
is shown in Fig. 4. The reflectance R as a function of the fre-
quency has three distinguishable peaks. The first reflection
maximum corresponds to the longitudinal SP, where cur-
rent flows through the cylinders (see Figs. 5a and 6a) while
the next two maxima are due to the excitation of the lat-
eral SP (see Figs. 5b, c and 6b, c). The film becomes almost
opaque at the resonance frequencies. Out of a resonance
the surface conductivity σ decreases. Correspondingly the
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Fig. 5 Electric field distribution |E(x,y)/E0|. Visualization of multi-
ple surface plasmon resonances in array of silver cylinders (normalized
to the amplitude of the incident field E0): (a) ω = 2.63 eV, a = 5 nm,
δ = 1 nm; (b) ω = 3.53 eV, a = 5 nm, δ = 1 nm; (c) ω = 3.65 eV,
a = 5 nm, δ = 1 nm

transmittance T (ω) has maxima between the resonance fre-
quencies (Fig. 4).

The resonance enhancement of the electric and magnetic
fields between the nanorods can been seen from Figs. 5
and 6. The visualization of the electric field in Fig. 5 reveals
excitation of multiple plasmon resonances. The red color
corresponds to the maximum amplitude of electric compo-
nent of TE-wave while the blue color corresponds to the
minimum amplitude. System of nanorods exhibits SP modes
which are strongly localized around the rods. The collec-
tive SP resonance is similar to the “whispering gallery”
modes [38].

Fig. 6 Magnetic field distribution |H(x,y)/H0|. Visualization of mul-
tiple surface plasmon resonances in array of silver cylinders (nor-
malized to the amplitude of the incident field H0): (a) ω = 2.63 eV,
a = 5 nm, δ = 1 nm; (b) ω = 3.53 eV, a = 5 nm, δ = 1 nm;
(c) ω = 3.65 eV, a = 5 nm, δ = 1 nm

4 Conclusions

We propose that the array of metal nanorods has anomalous
optical properties corresponding to the excitation various SP
resonances. The computer simulations as well as the ana-
lytical theory are presented. The resonance electric field is
much enhanced in the gaps between metal nanorods. The
field concentrates at the scale much smaller than the diame-
ter of a rod. We speculate that the resonance frequencies and
field enhancement can be tuned by variation of the shape and
arrangement of the metal nanoparticles.
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