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Intensity-dependent frequency shift in surface plasmon amplification by stimulated emission
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The operation of a surface plasmon amplification by stimulated emission of radiation- (spaser)-based nanolaser
is theoretically investigated. We find that the lasing frequency undergoes a shift as the lasing intensity increases, a
result that agrees with recent experiments. We show that the mechanism of the intensity-dependent shift involves
a spatial deformation of the lasing mode, which is induced by the spatial hole burning in the surrounding gain
media. We develop a general analytical scheme to account for the mode deformation. Our numerical calculations
demonstrate good correspondence of the lasing frequency shift with the experimental data for the simplest
(spherical) geometry of the spaser.
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The desire to create more compact and faster devices leads
to developing new technologies and improving existing ones,
such as the creation of a miniature laser. However, every laser
contains a cavity whose size should not be less than half of
the generated wavelength. Practically, it should be larger than
this minimum even for the smallest developed lasers [1,2].
A new type of laser, proposed in Ref. [3] and experimentally
demonstrated in Refs. [4–6], can overcome the aforementioned
limit. The geometrical size of the resonator can be significantly
reduced in comparison with the wavelength due to the usage
of the surface plasmon mode instead of the resonant cavity.
Thus, the metal and its surface are necessary constituents of
this type of laser. Because the plasmon oscillations are coupled
with gain media via the near field, the gain material should
be localized in the vicinity of the metal surface to provide
extra energy for the plasmon mode generation. Thus, this
type of laser can be called the surface plasmon amplification
by stimulated emission of radiation (spaser) [3]. This device
is anticipated to become a key element in nanotechnology
applications, such as (bio)-sensing [7,8], imaging [9], and
information technology [10,11]. The most evident advantage
of these lasers is the ability to generate coherent light with
their sizes being well below the wavelength.

Different geometries were used for the experimental real-
ization of the spasers. Spherical geometry of the metal grain
was applied in Ref. [5] with the gold grain coated by the gain
medium. In Ref. [4], a hybrid plasmonic waveguide consisting
of a dielectric fiber made of an active medium located close to
the metal surface was used. The same principles were used in
the development of the spaser with metallic ring wires coated
by active atoms [12].

In our paper, we theoretically investigate lasing properties
of the simplest core-shell spaser’s geometry in a steady-state
regime [5]. The main goal of this paper is to establish the
dependence of the lasing frequency on the lasing intensity,
which was observed for the first time in recent experiments
[4,5], although the phenomenon was not mentioned and was
not discussed in the papers. Besides, there is a discrep-
ancy between experimental and theoretical results concerning
spasers. According to the theoretical paper [13], the lasing
frequency should be placed between the frequency of the

spontaneous emission of the active medium and the extinction
maxima. However, in the experimental paper [5], the lasing
frequency is redshifted relative to both of them. To reconcile
this contradiction, we propose the following: The lasing
frequency, indeed, lies between the extinction maxima and
the spontaneous emission frequency in the threshold but it is
shifted with excessing the threshold, leading to the observed
phenomenon. We show the shift in the lasing frequency
caused by the spatial deformation of the lasing mode due
to inhomogeneous depletion of the gain medium. The quality
factor of a spaser is not very large, and the depletion leads to
considerable alternations in the effective dielectric permittivity
of the gain medium, causing the deformation of the lasing
mode.

It should be noted that the lasing frequency dependence on
pumping intensity is a well-known phenomenon for the diode
and some other types of lasers [14]. There are several sources of
this phenomenon among which are the expansion of the cavity,
variation in the refractive index, or carrier density due to the
temperature increasing with the pumping. The other sources
are nonlinear optical effects. The nonlinear effect considered
as the source of the frequency shift in the spaser is referred
to as the spatial hole burning in the gain medium [15]. It was
investigated in, e.g., Ref. [16] for diode lasers.

Previous theoretical papers describing the operation of the
spasers (see, e.g., Refs. [3,13,17–19]) assumed the constant
spatial structure of the lasing mode. In our approach, we
take into account the deformation of the lasing mode’s
structure with obtaining the analytical dependence of the lasing
frequency on the pump intensity. Then, the results of the
numerical calculations are presented. We assume the following
design of the spaser: the metallic particle of radius a is coated
by a shell of thickness h with embedded dye molecules, see
Fig. 1. The system is illuminated by an electromagnetic wave
of frequency ωp and intensity Ip, which pumps the active
media, exciting the dye molecules from ground state |g〉 to
pumped state |p〉, see Fig. 1. Laser transition occurs between
upper and lower laser states |u〉 and |l〉, respectively, and the
frequency of the spontaneous emission is ωse. We assume
fast nonradiative transitions for the dye molecules from |p〉
to |u〉 and from |l〉 to |g〉 by means of phonon emission or
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FIG. 1. (Color online) The model under study. Straight lines
denote the transition rates, and wavy lines denote the frequencies
of the transitions.

excitation of some other internal degrees of freedom. Note that
our approach can be generalized for more complex geometries,
e.g., Ref. [4]; now our aim is to uncover the main principles
of the lasing frequency shift in spasers.

First, let us determine the equation describing the spatial
structure of the lasing mode. The lasing frequency is ωL,
and hereinafter, we extract the fast oscillation factor from
the electromagnetic field. For example, now the electric
field is Re[E exp(−iωLt)]. Since the size of the system is
significantly less than both the skin depth in the metal of
the core and the wavelength in the material of the shell,
one can neglect the curl part in the electric field E keeping
only its potential part E = −grad �. Divergence of Maxwell’s
equation curl H = −i(ωL/c)ε̂(r)E is the quasistatic equation
on the electric potential �,

div[ε̂(r)grad �] = 0, (1)

in this approximation, where ε̂(r) is the local value of the
dielectric permittivity of the media. Equation (1) and the
condition � → 0 far from the spaser determine the structure of
the lasing mode. The permittivity is εm inside the metal core
and εo in the outer space. Inside the shell, it is ε̂s = ε(0)

s + ε̂a
s ,

where ε(0)
s is the constant for the shell material without dye

molecules and ε̂a
s stems from the contribution produced by

the molecules. Polarization Pa = ε̂a
s E/(4π ) associated with

the dye molecules generally is a nonlinear function of the
electric field. We describe the state of the dye molecules in
terms of density matrix ρ̂, which depends on position r and
the direction of the dipole moment d = 〈u|d̂|l〉, where d̂ is the
dipole moment quantum operator. The magnitude of the dipole
moment d is the same for all dye molecules, but its direction
is random and is frozen for each molecule. The polarization is
determined by the nondiagonal element ρul = exp(−iωLt)ρ
of the matrix Pa(r) = n〈d∗ρ〉d , where n is the dye molecules’
concentration, the angle brackets with the low index “d” mean
averaging over the random direction of the dipole moment d,
and the asterisk stands for complex conjugation. Hereinafter,
the nonlinear operator div ε̂(r)grad is referred to as Ĥ for
brevity.

Second, for the emission produced by the dye molecules
to be described, let us restrict ourselves to the two-level
model of the system by taking only lasing states |u〉 and
|l〉 into consideration. In this case, there are only three
independent parameters in the truncated density matrix: the

inverse population N = ρuu − ρll and the complex value of
nondiagonal element ρ, whose evolution is governed by the
system of equations,

∂tN = −2 Im[�ρ∗] − (N − Ns)/τ, (2)

∂tρ = −
�ρ − iN�/2, (3)

where 
� = 
 − i� and � = (d · E)/h̄, thus, |�| is the Rabi
transition rate (frequency). Equations (2) and (3) are written
in rotating-wave approximation (see, e.g., Refs. [20,21]),
and detuning of the light field � = ωL − ωse is assumed to
be small, � � ωse. The coherence relaxation rate 
 stems
from homogeneous and inhomogeneous broadenings of the
transition between the laser states. Population relaxation time
τ , equilibrium (i.e., when the lasing mode is not excited),
and inverse population Ns are determined by the pumping-
wave intensity Ip. When the generation is established, one
can drop temporal dependencies of N and ρ in Eqs. (2)
and (3) and can find stationary values of the variables N =
Ns/(1 + τ
|�/
�|2) and ρ = −iN�/(2
�).

Now, we take into account the pumping process and
establish the dependence of the parameters τ and Ns , involved
in the two-level system model (2), on intensity Ip of the
pumping wave. In order to achieve this goal, we consider
the more general case of the four-level system instead of the
two-level system, see Fig. 1. This system can be interpreted as
a two two-level subsystems; the first is the lasing subsystem
with quantum states |l〉 and |u〉 (the right part in Fig. 1),
and the second is the pumping subsystem with quantum
states |g〉 and |p〉 (the left part in Fig. 1). These subsystems
are connected to each other by fast nonradiative transitions
|p〉 → |u〉 and |l〉 → |g〉 with rates 
u and 
l , respectively.
Temporal equations on two nondiagonal elements ρpg and ρul

of the density matrix ρ̂ are written in the same form (3). We
assume, for the sake of simplicity, that there is no detuning
in the pumping subsystem. Equations on population numbers
(diagonal elements of the density matrix ρ̂) for the lasing
subsystem are now

∂tρuu = 
uρpp − γρuu − Im[�ρ∗], (4)

∂tρll = −
lρll + γρuu + Im[�ρ∗], (5)

where γ ∼ ω3
sed

2/h̄c3 � 
 is the spontaneous emission rate.
We do not take into account backward transitions |u〉 → |p〉
and |g〉 → |l〉 assuming the energy difference between the
absorbed and the emitted photons h̄(ωp − ωL) is much larger
than the temperature of the system. Temporal equations on
ρpp and ρgg can be straightforwardly restored from Eq. (4) by
analogy, and the requirement for the total probability, i.e., the
trace of the density matrix is unity, tr ρ̂ = 1. The stationary
solution for the four-level system leads us to the conclusion
that the parameters of the two-level system considered in
Eq. (2) are Ns = 1/(1 + 2γ
p/�2

p) and 1/τ = 2γ + �2
p/
p,

where �p = |(dp · Ep)|/h̄ is the Rabi rate in the pumping
subsystem, the corresponding dipole moment matrix element
is dp = 〈p|d̂|g〉, Ep is the electric field of the pumping wave,
and 
p is the coherence relaxation rate. Here, we assume
the nonradiative rates 
u and 
l to be on the order of the
coherence relaxation rates 
 and 
p and the moderate pumping
intensities, assuming �p � 
. For this case, the rates 
u,l
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do not enter into the time τ . Thus, no pumping saturation
is presented in our model, although the saturation can be
relevant for more intense pumping. The absence of saturation
in the experimental data [4,5] shows that our assumptions are
reliable.

Generally speaking, Ns and τ depend on a dye molecule
orientation due to the directions of the dipole moment matrix
elements dp and d, which are correlated, whereas, the direction
of Ep is fixed by the pump conditions. Thus, to calculate
mean polarization Pa using averaging over the orientation,
it is necessary to take into account this dependence. In our
paper, we neglect it for simplicity in order to catch the main
properties of the lasing generation in the system. Thus, we
assume that the averaging over dp orientation can be performed
independently. For the same reason, we also neglect the spatial
inhomogeneity of the gain medium inside the silica shell due to
the refraction of the pumping wave near the system, assuming
the pumping field amplitude Ep to be constant inside the shell.
Under the made assumptions, the pumping field polarization
is not relevant due to the fact that it enters in all expressions
through the scalar form �p.

Next, let us discuss the generation threshold for the spaser,
which was found in Refs. [13,19]. The generation threshold
condition can be expressed in terms of the equilibrium
inverse population Ns,th and the lasing frequency ωL,th in the
threshold. For this purpose, one should suppose electric field
E of the lasing mode is small so that the inverse population N

does not differ from its maximum value Ns,th. The assumption
leads to the linear dependence of the polarization Pa on the
field in Eq. (1). The result of the procedure can be represented
in terms of the gain correction ε̂a

s = −(2πi/3)nd2Ns/
� to
the dielectric permittivity of the shell. The lasing mode cor-
responds to the dipolelike solution of quasistatic equation (1),
which exists if the relationship,

(εm + 2εs)(εs + 2εo)

(εs − εm)(εs − εo)
= 2

(
1 + h

a

)−3

(6)

is satisfied. Equation (6) is complex valued, and one should
take into account the frequency dispersion of the core and shell
permittivities εm and εs to find Ns,th and ωL,th, which yields
satisfaction of Eq. (6). The real part of Eq. (6) corresponds to
the resonance condition, whereas, its imaginary part means
balance between energy losses and pumping of the lasing
mode. Using the solution, one can find the permittivity
correction εa

s,th and the intensity of the pumping Ip,th in the
threshold.

Equation (6) can also be used in order to find the frequency
ωsp of the extinction maxima for the surface plasmon when
the pumping is off. The frequency ωsp is the solution of Eq. (6)
with the dielectric permittivity of the metal substituted by its
real part. Once the frequency is found, the threshold frequency
can be determined from the approximate equation [13],

ωL,th = ωsp/
sp + ωse/


1/
sp + 1/

, (7)

where the surface plasmon resonance width is 
sp =
ε′′
m/(∂ε′

m/∂ω) and the value of the permittivity should be taken
at surface plasmon frequency ωsp. Note, the expression for

sp accounts for only Ohmic losses. If the radiation losses

are relevant, they can be considered as an additive correction
to 
sp. Equation (7) implies that the lasing frequency ωL

lies between the extinction maxima ωsp and the spontaneous
emission frequency ωse. Nevertheless, the experimental data
[5] presented for the lasing frequency does not satisfy this
condition. Below, we show that this disagreement can be
eliminated on account of the spatial deformation of the lasing
mode. The source of the lasing mode spatial deformation is
the inhomogeneous depletion of the pumping (i.e., spatial hole
burning, see, e.g., Ref. [15]). The effect can lead to a lasing
frequency shift, for example, it was observed in Ref. [16] for
diode lasers. In our paper, we demonstrate that the similar
effect causes a lasing frequency shift in the spasers.

The gain correction ε̂a
s (r) to the shell permittivity constant

decreases with the magnitude of electric field E(r) and
increases with pumping intensity Ip. Above the threshold, ε̂a

s

becomes inhomogeneous over the shell since the electric-field
intensity of the lasing mode is not uniform. The stationary
amplitude of the lasing mode is determined by the balance
between Ohmic losses inside the metal core and pumping
obtained from the gain medium. This means that the “average”
over space for ε̂a

s at stationary generation should be the same
as at threshold point (6). First, it is convenient to establish
the spatial structure of the lasing mode determining the
averaging over space for ε̂a

s . Let us denote the electric-field
potential of the mode when the pumping and the Ohmic losses
inside the metal core are zero as �sp(r). In this case, the
dielectric permittivity εsp(r) in the whole space is purely real,
and the resonance condition (6) is satisfied. We denote the
corresponding operator involved in Eq. (1) as Ĥsp, which is
linear by definition. According to Ref. [5], we assume the
quality factor Q of the spaser as a resonator to be much
greater than unity. It means that both the correction ε̂a

s to
the shell permittivity constant and the imaginary part of the
metal dielectric permittivity ε′′

m are relatively small as 1/Q.
Symmetry and self-conjugacy of the unperturbed operator
Ĥsp allows us to use the technique developed in quantum
mechanics for perturbation theory.

The first-order correction yields to obtain the intensity of
the lasing mode and the lasing frequency in the threshold.
The mean-over-space value of the variance δĤ = Ĥ − Ĥsp

of the Ĥ operator should be zero in the approximation∫
�∗

spδĤ�spd3r = 0. Note that we can neglect the spatial
deformation of the lasing mode structure in the first-order
perturbation theory. The imaginary part of the condition
provides the balance between the pumping and the dissipation
in the system, whereas, the real part allows for finding the
frequency of the lasing mode. The equation written particularly
for the threshold gives (7). This is an expected result because
the mode structure does not change being proportional to �sp,
thus, the lasing frequency should also be constant and equal to
ωL,th. One can also treat the equation as a general condition
on the amplitude of the lasing mode since ε̂a

s depends on the
amplitude at a given rate of pumping. Using the condition,
one can evaluate both the threshold intensity of pumping
Ip,th and the dependence of the intensity of lasing mode I

on the intensity of the pumping Ip (dimensionless intensities
are Ip = |�p|2/2γ
p and I = |Ec|2|d|2/2γ
h̄2, where Ec

is the electric field inside the gold core). Values Ip and I
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FIG. 2. (Color online) Emission intensity. Main panel: the de-
pendence of the dimensionless stimulated emission intensity I on the
dimensionless pumping intensity Ip . Inset: the tangent of the angle
of the main graphic, depending on the inverse equilibrium inversion
at threshold Ns,th.

are not experimentally measured intensities of the incident
pumping wave and of the emitted light at the lasing frequency,
respectively, but of course, they are proportional to them.
In our notation, the ratio I/Ip is of the order of (Ec/Ep)2.
The dependence of the emission intensity on the pumping
intensity was researched in detail in Ref. [19], and here, we
just demonstrate the correctness of our method. We preferred to
introduce these dimensionless emission and pump intensities
in order to avoid using explicit values for 
p, dp, d, and γ .
We can afford to do that because the main purpose of our paper
(the intensity-dependent lasing frequency shift) is separately
independent of these parameters, and it only depends on such
combinations as Ip and I .

The results are presented in Fig. 2. The different curves
correspond to different concentrations of the dye molecules
and, thus, to different threshold equilibrium inverse popu-
lations Ns,th and threshold pumping intensities Ip,th. These
two quantities are related to each other by the formula
Ns,th = Ip,th/(1 + Ip,th). The dependence of the slope of the
curves on threshold value Ns,th is presented in the inset
of Fig. 2, cf. with Ref. [5]. The evaluation for the zero-
dimensional limit (when the spatial structure of the lasing
mode has a uniform electric field over all areas containing
the dye molecules, which have dipole moments directed along
the field) gives I = (
2/|
�|2)(1/Ns,th − 1)(Ip − Ip,th). The
numerical results were obtained for the following set of
parameters: a = 7, h = 15 nm, ε0

s = 2.586, and εo = 1.77,
which correspond to the experimental situation [5]. We
took ωse = 5.71 × 1014 Hz (corresponding wavelength λse =
525 nm) and h̄
 = 0.25 eV (
 = 6.04 × 1013 Hz) for Oregon
Green 488, which is available on the market. The permittivity
for gold is taken from Ref. [22]. In this case, we find ωsp =
5.73 × 1014 Hz (corresponding wavelength λsp = 523 nm)
from Eq. (6) for maxima of extinction; this is in good
agreement with Ref. [5]. As discussed above, our model
does not account for possible pumping saturation, and it is
not presented in Fig. 2 due to the fact that we consider
the moderated pump intensities Epdp � h̄
. Now, we can
estimate the pumping field intensity corresponding to the pump

saturation, evaluating dp ∼ 10−17 esu. Thus, the saturation
corresponds to the pumping field intensity of about one
hundredth of the atomic field. Due to I/Ip ∼ (Ec/Ep)2, the
ratio can be either greater or smaller than unity, see the main
graph in Fig. 2. In fact, there is no contradiction with the
energy conservation law in the case of I > Ip since I and Ip

are not experimentally measured intensities. The inset in Fig. 2
contains corresponding data.

The lasing wavelength λL,th = 524 nm found for the
above-presented numerical values does not coincide with the
observed lasing wavelength [5], which is redshifted and is
equal to 531 nm. Now, we propose the possible source of the
mismatch. As the intensity of the lasing mode grows, the pump-
ing rate becomes nonuniform over the volume of the dielectric
shell due to nonuniform depletion of the dye molecules.
As a result, the spatial structure of the lasing mode undergoes
a slight alternation with the intensity. The alternation results
in the deviation in the lasing frequency from its threshold
value ωL,th, now, it is ωL = ωL,th + δL. To evaluate the
deviation δL, one should develop the perturbation theory in
small losses up to the second order. First, we find the correction
δ� for the electric-field spatial structure using the equation
Ĥspδ� = −δĤ�sp, which is valid for the first correction δ�

for the electric-field potential. After the correction is found,
one should use the real part of the condition

∫
�∗δĤ�d3r +∫

δ�∗Ĥspδ� d3r = 0, which means that the correction up to
the second order in 1/Q for Eq. (1) is zero. The developed
method allows for determining the lasing frequency at any
point of the above-threshold regime. The magnitude of the
frequency shift can serve as a criterion for changing the
structure of the lasing mode.

The numerical results are presented in Fig. 3. The mean-
over-space depletion of the pumping is determined by the de-
viation in inverse population N from the undepleted level Ns .
The evaluation for the zero-dimensional limit shows that the
energy balance is maintained by the condition N = Ns,th. For

FIG. 3. (Color online) The dependence of the lasing frequency
on the pump intensity. Main panel: the dependence of the lasing
frequency shift δL from the threshold value ωL,th on the inverse pump
intensity normalized at the threshold. Inset: the asymptotic value of
the frequency shift at the limit of strong pump intensities as a function
of the inverse value of the inverse population at the threshold 1/Ns,th.
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this reason, we choose 1/Ns,th as the argument for the inset in
Fig. 2. The experimental data of Ref. [5] suggest the existence
of the frequency shift phenomenon, but this issue was not
investigated in detail. For the physical parameters adopted in
our calculations, the absolute value of the shift is significantly
less than both the width of the spontaneous emission 
 and
the width of the extinction spectra 
sp, but at the same time,
it is large enough to be observed in the experiment (see the
right ordinate axis in Fig. 3). The smallness is maintained by
the relatively large quality factor Q of the spaser. Hence, the
frequency shift produces a minor correction to the intensity of
the lasing generation. One can estimate the relative correction
to the lasing intensity as δL/
. This estimate validates the
adopted calculation scheme in our paper, which is based on
the perturbation theory in the inverse quality factor. The mode
structure deformation also leads to some corrections to the las-
ing intensity. Since the deformation is relatively small, one can
independently consider the correction to the lasing intensity
and the frequency shift. This is the reason why we evaluate
the magnitude of the frequency shift using the intensity of the
lasing frequency obtained only on the main order.

Let us also compare the value of the intensity-dependent
frequency shift with the lasing linewidth. The spectrum Iω of
the lasing mode can be found in a standard way using the model
of phase diffusion [20], so the linewidth 
L of the spectrum
can be estimated as 
L ∼ 
sp/nL well above threshold, where
nL is the number of the surface plasmon quanta excited in
the lasing mode. This means that the spectrum width becomes
narrower than the secondary frequency shift for sufficiently

large pumping, which was found above. So, in this case, the
analyzed effect becomes significant compared with the width
of the spectral line. For the chosen physical parameters, the
numerical value of 
sp is close to 
 (see also the experimental
results [5]). Thus, the left y axis in Fig. 3 corresponds to the
ratio between the frequency shift and the linewidth within the
factor, which is the number of the plasmon quanta δL/
L ∼
nLδL/
.

In conclusion, we have developed an approach to describe
the operation of spasers. By using this approach, we
established the dependence of the lasing frequency on the
lasing intensity. This result is interesting by itself in view of the
importance of the lasing frequency and in view of its practical
application. The frequency shift is associated with the change
in the spatial structure of the mode. The effect arises if the Q

factor of the lasing mode is not very large and the electric-field
distribution of the lasing mode is nonuniform. In this case,
the mode structure depends on the spatial distribution of the
strength of the gain, which becomes nonuniform when the
intensity of the lasing mode rises well above threshold.
The approach is based on Maxwell’s equations solved (in
the quasistatic approximation) with the usage of perturbation
theory in the inverse Q factor. All the presented results can be
generalized for the arbitrary geometry of the system.
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