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Abstract: We present a quantum theory of a spaser-based nanolaser, under
the bad-cavity approximation. We find first- and second-order correlation
functionsg(1)(τ) andg(2)(τ) below and above the generation threshold, and
obtain the average number of plasmons in the cavity. The latter is shown to
be of the order of unity near the generation threshold, where the spectral line
narrows considerably. In this case the coherence is preserved in a state of
active atoms in contradiction to the good-cavity lasers, where the coherence
is preserved in a state of photons. The damped oscillations ing(2)(τ)
above the generation threshold indicate the unusual character of amplitude
fluctuations of polarization and population, which become interconnected
in this case. Obtained results allow to understand the fundamental principles
of operation of nanolasers.
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1. Introduction

In the last decade nanoplasmonics led to the emergence of many promising applications [1].
One of them is a near-field generator of nanolocalized coherent optical fields — spaser-based
nanolaser or SPASER (surface plasmon amplification by stimulated emission of radiation),
which was shown to be an optical counterpart of the MOSFET (metal-oxide-semiconductor
field effect transistor) [2]. The device was proposed by D. Bergman and M. Stockman in the
paper [3]. Operation principles of the spaser-based nanolaser are similar to operation principles
of the usual laser, but instead of photons we deal with surface plasmons (SPs). The first experi-
mental observations were made by M. Noginov’s group [4] and X. Zhang’s group [5] and they
are dated back to year 2009.

Considerable spectral narrowing as compared to the spontaneous emission spectrum was
observed above the generation threshold in both experiments. Generally, there are two main
possible mechanisms which lead to the spectrum narrowing. For high Q-factor resonators, the
narrowing is determined by the domination of stimulated emission of radiation and thus, by the
large number of excited quanta in the resonator [6, 7]. This situation is typical for usual lasers.
The opposite limit of low Q-factor resonators and relatively small excited quanta corresponds
to spaser-based nanolaser operation [4]. In the case, the narrowing can be determined by large
number of the excited atoms in the gain medium and their coherence, which is achieved by
the mutual interaction of atoms through the resonator mode [8]. Here we show that the spaser-
based nanolaser can produce narrow spectrum of generation even if the mean number of excited
quanta in the resonator is of the order or less than unity, and find the spectrum of the generation
and its statistics.

The exact analytical treatment of lasing involves quantum fluctuations, which are responsible
for homogeneous broadening of the spectral line [6, 7]. Description of the laser with Maxwell-
Bloch equations, see e.g. [2, 9], corresponds to mean-field approximation both for the resonator
mode and atoms. We develop a theory which allows to account for quantum fluctuations in a
low Q-factor resonator with the arbitrary number of quanta both below and above the generation
threshold, which interacts with ensemble ofN identical active atoms.

To solve the problem completely analytically we impose some restrictions. First, we assume
that the cavity decay rateκ is the fastest rate in the system. Thus, the resonator mode can be
adiabatically eliminated [10], and the state of the spaser-based nanolaser is fully characterized
by the state ofN identical two-level active atoms. Second, we believeN ≫ 1 and thereby the
fluctuations of the state of atoms can be considered in the small-noise limit [7, ch.5.1.3]. Note
that due to adiabatic mode elimination we can only resolve timesτ ≫ 1/κ . The smaller times
were considered in the paper [11], for the model with single active atom,N = 1, and below the
generation threshold, when mean number of quanta in the resonator is well below unity.

The used method is well studied in laser physics, e.g. [12]. Here we present a self-consistent
consideration from the firsts principles in the limit when active atoms have fast dephasing ki-
netics in comparison with transition lifetime [13, 14]. We describe the behaviour of the spaser-
based nanolaser below and above generation threshold, and demonstrate that the spectral line
narrows considerably, when passing through the threshold. We find the average number of plas-
mons in the cavity and show that this number near the generation threshold can be of the order
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of unity. In the case the coherence is preserved in a state of active atoms, which relax slowly
than 1/κ . This fact fundamentally distinguishes the behaviour of the bad-cavity nanolasers in
comparison with the good-cavity lasers, where the coherence is preserved in a state of photons.
The evaluation for the number of plasmons is in accordance with the experimental observa-
tions [4]. We obtain second-order correlation functiong(2)(τ) at κτ ≫ 1 and find that above
the generation threshold the amplitude fluctuations of polarization of active atoms lead to the
damped oscillations ing(2)(τ). A similar dependence was observed in numerical simulations
in the paper [15], and it is usual for bad-cavity lasers [12]. In the opposite case of good-cavity
lasers there is no oscillations in second-order correlation function [7]. Thus, the shape of the
curveg(2)(τ) can be used as an indicator of the mechanism of the spectral line narrowing. We
investigate at what relationship between cavity decay rateκ and homogeneous broadening of
active atomsΓ the oscillations occur. Finally, we find attendant peaks in the spectrumS(ν),
which are produced by the oscillations ing(2)(τ). We believe that the obtained results are im-
portant for understanding the fundamental principles of operation of spaser-based nanolasers.

2. Physical model and methods

We considerN ≫ 1 identical two-level active atoms with resonant frequencyω coupled to
single strongly damped cavity, with a short plasmon lifetime(2κ)−1 centered at the same fre-
quency. The interaction between the atoms and the field is described by the Tavis-Cummings
Hamiltonian [7],HAF = ih̄g(a+J−−aJ+), whereg is coupling constant identical for all atoms,
a+ anda are the creation and annihilation operators of plasmons in the cavity mode [16], and
Jα = ∑N

j=1σ jα are collective atomic operators, whereσ jα , α = {x,y,z} – Pauly matrices, and
σ j± = (σ jx± iσ jy)/2. In a bad-cavity limit [10] the cavity mode can be adiabatically eliminated
and the following master equation in the Schrödinger picture for the atomic density operator
ρ = trF ρAF :

ρ̇ =−i
1
2

ω [Jz,ρ ]+
γ↑
2

(

N

∑
j=1

2σ j+ρσ j−+
1
2

Jzρ +
1
2

ρJz −Nρ

)

+

+
γ↓
2

(

N

∑
j=1

2σ j−ρσ j+−
1
2

Jzρ −
1
2

ρJz −Nρ

)

+
γp

2

(

N

∑
j=1

σ jzρσ jz −Nρ

)

+

+
g2

κ
(2J−ρJ+− J+J−ρ −ρJ+J−) , (1)

where the trace is taken over the field variables. Here the active atoms are incoherently pumped
with rateγ↑ and we take into account the spontaneous emission with rateγ↓. The dephasing
processes, which are caused mostly by the interaction with phonons, have rateγp. The last
term describes interaction of active atoms through the cavity mode. Adiabatic mode elimina-
tion can be performed only ifκ ≫ Ng2/κ ,γp,γ↑,γ↓. Note, that normal-ordered field operator
averages can be restored by formal substitutionsa+(t)→ (g/κ)J+(t) anda(t)→ (g/κ)J−(t),
[17, (13.60)]. The same model, but with an arbitrary numberN of active atoms, was considered
numerically by V. Temnov and U. Woggon in papers [15, 18], where they showed that the last
term in Eq. (1) leads to the cooperative effects.

Our final interest is the state of the resonator, thus it is enough to describe the system of
atoms in terms of collective atomic operators, despite the fact that some terms in Eq. (1) cannot
be rewritten in terms ofJ+,Jz,J−. First, we define characteristic function

χN(ξ ,ξ ∗,η)≡ tr
(

ρeiξ ∗J+eiηJz eiξ J−
)

, (2)

which determines all normal-ordered operator averages in usual way. Next, we introduce the
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Glauber-SudarshanP-representatioñP(v,v∗,m) as the Fourier transform ofχN(ξ ,ξ ∗,η), which
can be interpreted as distribution function and allows to calculate normal-ordered operator av-
erages as in statistical mechanics [7, (6.118a)]. Evolution equation onP̃ can be obtained by
differentiation Eq. (2) with respect to time and replacementρ̇ with Eq. (1). The results is

∂ P̃
∂ t

= L

(

v,v∗,m,
∂
∂v

,
∂

∂v∗
,

∂
∂m

)

P̃, (3)

where

L =
γ↑
2

[

(

e−2 ∂
∂ m −1

)

(N −m)+
∂ 4

∂v2∂v∗2 e2 ∂
∂ m (N +m)+2N

∂ 2

∂v∂v∗

]

+

+
γ↑
2

(

2e−2 ∂
∂ m −1+2

∂ 2

∂v∂v∗

)(

∂
∂v

v+
∂

∂v∗
v∗
)

+

+
γ↓
2

[

(

e2 ∂
∂ m −1

)

(N +m)+
∂
∂v

v+
∂

∂v∗
v∗
]

+

+γp

[

∂
∂v

v+
∂

∂v∗
v∗+

∂ 2

∂v∂v∗
e2 ∂

∂ m (N +m)

]

+ iω
[

∂
∂v

v−
∂

∂v∗
v∗
]

+

+
g2

κ

[

2
(

1− e−2 ∂
∂ m

)

vv∗−

(

∂
∂v

vm+
∂

∂v∗
v∗m

)

+
∂ 2

∂v2 v2+
∂ 2

∂v∗2 v∗2
]

.

The closed form of the equation confirms the possibility of describing the system in terms of
collective atomic operators.

The exact solution of the Eq. (3) is strictly singular due to the exponential factors inL, which
describe transitions in active atoms. Moreover, the solution cannot be found in analytical form.
However, we can obtain an approximate nonsingular distribution, replacing Eq. (3) by a Fokker-
Planck equation. The key element to such replacement is a system size expansion procedure [7,
ch. 5.1.3]. The large system size parameter in our case is the numberN ≫ 1 of active atoms.
Following the system size expansion method we will obtain an adequate treatment of quantum
fluctuations in the first order in 1/N.

To make a systematic expansion of the phase-space equation of motion in 1/N, we move
into rotating frame and introduce dimensionless polarizationσ = tr[ρJ−eiωt ]/N and inverse
populationn = tr[ρJz]/N per one atom. Next, we separate the mean values and fluctuations in
the phase-space variables

veiωt/N = σ +N−1/2ν, m/N = n+N−1/2µ , (4)

and introduce a distribution functionP(ν,ν∗,µ , t)≡ N3/2P̃(v(ν, t),v∗(ν∗, t),m(µ , t), t), which
depends on variables, corresponding to fluctuations. Using the Eq. (3) and neglecting terms
∼ O(N−1/2), we obtain the equation for a scaled distribution functionP. More accurately, we
obtain two sets of equations: the first set describes dynamics of macroscopic variables, and one
more equation characterizes fluctuations.

3. Macroscopic equations and generation threshold

First, we analyze the system of equations describing the dynamics of macroscopic variables,
which takes a form

d(σ/ns)

Γdt
=−

(

1−℘
n
ns

)

σ/ns, (5)

d(n/ns)

Γdt
=−

n/ns−1
ΓT1

−4℘|σ/ns|
2, (6)
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where we introduce population relaxation timeT1 = 1/(γ↑ + γ↓), homogeneous broadening
Γ = γp +1/(2T1) and equilibrium inverse populationns = (γ↑− γ↓)/(γ↑+ γ↓). The system has
two different stable steady-states solutions, depending onpump-parameter℘=℘0ns, where
℘0 = Ng2/(κΓ).

In the case℘< 1, one obtains the solutionn = ns, σ = 0. Thus, there is no macroscopic po-
larization and this situation corresponds to the nanolaser operating below generation threshold.
In the opposite case℘> 1, the solution takes a formn = 1/℘0, |σ |= (ns/2℘)

√

(℘−1)/ΓT1

that corresponds to the spaser-based nanolaser operating above generation threshold. Overall,
the situation is completely analogous to the behaviour of a good-cavity laser [7, ch. 8.1.2].

Note, that the solutions coincide in the case℘= 1 and this point corresponds to the spaser
generation threshold, which was obtained in earlier semiclassical papers, e.g. [2, 9].

4. Quantum fluctuations below threshold

Second, we analyze the equation, which provides a linearized treatment of fluctuations about
solution to the system of macroscopic equations. In the case below generation threshold, i.e.
℘< 1, we obtain

∂P
∂ t

= Γ(1−℘)

[

∂
∂ν

ν +
∂

∂ν∗
ν∗

]

P+
1
T1

∂
∂ µ

µP+
2γ↑(Γ+2γ↓)
(γ↑+ γ↓)

∂ 2P
∂ν∂ν∗

+
4γ↑γ↓

γ↑+ γ↓
∂ 2P
∂ µ2 . (7)

The equation can be solved by separation of variables, and we calculate the steady-state corre-
lation functions as in statistical mechanics

〈a+a〉ss,< =
g2

κ2 〈J+J−〉ss,< =
Ng2

κ2(1−℘)

γ↑(Γ+2γ↓)
Γ(γ↑+ γ↓)

, (8)

g(1)< (τ) = lim
t→∞

〈a+(t)a(t + τ)〉<
〈a+a〉ss,<

= e−Γ(1−℘)τe−iωτ , τ ≫ 1/κ , (9)

g(2)< (τ) = lim
t→∞

〈a+(t)a+(t + τ)a(t + τ)a(t)〉<
〈a+a〉2

ss,<
= 1+ e−2Γ(1−℘)τ, τ ≫ 1/κ . (10)

The result for two-time correlation functions is analogous to the case of a good-cavity laser,
up to the replacementΓ → κ , since we adiabatically eliminate the cavity mode, rather than the
polarization of active atoms [7, ch. 8.1.4]. Note, that due to adiabatic mode elimination we can
only resolve timesτ ≫ 1/κ . The smaller times were resolved in paper [11], but only for the
model with a single active atom.

In the case℘= 1 the drift term in the Eq. (7) vanishes and there is no restoring force to
prevent the fluctuations from growing without bound. Thus, the average number of plasmons in
the cavity mode (8) diverges at the point℘= 1. Thereby, the Eq. (7) cannot correctly describe
the behaviour of system at the generation threshold. Note, that the operation of a bad-cavity
laser at the threshold was discussed in the paper [12].

5. Quantum fluctuations above threshold

Now, we turn out to the description of fluctuations above the generation threshold. As follows
from the steady-state solution in the case℘> 1, the phase of polarization is undetermined.
Thus, in place of the first equation in (4), we write

veiωt/N = eiN−1/2ψ
(

|σ |+N−1/2ν
)

, (11)

where the variableν represents real amplitude fluctuations now, which must fall within the
range−N1/2|σ | ≤ ν ≤ ∞, and the variableψ represents phase fluctuations. The distribution
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(a) (b)

Fig. 1. (a) The dependence of the average number of plasmons in the cavity on the
pump-parameter℘, for the following parameters:κ = 2 ·1015s−1, Γ = 5 ·1012s−1, g =
1011s−1, γ↑ = 9 ·1010s−1, γ↓ = 1010s−1. The dashed line corresponds to the mean-field
theory, the solid line takes into account quantum fluctuations. (b) Normalized spectrum
with corrections arising from the amplitude fluctuations.

function in scaled variables, normalized with respect to the integration measuredνdψdµ , is
defined byP(ν,ψ ,µ , t)≡ N3/2

(

|σ |+N−1/2ν
)

P̃(v(ν,ψ , t),v∗(ν,ψ , t),m(µ , t), t).
One can partially separate variablesP(ν,ψ ,µ , t) = A(ν,µ , t)Φ(ψ , t) in the limit of small

amplitude fluctuations above the generation threshold,|σ | ≫ N−1/2ν. Moreover, in accordance
with experimental papers [13, 14], we believeΓT1 ≫ 1. Under the assumptions, the evolution
of the distribution functionsA andΦ is governed by equations:

∂A
∂ t

=

√

Γ(℘−1)
4T1

[

8
∂

∂ µ
ν −

∂
∂ν

µ
]

A+
1
T1

∂
∂ µ

µA+
γp

4

(

1+
1

℘0

)

∂ 2

∂ν2 A, (12)

∂Φ
∂ t

= γp
ΓT1(℘0+1)℘0

(℘−1)
∂ 2

∂ψ2 Φ. (13)

Solution of the Eq. (12) allows to calculate the average number of plasmons in the cavity
mode above the generation threshold

〈a+a〉ss,>−
Γ(℘−1)

4T1g2 =
γp(℘0+1)

8κ
[2ΓT1+1/(℘−1)] . (14)

Here the second term in the left part corresponds to the steady-state solution of macroscopic
Eqs. (5,6) and the right part describes fluctuations. Our theory is correct if fluctuations are
small. Far enough away from the threshold, whenΓT1(℘−1)≫ 1, this leads to the restriction
℘−1≫ (γp/κ)(gT1)

2(℘0+1). Thus, our theory is self-consistent if(γp/κ)(gT1)
2 ≪ 1.

Next, taking into account the amplitude fluctuations in the main order, we can obtain fist-
order correlation function (τ ≫ 1/κ)

g(1)> (τ) = e−(iω+D)τ
[

1−DT1+DT1e−τ/2T1 cos
(

√

2ΓT1(℘−1)τ/T1

)]

,

D = γp
ΓT1

N
℘0(℘0+1)
(℘−1)

=
γpΓ
4

h̄ω
(℘0+1)

P>
≪ 1/T1, (15)

whereD defines the width of spectral line above the generation threshold, and we rewrite it in
term of the output powerP> = κ h̄ω〈a+a〉ss,>. Summands proportional toDT1 ≪ 1 correspond
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to amplitude fluctuations. Qualitatively, the result is similar to the case of good-cavity lasers,
compare with [7, (8.138)]. However, the mechanism which leads to the narrowing of the spectral
line is quite different. We will discuss it in detail in the next section.

Finally, we obtain the second-order correlation function. In the region of interest, where
ΓT1(℘−1)≫ 1, one can find (τ ≫ 1/κ)

g(2)> (τ) = 1+4DT1e−τ/2T1 cos
(

√

2ΓT1(℘−1)τ/T1

)

. (16)

The damped oscillations ing(2)> (τ) are usual for bad-cavity lasers [12]. As we discussed above,

our consideration is reliable only in small-noise limit, i.e.g(2)> (0)− 1 ≪ 1. The similar be-
haviour had been observed in numerical calculations in the paper [15], but authors dealt with
the regime of large fluctuations. Note, that in the case of good-cavity lasers the amplitude fluctu-

ations does not lead to the oscillations ing(2)> (τ), see [7, (8.139)]. In the next section we explain
the origin of the damped oscillations in detail and establish when the good-cavity behaviour is
replaced by the bad-cavity damped oscillations.

6. Numerical parameters and discussion

To present results we should propose numerical values to parameters of our theory. We take
Γ = 5 · 1012s−1, γ↓ = 1010s−1, γ↑ = 9 · 1010s−1 for active atoms, based on the paper [13].
Next, to perform bad-cavity approximation, we proposeκ = 2 ·1015s−1 andg = 1011s−1. In
experiments and theoretical papers, e.g. [4, 16], the cavity decay rateκ is usually less and the
coupling constantg is usually larger than ours. Thus, proposed numerical parameters are easily
achievable in experiment and reasonable. To change pump-parameter℘ we variate the number
N of active atoms.

In the Fig. 1(a) we plot the dependence of the average number of plasmons in the cavity on
the pump-parameter℘ below and above the generation threshold. The dashed line corresponds
to the semiclassical mean-field theory, see Eqs. (5)–(6), and the solid line takes into account
quantum fluctuations, see Eqs. (8), (14). Emphasize, that near the threshold℘∼ 1 the average
number of plasmons in the cavity mode〈a+a〉 < 1. Despite this fact, a linewidth of the order
of Γ well below threshold is changed into a considerably narrower line of the order ofD above
threshold. When℘−1= 0.1, we findD/Γ ∼ 1/850. Note, that amplitude fluctuations slightly
changes the shape of the spectral curve above generation threshold, see Fig. 1(b), which was
obtained as the Fourier transform of the first-order correlation function (15). The height of the
side peaks is small compared with the height of the central peak as(DT1)

2 ≪ 1.
In the good-cavity lasers the spectral line width becomes narrower above the generation

threshold because the stimulated emission starts to play more important role than the sponta-
neous emission. In this case the average number of photons in the cavity near the threshold
is sufficiently greater than unity [6, 7]. In our case, the average number of plasmons is less
than unity. Thus, a born plasmon should be coherent with the already dead plasmon in order
to spectral line width becomes narrower. This is possible since the active atoms preserve the
coherence. Originally arising plasmon interacts with active atoms and make them coherent to
each other. Then the plasmon dies after a short time∼ 1/κ , but the coherence is still alive in ac-
tive atoms, which relax slowly, 1/Γ ≫ 1/κ . The next plasmon generated by such atoms can be
coherent to the previous one. This mechanism of the spectral line narrowing was demonstrated
in experiment with the laser, which deals with photons, in the paper [8]. However, we cannot
directly applied our theory to this experiment, since the assumptionΓT1 ≫ 1 is not fulfilled.
Another experimental realization of the lasing regime was presented in the paper [4], where
mean number of plasmons is also less than unity,〈a+a〉 ∼ 0.2. Indeed, the total pumping en-
ergy absorbed per one nanolaser isPW ∼ 〈a+a〉h̄ω2τp/Q, whereτp = 5ns is the duration of the
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Fig. 2. (a) The second-order correlation function above the generation threshold. The pa-
rameters are as for the Fig. 1. (b) The vector field obtained from the right parts of the
macroscopic equations with℘= 1.1, ns = 0.8 andΓT1 = 50. The spiral movement to the

steady-state leads to the damped oscillations ing(2)> (τ).

pumping pulse, the measured valuePW = 10−13J near the generation threshold,Q = 13.2, and
h̄ω = 2.3eV . Note, that numerical parameters in the Fig. 1 are slightly different from those from
the paper [4]. The reason is that for the experimental parameters the amplitude fluctuations are
large, see Eq. (14), and our theory is not applicable well. The regime of large fluctuations will
be a subject of our further research.

Next, in the Fig. 2(a) we plot the second-order correlation function above the generation
threshold, according to the Eq. (16). The dependence is valid ifτ ≫ 1/κ , because it was ob-
tained under the bad-cavity approximation. In order to explain the nature of the damped os-
cillations, we plot the vector field on then-|σ |-plane, see Fig. 2(b), which corresponds to the
right parts of the mean-field Eqs. (5)-(6). The red point represents the steady-state solution of
these equations. Fluctuations move the system from its equilibrium state and then it relaxes to
the steady-state. The spiral movement corresponds to the damped oscillations in polarization
amplitude|σ | and inverse populationn, and as a consequence in the second-order correlation
function.

In the same way we can analyze a laser with a resonator of arbitraryQ-factor, but we should
go beyond the bad-cavity approximation. Instead of macroscopic Eqs. (5)-(6), we need to con-
sider a full system of three Maxwell-Bloch equations [2]. The evolution of amplitude fluctua-
tions around the steady-state solution is defined by three eigenvalues. One eigenvalue is always
real and negative. Two others can be either real or complex conjugated, which corresponds to
non-oscillating and oscillating character of the second-order correlation function respectively.
The eigenvalues are fully defined by three parameters:κT1, ΓT1 and℘. In the Fig. 3 we plot
a ”phase diagram” in logarithmic coordinates for different pump-parameters℘> 1. The area
to the right and below to the corresponding curves responds to the non-oscillating regime. The
parameters from the painted area above the dotted line always correspond to the oscillations in

g(2)> (τ). This is an area of bad-cavity lasers, where the mechanism of spectral line narrowing
is based on the coherence conservation in the state of active atoms. The asymptotic behaviour
(℘≫ 1) of the dotted line was obtained numerically and it corresponds to the dependencies
κT1 ≈ 0.16℘ andΓT1 ≈ 2.5℘. In the area below the dotted line both the oscillating and non-

oscillating behaviour ofg(2)> (τ) is possible, depending on pump-parameter℘. Thus, the shape
of the second-order correlation function provides insufficient information to obtain a mecha-
nism of spectral line narrowing. The answer on this question is contained in the ”phase diagram”
in the Fig. 3.
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Fig. 3. The “phase diagram” contained information about oscillations ing(2)> (τ), for dif-
ferent pump-parameters℘. The area below and to the right to the corresponding curves
responds to the non-oscillating regime. The painted area above the dotted line corresponds
to the bad-cavity lasers.

7. Conclusion

To summarize, the quantum theory of a spaser-based nanolaser was presented. We found that the
average number of plasmons in the cavity mode near the generation threshold can be less than
unity both in our theory and experiments [4]. Despite this fact, the spectral line width narrows
sufficiently, when passing through the threshold. We argued that it is possible behaviour since
the coherence is preserved by the active atoms, which relax slowly than the damping of cavity
mode occurs. We also studied the amplitude fluctuations of the generation and concluded that
they change the shape of the spectrum and lead to the damped oscillations in the second-order
correlation functiong(2)(τ) above the generation threshold. It is unusual behaviour for the good-
cavity lasers, and we investigated in detail what relationship between cavity decay rateκ and
homogeneous broadening of active atomsΓ corresponds to the bad-cavity damped oscillations
and non-oscillating regime.
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