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1.

 

 Investigation of the rheological properties of sus-
pensions of microparticles is of great interest in view of
their wide application in engineering and biology,
where blood is the main example of suspensions. The
suspension of the simplest particles—solid balls—was
considered by Einstein [1]. More recently, the results of
work [1] were generalized to the case where particles
are drops of another liquid with a different viscosity in
the limit of the strong surface tension [2]. The diluted
vesicle suspension is considered in this work.

In contrast to a simple liquid drop, a vesicle consists
of the liquids of the solvent and the drop separated by a
membrane. Let us consider vesicles in which a mem-
brane is a double layer of lipids and is in the liquid state.
The properties of vesicles have been actively investi-
gated in recent years. One of the causes of increased
interest is that a vesicle is a simplified model of red cor-
puscles. Hence, the investigation of the mechanical
properties of the vesicle can provide a key to the under-
standing of the mechanical properties of the red corpus-
cles. Another cause is the possible use of vesicles in
pharmacology for the transport of medicines to dis-
eased organs.

In contrast to solid balls and drops considered in [2],
the vesicle undergoes deformations. As a result, the
rheological properties of the vesicle suspension are
more complex. As shown in this work, the effective vis-
cosity 

 

η

 

s

 

 of the vesicle suspension depends on the flow
geometry. Moreover, the viscosity of the suspension for
some flow geometries depends on its initial state,
because vesicles in such flows can be in different
locally stable dynamic regimes. In particular, if an
action transferring vesicles from one dynamic regime
to another exists, this action would change the effective
viscosity of the suspension.

The behavior of an individual vesicle in the external
flow was theoretically studied in [3]. Vesicles with a
viscosity contrast different from unity were experimen-

tally investigated in [4, 5]. The first theoretical predic-
tions for such an experiment were presented in [6, 7]. In
those works, the effect of the bending forces of the
membrane was disregarded; although these forces are
relatively small, they are important and strongly change
the phase diagram of the dynamic regimes of the vesi-
cle. The effect of the bending forces of the membrane
was first revealed by means of the numerical simulation
[8] and was then consistently taken into account in [9,
10]. The rheological properties of the vesicle suspen-
sion were studied in [11]; however, that work was based
on the incomplete results from [6].

The free energy of the incompressible closed mem-
brane is written in the form of the surface integral
[12, 13]

(1)

Here, 

 

H

 

 = 1/

 

R

 

1

 

 + 1/

 

R

 

2

 

 is the average curvature of the
membrane surface, where 

 

R

 

1

 

 and 

 

R

 

2

 

 are the local curva-
ture radii of the membrane. The first term in Eq. (1) is
the energy associated with the deformation of the shape
of the membrane. Expression (1) for the free energy
does not include linear terms in 

 

H

 

, because the mem-
brane sides are considered as symmetric. The surface
tension 

 

σ

 

 in Eq. (1) is determined from the requirement
of the incompressibility of the surface flow of the mem-
brane.

The diffusion of the liquid through the membrane is
sufficiently slow; hence, the membrane in rheological
experiments can be treated as impermeable for the liq-
uid. Thus, the vesicle volume 

 

�

 

, as well as the total
area 

 

�

 

 of the vesicle surface, is conserved. Let the size

 

R

 

 of the vesicle be related to its volume as 4

 

π

 

R

 

3

 

/3 = 

 

�

 

.
In this case, the area of the vesicle is given by the
expression 

 

�

 

 = (4

 

π

 

 + 

 

∆

 

)

 

R

 

2

 

. The nonnegative parameter

 

∆

 

 characterizes the deviation of the vesicle shape from
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a sphere for which this parameter is zero. Let us con-
sider quasi-spherical vesicles characterized by the con-
dition 

 

∆

 

 

 

�

 

 1.

It is convenient to specify the shape of the quasi-
spherical vesicle in the spherical coordinates (

 

r

 

, 

 

ϑ

 

, 

 

φ

 

)
by means of a dimensionless function of the spherical
angles 

 

u

 

(

 

ϑ

 

, 

 

φ

 

). The position of the vesicle surface ele-
ment is specified by the equality 

 

r

 

 = 

 

R

 

(1 + 

 

u

 

). The func-

tion amplitude is 

 

u

 

 ~ . In the leading approximation
with respect to the asphericity of the vesicle shape, the
function 

 

u

 

 specifying the vesicle shape can be repre-
sented in the form of the second-order spherical har-
monic

(2)

This parameterization automatically ensures the con-
servation of the total area of the vesicle surface.

The boundary condition on the vesicle is the conti-
nuity of the velocity field in the entire space. All inertial
effects are neglected owing to the smallness of the Rey-
nolds number. For this reason, the force appearing on
the membrane should be compensated for by the differ-
ence of the momentum fluxes in liquids on different
sides of the membrane.

In this work, the case of the plane flow is considered
as one of the most interesting cases for experiments.
The coordinate system is chosen so that only the com-

ponents 

 

∂

 

y

 

 = 

 

s

 

 + 

 

ω

 

 and 

 

∂

 

x

 

 = 

 

s

 

 – 

 

ω

 

 are nonzero
in the gradient matrix of the velocity field 

 

v

 

(0)

 

 unper-
turbed by the vesicle.

According to [9, 10], the dynamic regime of the ves-
icle is determined by two parameters 

 

S

 

 and 

 

Λ

 

, which are
related to the physical parameters as

(3)

where 

 

η

 

 is the solvent viscosity,  is the viscosity of
the liquid inside the vesicle, and 

 

ζ

 

 is the surface viscos-
ity of the membrane, which can be significant if the
temperature is close to the temperature of the main tran-
sition of the membrane [14]. In the limit of strong exter-
nal flows, 

 

S

 

 

 

�

 

 1 and the dynamic regime of the vesicle
is specified only by the parameter 

 

Λ

 

.
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2.

 

 The effective instantaneous viscosity of the sus-
pension is given by the expression

(4)

where the powers spent by the external forces 

 

W

 

 and

 

W

 

(0)

 

 in the flows of the suspension and pure liquid,
respectively, are measured with the same boundary
conditions for velocity (see, e.g., [15]). The flow occurs
with low Reynolds numbers and, hence, is described by
the Stokes equation. For this reason, the power 

 

W

 

 is
expressed in the form

(5)

where the summation is performed over all suspended
vesicles and 

 

W

 

a can be called power absorbed by an
individual vesicle. The velocity of the solvent in the
suspension is represented in the form v = v(0) + δv,
where v(0) is the flow velocity of the pure liquid. (The

gradient of the unperturbed velocity field ∂j  is
assumed to be constant in space.) Let us consider an
individual vesicle and define the spherical coordinate
system introduced above. The term Wa in Eq. (5) refer-
ring to the vesicle under consideration can be repre-
sented in the form of the integral over the r = R sphere,

(6)

where do is the solid angle element, h = ∂j ninj, and
n = r/r is the unit vector. Expression (6) is written under
the assumption that the vesicle volume is constant. The
velocity field value δv on the r = R sphere is obtained
by its analytic continuation from the region filled with
the solvent.

The diluted suspension limit is considered; in this
case, the volume fraction ϕ occupied by suspended par-
ticles is small, ϕ � 1. In the diluted limit, it can be
assumed that each suspended particle is in the unper-
turbed velocity field v(0), whereas the perturbed part of
the velocity field δv near a vesicle is created only by
this vesicle.

The dynamics of the vesicle shape in the external
flow was determined in [9, 10]. To find δv r and ∂rδv r in
Eq. (6), the boundary conditions on the vesicle surface
should be related to the boundary conditions on the sur-
face of the sphere of the radius R. This relation is sig-
nificantly nonlinear and is generally written in the inte-
gral form (see, e.g., [16]). For the case of the quasi-
spherical vesicle, these equations can be simplified by

expanding them in the small parameter  up to the
first order. In this expansion, it should be taken into

ηs ηW /W 0( ),=
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account that the functions u and  have generally the

first and zeroth orders in , respectively [10]. As a
result,

(7)

On the both sides of Eqs. (7), the projection on the sec-
ond-order spherical harmonic is implied, because it
only makes a nonzero contribution to integral (6). The
terms –h corresponding to the rigid sphere of the radius
R are separated on the right-hand side of Eqs. (7).

3. To calculate the time-averaged effective viscos-
ity of the suspension, Eqs. (7) should be averaged over
the vesicles and time. After that, the complete time
derivatives disappear and only the first and last terms
are significant in Eqs. (7). The dimensionless devia-
tion of effective viscosity (4) from its value for the
pure liquid is

(8)

A term of 5/2 corresponding to the contribution to the
viscosity of rigid spheres with the radius R is separated
on the right-hand side of Eq. (8). The angular brackets
mean averaging over all vesicles. For the plane flow, the
quantity Q for one vesicle is determined by the expres-
sion

(9)

and is generally about unity. The angular brackets in
Eq. (9) denote the time averaging.

When Λ < , the vesicle is in the tank-treading
regime in which the shape and orientation of the vesicle
found in [10] remain unchanged. Time averaging in
Eq. (9) is reduced to the exclusion of the relaxation of
the vesicle shape to the stationary state and provides

(10)

When Λ > , the vesicle is in the trembling regime,
which is transformed to the tumbling regime with a fur-
ther increase in Λ. In these regimes, both the shape and
orientation of the vesicle undergo periodic oscillations.
For this reason, time averaging in Eq. (9) becomes sig-
nificant. In order to perform this averaging, the equa-
tions of motion for the vesicle shape, which were

u̇

∆
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2

obtained in [10], should be used. The result is rather
lengthy and is not presented here. Note only that Q at
Λ � 1 tends to ≈0.13. The Q(Λ) plot is shown in the
figure.

When Λ > , the vesicle can also be in the spin-
ning process. The choice between the tumbling and
spinning regimes depends on the initial state of the ves-
icle. In the spinning regime,

(11)

where the parameters of the motion of vesicles in the
spinning regime that were found in [10] were used.

4. The effects of the thermal fluctuations on the ves-
icle dynamics are strongly different for the regions Λ <
1 and Λ > 1. When Λ < 1, the vesicle is in the tank-
treading state, and the relaxation time for the vesicle
shape to the stationary shape is determined by the exter-
nal flow strength. The intensity of the thermal fluctua-
tions is determined by the ratio T/∆2κS, which is small
for S � 1. For this reason, when Λ < 1, the contribution
of thermal fluctuations to the vesicle suspension viscos-
ity can be neglected.

As shown in [10], the properties of the vesicle
dynamics for Λ > 1 are strongly different. The external
flow initiates the motion of the phase-space point {Θ,
Φ, J, Ψ} in Eq. (2) over the closed trajectories. Two
independent slow variables remain constant in this
motion. These slow variables vary in time due to the
bending forces determined by the modulus κ in Eq. (1).
In view of this circumstance, the relaxation of slow
variables to their stationary values occurs at times much
longer than the characteristic time of vesicle oscilla-
tions induced by the external flow. For this reason, the

3

Q
5 15
8πΛ
------------- 3 2Λ2 5–( )

7
------------------------------ ω

s
----+⎝ ⎠

⎛ ⎞ ,–=

Quantity Q versus parameter Λ for various dynamic regimes
and its value in the limit � � 1. The inset is the correction
δQ versus Λ for the tank-treading, trembling, and tumbling
regimes for � = 0.01.



514

JETP LETTERS      Vol. 87      No. 9      2008

VERGELES

role of the thermal fluctuations responsible for the
oscillations of slow variables increases significantly at
Λ > 1 and is determined by the dimensionless parame-
ter � = T/κ∆3/2.

Let us first consider the limit � � 1. In this limit,
thermal fluctuations are so strong that they destroy the
equilibrium shape of the vesicle in the absence of the
external flow. In this case, the effect of the bending
forces on the vesicle molecules can be neglected. To
obtain the average value of the quantity Q given by
Eq. (9), it is necessary to average first through the tra-
jectories with constant values of slow variables and,
then, over the distribution function in the slow-variable
space, which is due to the thermal fluctuations. The
result of this procedure, which can be completed only
numerically, is shown in the figure.

In the opposite limit, � � 1, the Q(Λ) curves corre-
sponding to the tumbling and spinning regimes are
slightly perturbed. The difference δQ = Q(Λ, �) –
Q(Λ, 0) of the Q values in the presence and absence of
noise is of interest.

The δQ(Λ) curve for the tumbling regime that is
shown in the inset has a singularity near the transition
from the tank-treading regime to the trembling regime

at Λ =  and near the point Λ = 1. After the expansion

near the point Λ = , the distribution function of the

nonnegative quantity q = Q(Λ, �) – Q( , 0) – 0.52δΛ
has the form

(12)

where δΛ = Λ – . Distribution function (12) has the
singularity shown in the inset. When Λ is close to one,
i.e., Λ – 1 = δΛ � 1, the main contribution to the ther-
mal correction of viscosity comes from thermal fluctu-
ations of the parameter J, which are determined by the

average 〈J2〉 = �  (this equality is valid at δΛ �
�2). In view of this feature, the correction to the viscos-
ity, δQ, approaches a negative value of about –0.27� at
δΛ  0. Finally, the correction δQ approaches a pos-
itive value of about 0.02� in the limit of large values
Λ � 1.

In the spinning regime at large viscosity contrasts,
when Λ  ∞, the thermal correction δQ is more sen-
sitive to thermal noise compared to the tumbling

regime, δQ ≈ 0.2 . At Λ  , the thermal cor-
rection approaches the value δQ ≈ 1.3�. The transition
from the spinning regime to the tumbling regime at Λ =

 proceeds through a saddle point. Thermal fluctua-

2

2

2

�
q 0.71δΛ 2.5�–( )–( )2

0.089�
---------------------------------------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp∝

2

2/δΛ

� 3

3

tions accelerate this transition so that the spinning

regime becomes unstable at Λ –  � �2/3.

5. The vesicle is a deformable body. In this work, it
has been shown that this fact leads to the dependence of
the effective viscosity of the suspension given by
Eq. (4) on the flow geometry. In the limit of strong
plane flows, where S � 1, this dependence is observed
for the region Λ � 1. According to Eq. (8), the relative
amplitude of oscillations of the effective viscosity ηs

that are due to the dependence of the matrix elements of

the velocity field on the ratio ω/s is about . The
dependence of the effective viscosity of the suspension
ηs on the geometry of the velocity field disappears at
Λ � 1: the time-averaged second term in Eq. (9) (with-
out the factor ω/s) is proportional to 1/Λ for all three
curves in the figure, whereas the averaged first term in
the leading approximation is independent of Λ.

In the region Λ > , there is another qualitative
effect: the suspension viscosity depends on the initial
state of the suspension and can be changed by means of
the external action on the vesicles. In the tumbling
regime, the vesicles have a symmetry under the reflec-
tion with respect to the flow plane (in the introduced
coordinates, this means the change z  –z). In the
spinning regime, this symmetry is absent, and the angle
between the principal axis of the vesicle and the z axis
is acute. The external action transferring the vesicles
from one regime to another would change the effective
viscosity of the suspension. According to the above
consideration, such an external action should be
reduced to the assignment or violation of the symmetry
under the z  –z transformation.

New qualitative effects can appear in an unsteady
flow of the vesicle suspension. These effects can be
studied in subsequent investigations. Note that Eqs. (7)
can be used to calculate the suspension viscosity at
finite frequencies.
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