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Abstract.  We theoretically analyze a vesicle with small excess area, which is
immersed in an external flow. A dynamical equation for the vesicle evolution
is obtained by solving the Stokes equation with suitable boundary conditions
imposed on the membrane. The equation has solutions corresponding to different
types of motion, such as tank-treading, tumbling and trembling. A phase diagram
reflecting the regimes is constructed in terms of two dimensionless parameters
that depend on the vesicle excess area, the fluid viscosities, the membrane
viscosity and bending modulus, the strength of the flow, and the ratio of
the elongational and rotational components of the flow. We investigate the
peculiarities of the vesicle dynamics near the tank-treading to tumbling and the
tank-treading to trembling transitions, which occur via a saddle—node bifurcation
and a Hopf bifurcation, respectively. We examine the slowdown of the vesicle
dynamics near the merging point and also predict the existence of a novel
dynamic regime, which we call spinning.
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1. Introduction

The dynamics of soft deformable objects in external flows has been a subject of great attention
recently. Experiments show that biological cells, microcapsules and vesicles exhibit several
different types of motion when immersed in a flowing liquid{[7]. For instance three types

of dynamical behaviors were observed in experiments on vesicles in shear flow. In the tank-
treading regime the vesicle shape is stationary, while the membrane rotates. The tumbling
regime corresponds to the periodic flipping of the vesicle in the shear plane. The trembling
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Figure 1. Vesicle projections to the shear plane in the tank-treading, trembling
and tumbling regimes.

motion, experimentally discovered in the worK,[is an intermediate regime between tank-
treading and tumbling, where the vesicle trembles around the direction of the flow. This regime
has also been discussed in theoretical works under the names of ‘vacillating—breaihamgl [
‘swinging’ [9]. Different types of vesicle motion are schematically shown in fidure

Theoretical description of the vesicle dynamics has proved to be a challenging and
complicated problem, mainly due to the nonlinear and non-local nature of the equations
describing the vesicle evolution. Different strategies have been proposed to approach this
problem. Numerical simulations of vesicles have been based on a variety of computational
methods that include boundary element method§, [11], mesoscopic particle-based
approximations 12-[16] and advected field approachek/F-[20]. While these simulations
improved the understanding of vesicle dynamics, they did not completely predict the type of
vesicle motion for a given set of physical parameters. Analytical studies of vesicle dynamics
have been either based on extensions of the phenomenological model proposed by Keller and
Skallak 1], see P, 13, 22], or devoted to an analysis of the particular case of nearly spherical
(quasi-spherical) vesicles where one can apply perturbative techn&jugz3]-[25]. The latter
approach has proved itself as one of the most efficient as long as it allowed mathematically
rigorous analysis of this complex problem.

In this paper, we present a systematic study of the dynamics of nearly spherical (quasi-
spherical) vesicles in aqueous solutions. We consider a quite general situation where the
membrane is a viscous two-dimensional fluid, the fluids surrounding the membrane have
different viscosities and the external flow can be arbitrary but planar. In this case we show
that, as parameters such as viscosity ratios and external velocity gradient are varied, all three
types of experimentally observed dynamic behaviors can occur. We construct the corresponding
phase diagram and identify two types of bifurcations that describe the transitions between the
tank-treading to tumbling and the tank-treading to trembling regimes. We analyze the ‘critical’
slowdown of the dynamics near the transition lines and in the vicinity of their merging point.
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Some of the results derived in this paper were already reporteddin iHere, we present
significantly more detailed derivations and analyze several aspects of the problem that were
not addressed in2p]. In particular, we discuss a new regime of the vesicle dynamics in an
external flow: spinning, which can be observed at relatively large values of the velocity gradient
and viscosity contrast.

Recently, the papel[/] was published where a theoretical scheme similar to our approach
is developed. Dankedt al [27] reproduced our equations for the vesicle dynamics published
in [26] and included some additional terms. We discuss their importance in the body of our
paper and summarize our arguments concerning these terms in the conclusion section.

The structure of our paper is as follows. In sectiyrwe review basic theoretical facts
concerning the physics of membranes. Special attention is given to the dynamic properties of
membranes which can be treated as moving interfaces immersediifitadB In section3, we
discuss the features of nearly spherical vesicles, analyze their equilibrium properties, and derive
a phenomenological equation describing their dynamics in weak external flows. In sketien
derive a dynamic equation for the vesicle evolution by expanding over the small deviations of
the vesicle shape from the ideal sphere and the dimensionless parameters controlling the vesicle
behavior are introduced. In secti@nwe restrict our study to planar external velocity fields.

In this case it is possible to find solutions of the dynamic equations corresponding to tank-
treading, trembling, tumbling and spinning. In sect@me examine the phase diagram of the
system. We analyze the bifurcations corresponding to the tank-treading to tumbling and to the
tank-treading to trembling transitions, and we describe a ‘critical’ slowdown of the dynamics
near the merging point of the transition lines. In sectiorwe study some special cases, in
particular a purely elongational and nearly rotational flow. We also derive an expression for
the phenomenological constant describing the vesicle dynamics in weak flows. In Sget®n
investigate in detail the case of strong external flows. Finally, in se&iave discuss some
outcomes of our work and its possible extensions.

2. Basic relations

We start by reviewing the basic theory of vesicles formed by lipid bilayer membranes. The
physics of membranes has been extensively studied in the past three decades. The main results
on this subject can be found i&§]—[34]. Here, we consider the simplest types of membranes

that are lipid bilayers. These membranes are usually used in hydrodynamic vesicle experiments.
We expose principal theoretical facts concerning the membrane elasticity, which are later used in
the formulation of the dynamic equations describing the vesicle dynamics. We take into account
both the membrane bending elasticity and its internal viscosity, which can be relevant near the
main phase transition point in membrang$§][

2.1. Vesicle description

We are interested in the processes that take place on scales of the order of the vesicle size, which
is assumed to be much larger than the membrane thickness. This assumption is well justified for
giant vesicles, which are usually used in experiments. In this case, in the main approximation,
the membrane can be considered as infinitesimally thin, that is, dohjéct (film) immersed

in a A fluid. Then the vesicle is characterized solely by its geometrical shape. In other words,
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in this limit the vesicle membrane can be regarded as an interface separating different pieces of
the fluid.

We assume that the vesicle membrane is incompressible and impermeable to the fluid.
These two properties imply that both the vesicle volunend its surface ared are conserved,
provided the vesicle has an excess area. The latter can be characterized by a dimensionless factor
A, which is traditionally introduced via the relations

A= (4r + A, V=4rrd/3, (1)

whererg is a vesicle ‘radius’ determined by its volume. The excess area is a non-negative
quantity: A > 0, and its minimal valueA = 0 corresponds to the ideal spherical geometry.
Nearly spherical (quasi-spherical) vesicles are characterized by the contlitiod.

The energy of the membrane is determined by its bending distortions and can be written as
the following surface integraBp]—[39):

FO :/dA(KH2/2+EK), (2)

taken over the membrane position. Herandk are bending module$y andK are mean and
Gaussian curvatures, respectively. They are related to the local curvature radii of the membrane,
R; andR,, as

H=R'+R' K=R'R*" 3)

In accordance with the Gauss—Bonnet theorem, the second term in the right-hand side of
equation ) is invariant under smooth deformations of the membrane shape. Therefore it is
irrelevant for problems with fixed vesicle topology.

Note that we have also ignored the so-called spontaneous curvature term in the bending
energy. In other words, the expressi@) {mplies that the membrane is symmetric, which is
typical for lipid bilayers. Speaking more rigorously, we assume that the spontaneous curvature
radius is much larger than the vesicle size. The assumption seems to be valid in most of the
experiments with giant vesicles.

Besides the bending energd) (the membrane is characterized by its surface tensidn
our setup, surface tension is an auxiliary variable which ensures the membrane incompressibility
by adjusting to the non-stationary vesicle shape. The value of the surface tension can vary
significantly along the membrane.

2.2. Flow near the vesicle

We consider the case where both liquids, contained inside the vesicle and surrounding it, are
Newtonian. Furthermore, we assume that the Reynolds number associated with the vesicle
dynamics is vanishingly small, which is the case in microfluidics experiments,1$€ée][

Under these assumptions, the liquids can be described by the Stokes equation

0dwv=nVZv—VP, 4)

whereP is the pressurey is the fluid velocity,e is the mass density angis its shear dynamic
viscosity. Equation4) has to be supplemented with the incompressibility condian= 0,
which leads to the Laplace equation for the pressufé = 0.

We split up the flow near the vesicle into two parts: an external flow, which would be
observed in the fluid in the absence of the vesicle, and an induced flow, which is excited as a
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result of the vesicle reaction to the external flow. The external flow is assumed to be stationary,
or slowly varying in time. One should remember that the vesicle is advected by the flow, and
therefore the above assumption should be valid in the Lagrangian reference frame attached
to the vesicle. Below, we neglect the term with the time derivative in equadipsirice the
characteristic timescale associated with the vesicle dynamics is assumed to be large compared
with the viscous relaxation timer3 /7.

We assume that the characteristic spatial scale of the external flow is much larger than the
vesicle size. In this case the external velocky, near the vesicle can be approximated by a
linear profile, determined by a derivative matfiyv;. The incompressibility condition implies
that the matrixd,V; is traceless. Generally, the external flow has two contributions, elongational
and rotational:

Vi = Sk — €ikjwj, (5)

where § is the strain matrix (symmetric part of the matrixV;), € is an absolutely
antisymmetric tensor and is the angular velocity vector. The strain power can be characterized
by its strengths, defined as? = (1/2)tr §2. Note that for a shear flovg = |w| = ¥ /2, where

y is the shear rate.

The fluids inside and outside the vesicle are generally different. The external fluid viscosity
is designated by, and the viscosity of the internal fluid is designated 7jpyAn important
parameter that controls the tank-treading to tumbling transition is the viscosity comtrast
The limit where the viscosity contrast tends to infinity corresponds to a solid body behavior of
the vesicle, which preserves its equilibrium shape. The solid body behavior in the external flow
was first analyzed by Jefferd(], who studied ellipsoidal particles in planar flows.

The membrane is advected by the fluid: the velocity field continuous on the membrane
and determines the membrane velocity as well as the fluid velocity. For the relatively slow
processes that we are investigating, the membrane can be treated as locally incompressible,
which leads to the condition

3 v =0, whered." = 8k, (6)
being satisfied on the membrane. Héteis the projector to the membrane; it can be written
asaill( = §ix — lilx, wherel is the unit vector normal to the membrane. TlikirBcompressibility
conditionVwv = 0 together with equatiortf leads to the relatiohld; vx = 0, valid at both sides
of the membrane.

2.3. Membrane stress

The membrane reaction is characterized by its surface stress t&fsofhere are three
contributions to the tensor related to the bending eneRyyt¢ the surface tension of the
membrane and to the internal membrane viscosity:

T = T — 08— €85 550, vn + 00y )

Hereo is the surface tension coefficient ands the membrane (B viscosity. Note that the
surface tensiom plays an auxiliary role being adjusted to other stresses ensuring the local
membrane incompressibility. An expression for the bending contribution to the surface stress
tensor was found in the workd]] (see also the bookldp)]). It can be written as

T =k (—3HZ5 + Ha i —[13¢H) (8)
whereH = VI is the membrane mean curvature ayids defined by equatiorey.
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The surface forcef (force per unit area) associated with the membrane stress tﬁﬁéor

can be calculated a = —3;T.”. There are three contributions to the surface force, which can
be found from the expressiong)@nd @):

F=F+f7+5, ©)
where

fi(K):K[H (H?/2—2K) +A*H]I, (10)

£ = _Hol, +3'0, (11)

£ = ¢ [87 ATv; — HIndi v — 2 (8,1))3] vn] - (12)

Here, againH andK are the mean curvature and the Gaussian curvature of the membrane, and
At is the Laplace—Beltrami operatax;" = 3-9;, associated with the membrane. Note that the
expression for the forcel(Q) can also be derived by calculating the variation of the bending
energy @) due to infinitesimal membrane deformatiods][

The surface forcg is compensated by the momentum flux from the surrounding medium
to the membrane. This flux consists of two parts, related to the fluid pressure and to the fluid
viscosity. As a result of the balance, we find the following relations:

—k[H(H?/2=2K)+ A*H]+ o H + 200108y v = P — Pou (13)
3o + g(&ﬁAij — HIndvn) = I [7(3 v + 3vi )in — 7(35 vk + Vi) ou] (14)

for the normal and tangential to the membrane components of the force. Here, we assumed that
the unit vectorl is directed outside the vesicle and the subscripts ‘in’ and ‘out’ label regions
inside and outside the vesicle, respectively. THRys— Py is the pressure difference between
the inner and outer regions that is the pressure jump on the membrane. Note that a fluid viscous
contribution is absent in equatiod3) due to the condition;l;d;v; = 0, following from the
membrane incompressibility (see above).

To find the velocity field at a given membrane shape one should solve the stationary Stokes
equationp Vv = VP (inside and outside the vesicle) with the boundary conditi@Ghs({3)
and (L4) to be satisfied on the membrane. An additional boundary condition reads that’
far away from the membrane. Note that due to linearity of the equations and the boundary
conditions for the velocity, a solution of the equations can be written as a sum

v = ’U(S) + ,U(CU) +’U(K), (15)

wherev® andv@ are proportional to the strain and to the angular velocity related to the

gradient of the external flows}, andv® is proportional to the bending modulus Of course,

all terms in the right-hand side of equatidib) are complicated functions of the vesicle shape.
Note that without the terms with the facter the boundary conditionsl®) and (L4)

are invariant under the transformatian— —wv, P - —P and ¢ — —o. The stationary

Stokes equatiomVZv = VP and the boundary conditior6) are also invariant under the

transformation. The kinematic relatioh9) becomes invariant under the transformation if one

adds the rulé — —t. Therefore, in this approximation, the backward in time evolution of the

displacement is equivalent to the direct evolution in the external flow with the veloeily.

Since the vesicle dynamics is determined by the mas)xthe transformatio — —V is

equivalent to space inversion. That produces some additional symmetry leading to important

consequences for the vesicle dynamics. We examine the consequences in more detail for planar

external velocity fields.
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2.4. Membrane shape parametrization

In the following, we use a particular parametrization of the vesicle shape
r=ro[l+u(®, )], (16)

whererg is determined by the relatiod). Herer, 6§ and¢ are the radius, azimuthal angle and
polar angle in the reference frame with the origin in the center of the vesicle. The dimensionless
radial displacement characterizes deviations of the membrane shape from the spherical one.

There are two constraints imposed on the functigf, ¢) due to the volume and
surface area conservation conditiofs (n terms of the displacement the conditions can be
rewritten as

fdgo do sind (u+u?+u®/3) =0, (17)

St 6

The relations17) and (L8) are formally exact. However, they can be directly used onlydf ¢)
is a single-valued function.

Advection of the membrane by the surrounding fluid implies the following kinematic
relation:

291/2
A:/dgod@ sing {(1+u) [(1+u)2+(au/39)2+w] —1}. (18)

au—l ! dpU + ! a,u (29)

T T P\  sing %)
Herev,, vy andv, are spherical components of the velocityaken at the membrane, that is,
atr determined by equatiori§). Again, the relationX9) is formally exact, but can be directly
used only ifu(9, ¢) is a single-valued function.

3. Weak flows

The vesicle shape depends on the strength of the external flow. In weak flows it is close to an
equilibrium one, whereas in strong flows it is determined by the velocity gradient mafrix (

In this section, we consider the first case. We discuss the equilibrium vesicle shape that can be
found by minimizing the vesicle-free energ§4]. For nearly spherical vesicles it is a prolate
ellipsoid. Then we develop a phenomenology for the vesicle dynamics in weak flows where the
vesicle shape can be completely described by the main axis orientation.

3.1. Perturbation expansion

Below, we consider nearly spherical (quasi-spherical) vesicles for which the excess area
parameterA introduced by equationl] is small, A < 1. In this case the dimensionless
displacementu is small as well and it is possible to develop a perturbation theory that
is constructed as an expansion owerThis perturbation series is a basis for subsequent
consideration.

It is natural to represent the functiond, ¢) as a sum over spherical harmonics:

u= Z Ul,myl,m(e’ QD), (20)
I,m
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where)) , are spherical functions. The homogeneous contribution, tihat is,ug, can be
expressed via the inhomogeneous one (related to harmonicsl with) from the relation

(17), which reflects the volume conservation. Substituting the resulting expression for the zero
angular harmonic into equatiod ), we obtain an expression fax whose expansion over

starts from the second-order term. Therefore, the displacemean be estimated agA.

The contributions ta related to different angular harmonics play different roles. The zero
angular harmonic can be excluded from the beginning, as we have explained. The first-order
angular harmonic corresponds to a shift of the vesicle as a whole, and is not important in our
analysis. The most essential role is played by the second angular harmonic which determines
the vesicle shape. The relaxation rates of higher-order spherical harmonics are much larger
in comparison with the second one. Therefore, for the relatively slow processes that we are
considering, higher-order harmonics are weakly excited and their contribution to the vesicle
shape can be neglected.

To avoid a misunderstanding, let us stress that the last assertion is valid only for
guasi-stationary external flows. As was discovered experimentally, 4&&$eand explained
theoretically, see 46], under some conditions (abrupt inversion of the external purely
elongational flow) high-order angular harmonics can be generated, leading to the phenomenon
called vesicle wrinkling45).

3.2. Equilibrium

In the absence of an external flow, the vesicle has an equilibrium shape that can be found by
minimization of the effective free energy

F=FOWU)+s5r2A), (21)

where the first term is determined by the expressRraqdr3A is the membrane excess area
expressed in terms of the displacemanihe Lagrange multiplie§, related to a fixed value
of the membrane area, coincides with the equilibrium value of the surface tension. The second
Lagrange multiplier (related to the volur® is absent in equatior2() since we imply that the
zero angular harmonic in an expansion of the displaceménexpressed via other ones from
the relation 17). Therefore, the volume conservation is automatically satisfied in our scheme.

If A is small, the principal contributions to the ener@y &s well as to the excess area are
of the second order in. It is convenient to write the contributions in terms of the coefficients
u,.m of the expansion20) of u(9, ¢) over the angular harmonics:

F@ _ % Z A+2)1+ DI =1 ‘Ul,m|2+%5rg Z (1+2)(1 -1 |u|,m}2. (22)

[>2,m 1>2,m

Note that the first angular harmonic (with= 1) is absent in the expansions. The reason is that
it corresponds to a vesicle shift as a whole, which does not change the energy and the area of
the vesicle. As follows from equatio22), the minimum of free energy is achieved if only the
second-order harmonic is excited. In this case the equilibrium value of the surface tension is
o =—6k/ré.

Note that the expansior2®) is degenerated im. Therefore, in order to determine the
vesicle equilibrium shape, that i, ,, one should take into account terms of higher order
in the expansion of the effective free ener@t)( which violate the degeneracy. In the main
approximation, it is enough to keep the third-order term in the expansion.
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For a subsequent analysis, it is convenient for us to use the following real valued basis:

V5 V15 .
Y= v(l 3co0%0), Vo = N Sin(26) cosy,
V3= Zf sm(29) sing, V= ;/;_ sin’ 6 cog2¢),
V15 .
Vs = N Sirf 0 sin(2¢), (23)

instead of the traditional angular functiod% . The functionsy, satisfy the following
normalization condition:

/ de do Sing Y, ¥, =6, (24)
The second-order harmonic contributiorutean be rewritten as follows:
u@. )= U, ¥, (0, 9. (25)
=1

whereu, are some real coefficients.
Expanding the bending energ®)(and the excess are& up to the third order inu, one
obtains
FO =12 (u,u, — B U, uul;) +6T5A), (26)
A® =2u,u, — 2E,,,u,u,u, /3, (27)

in terms of the coefficients of the expansidtb). Here summation over repeated indices is
implied and we introduced the following object:

s = / de do sinG v, v, . (28)

All the components of the object are of the order of unity, and can be found from the definition
(28) and the expression&J).

After minimizing the free energy26) overu, and calculating the Lagrangian multipli@r
from the conditionA = A®, one obtains

or? /15
1+—9 — VA. 29
6k 14. /7 (29)

This is the correction related to the third-order term in the expansion of the free energy. The
minimum of the energy corresponds to a prolate uniaxial ellipsoid. If the principal axis of
the ellipsoid is directed along thé-axis its shape is determined by the relatian= —/A /2,

that is,
u:@(300§9—1). (30)

42
Substituting the expressior29) into the effective free energy26) we find that the
coefficient in front ofu,u,, in the expression is estimated a§/A. It contains an extra small
factor /A in comparison with the natural estimatian Thus, both, second-order and third-
order, terms in the free energdq) are of the same order. That gives a formal justification to the
procedure outlined in this subsection.
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Figure 2. Reference frame related to shear flow.

3.3. Weak external flow, phenomenology

Here, we analyze the case of weak external flows that cannot significantly distort the vesicle
equilibrium shape. As we established in the preceding subsection, the equilibrium shape of a
nearly spherical vesicle is the prolate ellipsoid possessing uniaxial symmetry. The orientation
of such an ellipsoid in space can be characterized by a unit veadoected along the principal
axis of the ellipsoid. If the principal axis is parallel to tAeaxis the vesicle shape is determined
by the expressiorn30). Note that the vectora and—n describe the same physical state since
the ellipsoid is invariant under inversion.

One can formulate a phenomenological equation for the dynamiesrof weak external
flow: o:n; = DyjkdkVj, whered,V; is the velocity gradient matrix of the external flow abg
is some tensor related to the vesicle orientation. Due to the symmetry—n the tensomD;jy
contains only odd powers af. Using the relatiom? = 1, that is,n; Dijx = 0, we arrive at the
following general form:

on = [(nkéij — anik)/2+D (nkSij/Z +nj5ik/2— ninjnk)]aij, (31)

containing a single dimensionless paramd2enn order to derive this equation, we exploited
the fact that the vesicle dynamics should be purely rotatidal = €;jxwjn, in the case of an
external flowo; Vi = —eijkwy corresponding to a solid rotation. The fac@rin equation 81)
depends on relative viscosities of the membrane and infexxiairnal fluids and on the excess
area parametek. An explicit expression foD will be derivedab initio in section?.

For an external shear flow, it is convenient to use the following parametrization of the unit
vectorn.:

n = (COSY COS¢p, COSY Sing, Siny) . (32)

The components here are written in the Cartesian reference frame attached to the flow: the
X-axis is directed along the velocity and thAeaxis is antiparallel to the angular velocity vector
w (see figure for clarification). Substituting the expressi@g) and the shear velocity gradient
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matrix with a single nonzero componehd, = y into equation 1), one obtains
vy~ = (D/2) cos29) — 1/2, (33)
y 1o = —(D/4) sin(29) sin(2¢). (34)

Note that the dynamic equation for the angles separated. The equation33] and @4)
resemble the equations for a single polymer dynamics examindd]in [

The solutions of §3) and B4) correspond to either tank-treading or tumbling types of
vesicle motion. FoD| > 1, the tank-treading regime is realized, with a steady tilt angle
(between the vectat and the velocity direction)

¢. = (1/2) arccosl/D). (35)

Otherwise, for|D| < 1, the tumbling regime takes place: the vectorexperiences a time-
periodic motion with an average rotation in the shear plane. Thus, the Balué corresponds
to the tank-treading to tumbling transition. As follows from equati8B), the transition is
described by the saddle—node bifurcation.

4. General dynamic equation

In this section, we derive a dynamic equation for the dimensionless displacem@inte
derivation procedure consists of two steps. First, one finds the velocity profile for a given vesicle
shape that is for a given displacement fiald, ¢). Next, one uses the kinematic relatidi®),

which leads to a closed equation for the fialdOf course, the expression féyu is a nonlinear
function ofu. We find the principal terms of its expansionun

4.1. Closed equation

In order to apply the procedure described above, we employ the generalization of the Lamb
scheme. In accordance with Lambg] (see also 49]), a solution of the stationary Stokes
eqguation can be explicitly expressed via the velocity field taken at a sphere both for the internal
and for the external problems. The Lamb scheme gives the exact solutions of the Stokes
equation. The scheme can be directly applied to a spherical solid body immersed in a fluid
or to a spherical cavity filled up with a fluid. Then the value of the velocity field at an arbitrary
point is expressed in terms of its surface value. For a nearly spherical vesicle the scheme is
slightly modified. Namely, one should express the velocity field via its value on the sphere of
radiusrg. These values can be obtained by analytical continuation of the internal and external
velocity fields and are slightly different in the cases. Then the boundary values are represented
as an expansion over the displacemenfThus, the formally exact Lamb scheme becomes
approximate when one truncates the expansion. In our ¢4ads the small parameter, which
controls the error associated with the series truncation. We therefore expect our results to be
asymptotically exact in the limih — 0, which corresponds to spherical vesicles.

In the zeroth approximation, one can ascribe the membrane velocity directly to the sphere
I =rq ignoring deviations of the vesicle shape from the sphere. Keeping then the lowest in
terms in all expressions, one obtains an equation for the displacensntivalent to the one
discussed in§, 25]. However, as we demonstrated 6], such an approximation is not self-
consistent because it leads to dynamics sensitive to initial conditions. One can overcome this
sensitivity only by accounting for high-order termsun
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Here, we derive an equation for the displacementn the approximation where the
membrane velocity and the boundary conditiob) @nd (L4) are related to the sphere=ry.
Corrections to the equations associated with the deviations of the vesicle shape from the sphere
are small inu. However, for the reasons formulated above, we keep the leading nonlingar in
term in the expression for the boundary forég Eurther, we justify the approximation.

Note, first of all, that the variational derivative of the effective free enefy ¢an be
represented as

5Ero{—K[H(HZ/Z—2K)+ALH]+6H}.

Therefore the boundary conditioh3) can be rewritten as

Here, we divided the surface tensian, into a homogeneous;, and an inhomogeneous,
parts. By definition, the zero angular harmonic is abset.iNext, for the sphere =rq the
average curvature i$l =2/ro and 3,0, v; o 89vi = 0, which explains the validity of
the expression3p).

To find the inhomogeneous part of the surface tensignpne has to use the second
boundary condition,14). Taking the derivative)- of the condition {4) and relating the result
to the sphere =rq, one obtains

1+ Doy —20(1 +2)(1 = Dy =7 [ +2( — Dyvyy +1807vr, ]
—n[A+2)(0 = D +r§07v ] (37)

whereo; andv;, are contributions to the surface tension and to the radial velocity associated
with thelth order angular harmonic. As above, the subscripts ‘in’ and ‘out’ are related to the
interior and exterior regions of the vesicle.

Applying the Lamb scheme to the sphere ry, one finds for the internal problem

in

out’

Il =D@+3
Pin:_nzal—atul» (38)
|
r'=11+1 -1

Here, we used the conditiof v, (rg) =0, following from the relationl;lxd;vx =0 where
li = (sinfcosy, sinfsing, cosy) is the unit vector perpendicular to the sphere-ro. We
substituted alsov; (rg) =rodiu, which is the kinematic relation19) taken in the main
approximation iru.

For the external problem, one should separately analyze the external contriutioiine
velocity since it does not tend to zeroras> oco. Substitutingy = V' +w, one obtains

1+1 _
Pout=17 Z o watul ) (40)
|

et +2 gyl
wr=2<r—|7—r|+z§ du, (41)
|
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analogous to equation8g) and @9). Here, again, we used the incompressibility condition
d:wy (ro) = 0 and the kinematic relatiow, =rqd;u. The expressionst(Q) and @1) should be
modified forl = 2 because of the external flow. The modified incompressibility condition has
the forma, wy »(ro) + sSklilk = 0 and the modified kinematic condition dgu, = wy 2 +reSililk.
This yields

Pout2 = n(46iU2) — ~"_>Sk|i|k)rg/r 3, (42)

Wy 2 = (28tU(2) — 55k|||k/2) I’g’/r2 — (8tu(2) — 3Sk|||k/2) rg’/r“. (43)
After collecting together the relations3@)—(43), we obtain a closed equation for the
displacementi

R 16F
whereé is a dimensionless operator with angular components

23+3%2+4 23+3°2-57 1°+1—-24¢
= + —+ — .
[(+1) I+ »n 1d+1) nrg

We included in equatiordd) a dependence on the rotational part of the external flow, which can
be established by a discription of the nonlinear term in the kinematic relat@)n (

Recall that the quantity entering the dynamic equatioa4) through equation?l) is the
surface tensio averaged over angles. As previoustyjs an auxiliary quantity ensuring the
surface conservation law. Let us stress thatepends on time, adjusting to the current vesicle
shape. Note that the strain and the rotation parts of the external flow are separated: the angular
velocity w extends the time derivative (its effect is equivalent to passing to the rotating reference
frame), whereas the strain matrix enters the tgfhl; playing a role similar to the free energy
derivative. The reason is that the elongational part of the flow leads to some viscous dissipation,
whereas solid rotation does not imply any dissipation.

4.2. Second-order angular harmonic

Equation 44) can be further simplified. First of all, one can keep the second- and third-order
terms in the effective free energgl). Higher-order terms iz are negligible sincel < 1.

The reason why one should keep the third-order term behind the dominant second-order ones is
explained below. Next, the expansion of the teyihl; does not contain any angular harmonics

with | > 2, so this term does not pushoutside thel =2 subspace. Higher-order angular
harmonics inu are excited by the high-order corrections to the free energy of the membrane
and by thes;lil; term, which are both small compared with the terms corresponding to the
second-order harmonics. The amplitude of high-order harmonics can be estimatedfaish

should be compared with th¢ A amplitude of the second-order harmonic. Back-reaction of
high-order harmonics on the second one can also be neglected as they produce an effective
force which can be estimated as/? and is thus smaller than those are kept in the expansions
presented below. Therefore one can use a reduced equationuwt@mtains only second-order
angular harmonics. The operatbm this case is reduced to a constant

16 /. 237 ¢
a=—(1+=—="+—>], 45
3 ( 327 2nro) (43)
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depending on the viscosities. The constartan be called a generalized viscosity contrast.
Note that the limita — oo (where the internal fluid viscosity or the membrane viscosity tends
to infinity) should correspond to a solid body behavior of the vesicle.

One can substitute the expressi@g)(into equation 44) and then project the equation to
the subspack= 2. Then equatiordd) is reduced to

24/ o 3k o0\ -
a[atuu —Cl)(a(pU)M] = 10(SJ|||J)M — % [(@ + E) UM - (ig + 1—2) awkuuuk] , (46)

where the subscripts i, u), and(s;lil;), designate projections of the functions to the basis
(23) calculated in accordance with equati@d.

The factoro in equation 46) should be extracted from the condition, 21, = A, which is
the leading order expansion of the area conservation constraint. Substituting the resulting value
of o, one obtains

afdu, —w@,u),]= <8W — 2uﬂup> [10(sjlilj)p +2iK3 Epukuvux} ) (47)
A nro
In accordance with equatioi%), the right-hand side of equatiod?) is a sum of two terms,
proportional to the straig; and to the bending module, whereas thex-proportional term is
included in the left-hand side of the equation. Note that the term proportionaid®f the
second order (the first-order term is absent), which formally justifies keeping this high-order
term in the expansion of the free energy.

Deriving equation47), we neglected terms of ordeu, which arise as corrections to the
term s;jlil;. They are much less compared with the term witiprovideds <« K«/K/(nrg),
which is the formal applicability condition of the equation. However, below we demonstrate
that equation47) can be applied to stronger flows, wih> Kx/K/(nrg), as well.

4.3. Rescaled equation

After some rescaling, equatiod?) is rewritten as
SA =
(‘L' Bt—78¢> UM = (5MP_UMUP)(S[) + mMUvUA), (48)

whereZ = (7/7/+/5) & and
U,=+2u,/vVA, UZ+...+UZ=1 (49)
The parameters in equatiofd) are defined as follows:

77 anrd s siré A V3 VAaw (50)
T = s = ———, — ,
1210k /A 3/3 kA 4107 s

where, as previousl\s® = s s; /2. The ‘vector'S, in equation 48) has an absolute valug,
given by equation §0); its ‘direction’ is determined by the projections of the objegt;!;

to the basis 43), that is, the ‘direction’ is determined by the structure of the strain matrix
;. Therefore the two parameterS,and A, together with the ‘direction’ of the ‘vectorS,
completely determine the character of the vesicle dynamics in the external flow.
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The quantityr is the characteristic timescale of the vesicle relaxation. In comparison with
the combinatiomr3/«, related to the external fluid, the timecontains an additional factor
a, reflecting the contributions of the internal fluid viscosity and the membrane viscosity into
the relaxation, and also the factar/2. This extra factor reflects the additional slowness of
the second-order angular harmonic relaxation related to the degeneracy of the second-order
contribution to free energy. Due to the degeneracy the relaxation is determined by the third
order term in the effective free energy, which contains a smallnégsin comparison with the
energy of higher angular harmonics. Therefore the adiabaticity condition, enabling one to use
the stationary Stokes equation, should be written gs or2/n, that is,an?ro > pi+/A. The
inequality is valid because the radiusis large (in comparison with the molecular length) and
A is small.

The paramete® characterizes the relative strength of the external flow. The expre&sipn (
for S can be explained as follows. The external viscous surface fahould be balanced
by the surface tensioa times a variation of the vesicle curvature, which is estimated as
V' A/ro. Therefores ~ nsry/+/A. It has to be compared with the ‘anisotropic’ correctian
to the equilibrium surface tension, which can be estimatedda /r2, see equation2Q).

And S is just a ratio of the surface tension valu&> ¢ /§o. Corrections of the ordesu
neglected in the equationéq) and @8) are much smaller than tiheproportional term provided
s < kv/A/(nrd); the condition can be rewritten &« 1/+/A, in terms ofS.

The parameters determines the relative strength of the rotational part of the external
flow. Note thatwt ~ SA. The conditionA ~ 1 determines the angular velocity whose effect is
comparable with the effect of the strain; the condition readss/(a+/A). This characteristic
angular velocity does not coincide with the characteristic valug ofhich stresses again the
different roles of the rotational and of the elongational parts of the external flow in the vesicle
dynamics.

For a concrete analysis, it is convenient to pass from the variabl€49) to another set of
variables, ‘angles®, ®, ¥ andJ, defined as

U; = sin® cosJ, U, =sin® sinJ cosY, Uz =sin® sinJ siny,
U, = cos® cog29), Us = c0osO sin(29), (51)

where® varies from—m /2 tonr /2, J varies from O tar /2, ¥ varies from—x to 7, and® varies
from —m/2 tor /2. The representatiom{) automatically satisfies the normalization condition
(49 and contains, respectively, four independent parameters instead of five compdpents
Note that the equilibrium vesicle shape characterized by the principal axis dire8pims (
written as

2/3sin(21)

in® = —/1— (3/4) sin* 9, d=U=—¢, tand = —— — ~
sin \/ (3/4) sin ¢ an 1+300820)

(52)

in terms of the ‘angles’.

5. Planar external flow

We start to discuss the case of a planar external flow, where the fluid velocity ¥édies in
a plane and is independent of a coordinate normal to the plane. One patrticular realization we
have in mind is the shear flow where the elongational and the rotational contributions are in
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balance. However, one can consider an arbitrary relation between the contributions, from purely
elongational flows to solid rotation-type flows. All the cases are included in our scheme. In this
section, we derive the general equation describing the vesicle dynamics in an external planar
flow and give a preliminary analysis of types of its solution.

5.1. General consideration

For the planar velocity field, the only nonzero elements of the velocity gradient ndaufix
are related to the plane, so it is ax2 traceless matrix. We choosé& and Y-axes of our
reference system parallel to the plane and assume (without any loss of generality) that the
diagonal elements of the matrixV; are zero. Two non-diagonal components of the matrix
completely determine the planar flow; they can be parameterized in terms of thesstralrof
the angular velocitw asdy Vx = s+ ando,Vy = s — w. In particular, for an external shear flow
with the velocity directed along th¥-axis the only nonzero element of the matriXj§/, = y,
thenw =s=y/2 . One can check that in the reference frame the only nonzero element of the
‘vector’ S, in equation 48) is S = S. Thus the two parameterSandA, completely determine
the type of vesicle dynamics.

We will work in terms of the ‘angles®, ®, ¥ and J, introduced by equatiorb(). They
completely determine the vesicle shape if the second-order angular harmonic is leading. The
vesicle displacement defined by equationl@) is determined by the following expression:

U x Sin® cosJ 1 +SiN® sinJd cosWY ¢, +sin® sind sinWyr;
+C0SO cog2d) Y4 + CcOSO SIN(2P) s, (53)

where the functiongs; are defined by equatio2d).
For the planar external flow and in terms of the ‘angles’, equad@&i§ rewritten as

) (0/c) s 0 fo
) . Jo A |1 fq)
Tat J — S O - 7 0 + fJ 9 (54)
1\ 0 1 fy
where
OJo = — SIN(®) Sin(2P), go = (1/2) cog2P) secV, (55)

fo = 3i2{—4 cosJ cos® sir J +[33 cos) — cog3J)] cos(30)
— 4/3cos[AD — W)][sin © — 3sin(30)] sin? J},
fo = — 24/3sirf I sin® sin[2(d — )] tan®,
fy = :{—8csc®sinJ +[11sinJ —sin(3J)] sin®
+4/3 cos® CoS[AD — W)]sin(2J)},
fy = +/3 c0osO sin[2(d — W)]. (56)
Again, equation%4) is in accordance with the decompositidrb); the first term in the right-
hand side of equatiorbf) is proportional to the elongational part of the external flow, the second

term is proportional to its rotational part, and the last term is related to the membrane bending
elasticity.
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Figure 3. Vesicle dynamics on the—® atlas.

5.2. Symmetric solution

It follows from equations%4) that there exists a solution with= 0. This is a consequence of
the geometry: the planar flow is invariant under reflection with respect to the flow plane. Due
to this symmetry, there existstasymmetric solution for the displacemantcorresponding to
J=0.

If J =0, then the displacemeanthas the following angular dependence:
1—-3cog6

V3o
as follows from equations2@) and 63). Therefore the ‘angle® characterizes the vesicle

orientation in theX-Y plane, whereas the ‘angl® determines the vesicle shape. The system
of equations$4) is reduced al = 0 to the following equations:

U o coSO sir? 8 cog2¢p — 2&) +sin® (57)

70{® = —SsIin® sin(2®) + cog30), (58)
S[cog2d)

P =—=-|——A]. 59

TR [ cosO ] (59)

Note that the last, nonlinear in summand in equatiort{) produces the only term, c(®0),
in equation §8).

The tank-treading vesicle motion corresponds to a region of parantetend A where
the system of equation8§) and 6£9) has stable stationary points. The stationary points can be
found by equating to zero the right-hand sides of the equations, which gives simple algebraic
equations. The solutions of the equations are stable in a region Wherg; its boundaries are
established below.

For largerA the attractors of the systerf§) and £9) are limit cycles. They correspond to
either tumbling or trembling behavior. In the tumbling regime, the ‘anglgrows indefinitely,
whereas in the trembling regime it oscillates in a restricted domain. To illustrate the assertion,
it is convenient to represent the vesicle evolution on a geographic atlas, @terdd are the
latitude and the longitude, correspondingly, see figlrehe tank-treading regime corresponds
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Figure 4. The region where spinning is realized.

to a fixed point on the atlas. The trembling regime corresponds to a closed curve, which does not
surround a pole, whereas tumbling produces the curve containing the pole inside. IrBfigure
such ‘tumbling’ curves terminate at the boundaries of the atlas having the G®aorethe
boundaries, since points on the right and on the left boundaries of the atlas with the same
latitudes are physically identical.

Let us stress that the trembling to tumbling transition does not imply any singularity
(whereas the tank-treading to tumbling and the tank-treading to trembling transitions are
realized through bifurcations, see the next section). It becomes clear if one imagines a gradual
transformation of a cycle leading from trembling to tumbling. Obviously, the transformation is
smooth even in the transition point from trembling to tumbling where the cycle crosses the pole.

5.3. Spinning

An investigation of the complete system of equatiob4) (indicates that at some values of
the control parameter§S and A, a novel regime of vesicle motion can be observed. The
corresponding domain on the phase diagram is shown in figufide vesicle shape in this
regime is not symmetric under the reflection> —z (or 6 — —6). For A > Sthe shape of the
vesicle is close to the equilibrium one and the vesicle dynamics is reduced to the precession
around thez-axis, with constant value of the angle betweenztaxis and the principal axis of
the vesicle. In contrast to the tumbling regime this angle is not equaj 2o In the opposite
limiting caseA <« Sthe spinning motion is much more complicated. The principal axis is also
not normal toz, but the precession is accompanied by periodic oscillations of the vesicle shape,
in particular of its aspect ratio. Another way to imagine this regime is to think-ef —z
asymmetric vesicle deformation spinning around #haxis on top of a stationarg — —z
symmetric ellipsoid with the main axis parallelxo

As one can see from figu#e spinning is observed at relatively large valuesSadnd A.
The vesicle shape in the spinning regime can be found analytically in the limiting cases of large
A and largesS; the corresponding analysis is presented in subsequent sections.
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Note that spinning coexists with tumbling: these two types of motion are basins of
attraction for different domains of the phase space of the dynamical syS#mrherefore
a choice between spinning and tumbling depends on the initial vesicle shape. In real systems
with non-vanishing thermal noise, one should observe a bistable vesicle behavior, where the
tumbling oscillations are intermitted by the spinning ones. Our numerical experiments show
that spinning and tumbling regimes have comparable basins of attraction $rgllso in real
experiments both regimes should be observed with comparable probability. Near the boundary
of the domain depicted in figuré the spinning regime loses its stability via a saddle—node
bifurcation (passing to the tumbling regime).

6. Phase diagram of the system

It is convenient to construct a ‘phase diagram’ of the system inSthe plane reflecting all

types of vesicle motion. The structure of the phase diagram is determined by the transition
lines between different regimes. There is a critical slowdown of the vesicle dynamics near
tank-treading to tumbling and tank-treading to trembling transitions. That is why the vicinities
of the transition lines need a special consideration. Note that there are no singularities in the
vesicle dynamics near the trembling to tumbling transition. Indeed, from the point of view of
the dynamics on thé—0 atlas (see figur8), there is no qualitative difference between cycles
representing the tumbling and the trembling regimes and, consequently, the transition is smooth.
Note also that there is a special point on the phase diagram where the tank-treading to tumbling
and the tank-treading to trembling transition lines merge. An additional slowness of the vesicle
dynamics near the special point occurs.

6.1. The tank-treading to trembling transition

As we have already noted, the tank-treading regime corresponds to the stationary points of the
system §8) and 69). In order to study the stability of the stationary solutions we linearize the
equations%8) and £9) near the stationary point:

Q) A (60
a (19) =8 (29). -

The stationary point is stable, if both the eigenvalues of the m&tvave negative real parts.
Thus the stability conditions areB < 0 and deB > 0.

The tank-treading to trembling transition is determined by the conditi@n=tr0 whereB
is the stability matrix introduced by equatiosQ] for the symmetric solution. Using the system
(58) and 69) one can rewrite the condition & = 0 as a functiom = A.(S) where

A, =+2/1-1/2. (61)

HereSvaries fromy/3 to oo, andA , varies from 2+/3 to+/2. The transition curve, determined
by equation §1), is plotted in red in figureb. The curve starts from the special poit=
V3, A = 2/4/3 (the pointe; in figure5) and goes to the right.

For clarity, we kept only two phases corresponding to the tank-treading and trembling
regimes on figur& where the vicinity of the special poiet is presented. Note that there is a
region of parameters near the special point where two different tank-treading regimes coexist. In
figure5, we have shown only one of the tank-treading regimes, obtained by continuation from
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Figure 5. Phase diagram in the vicinity of the special point. Tank-treading to

trembling transition.

the right region. The transition between the ‘right’ tank-treading and trembling occurs at the
red curve. The dashed curve in figlravhich was obtained numerically represents the stability

boundary of the trembling regime. The curve terminates at the pgifitherefore, trembling
motion is stable between the red and the dashed curves and above theg.fagfitof the dashed
curve the trembling regime becomes unstable, and it transforms into the tank-treading one.

Expanding equations5g) and 69) at a givenS near the point 1), one derives the
following equation:

thZ=¢Z—-ivVS—-3Z—-K|Z]*Z, (62)
for a complex variable. Here
_ 8SVF - LAl K S -1US Y
‘T T3 3 o NGRS

and the variable is related to the deviation of the ‘angles’ from their stationary values as

V250\_(wt-ip pHip \ [(Z
§@ ) \—pip —puNipn)\Z*)"

where

VS -1 +4/2
/’L - /—SZ — 1 . ﬁ,
andZ* is complex conjugated t@.

Equation 62) describes the Hopf bifurcation. Above the transition lineAat A, the
attractor of the dynamical system is a limit cycle with the radius proportio o- A, near
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Figure 6. Phase diagram in the vicinity of the special point. Stability boundaries
of the ‘left’ tank-treading regime.

the transition curve. This motion corresponds to trembling since the radius is small, and the
limit cycle is not surrounding a pole, as can be seen from fi§ure

The parameters in equatiodd) have a ‘critical’ dependence near the special pSiat /3
andA = 2/+/3 . In particular, the characteristic frequency of the bifurcation is proportional to

v S— /3. However, surprisingly, the amplitudes of tBeand® variations can be estimated as
VA=A, without a ‘critical’ dependence 08— /3.

The vicinity of the special poing; needs an additional analysis since the frequency
171/ -3 of the Hopf bifurcation tends to zero as the point is approached and the
approximation leading to equatiof3) ceases to be valid there.

6.2. The tank-treading to tumbling transition

The tank-treading to tumbling transition is determined by the conditioB e, whereB is
the stability matrix introduced by equatio®Q) for the symmetric solution. The corresponding
transition curve on th&-A plane has a complicated shape. One obtains from equat&s (
and 69) that the curve can be described as

2 2 4 \/4—2_
g V15322418 N s ) 63)
1-1¢2 2,/5— 42
where the parametervaries from ¥+/2 to+/3/2. Near the special poie4 (whereS= +/3 and
A =2/4/3), the curve is presented in figue The boundary value = 1/+/2 corresponds
to the above special poird;, and the boundary value = +/3/2 corresponds to the point
S=0 and A =2/+/3. The expressions foB and A have a maximum aty = /1 — 2-4/3,
S~ 1.8737—46.97(¢ — £)? near the maximum. The value= ¢, corresponds to the turning
pointey in figure6.
To be more precise, the condition &t 0 determines the tank-treading decay point.

Therefore the orange curve determines the stability boundaries of the tank-treading regime
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Figure 7. S-dependence of the parametdy¢solid line) andB (dashed line).

obtained by continuation from the left region. Different parts of the curve correspond to different
transformations. The segmerdgy, and egey correspond to transition into the tank-treading
regime obtained by continuation from the right region. Therefore there is a coexistence region
of two tank-treading regimes. The segmejfds; corresponds to transition into trembling. The
point es, as we pointed out, corresponds to the termination point of the trembling instability
curve. Therefore there exists a region of coexistence of the ‘left’ tank-treading and trembling.
The residue of the curve, to the left of the paggtcorresponds to the tank-treading to tumbling
transition.

Let us consider the upper part of the orange curve in figurghich corresponds to the
interval Zo < ¢ < +/3/2 in equation §3). We are interested in the dynamics of the ‘angl®s’
and® in the vicinity of the curve. There is a single degree of freedom possessing slow dynamics
in the vicinity. The dynamics can be described in terms of an equatiod;ftine ‘angle’® is
adiabatically adjusted to the ‘angl®. The equation is

198D = S[AaA +B/S— S(8d>)2] , (64)

whered§ @ is a deviation ofb from its stationary value taken at the transition curve at a given
andéA = A — A(S). Here A(S) is determined by equatio®8), and A and B are functions of
Splotted in figure7. Note that the parameters have square-root singularitiesheds), where
S corresponds to the turning poid, in figure6.

The lower part of the orange curve, the segneget in figure6, corresponds to the interval
1/4/2 < ¢ < ¢o. As for the upper part of the curve, there exists a single soft degree of freedom
in the vicinity of the segment. An equation for the degree of freedom can be written as

138® = (S—/3) [A5A+é\/s)—5(5q>)2], (65)

analogously to equatios4). The parameter andB in equation 65) are functions oS plotted

in figure8, and the meaning = +/3 corresponds to the special po@t
Equations §4) and ©5) are characteristic of the saddle—node bifurcation. For equation

(64), até A < 0 (below the transition curve) there exists a stable stationary pdint /|5A].
It corresponds to the tank-treading regime.sAt > 0 (above the transition line) there are no
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Figure 8. S-dependence of the parametérgsolid line) andB (dashed line).

stationary points described by equati@d)( To establish the state of the system in this case, it
is not enough to use equatiodd) obtained by expanding over deviations of the ‘angt@sind

®. As our previous analysis shows, the instability occurring at- 0 can lead to tumbling,
trembling or ‘right’ tank-treading. For equatiof), the sign off A should be changed: a stable
stationary point exists above the curveéat > 0. The instability developing below the curve at
SA < 0 leads to the ‘right’ tank-treading.

As follows from equationsg4) and €5), an additional slowdown of the dynamics can
be observed near the turning poggt The functionsB and B have a finite limit asS— .

To avoid a misunderstanding, note that the vesicle dynamics cannot be described in terms of
equations §4) and ©5) near the turning point where the factors in front(&f)? tend to zero

and higher order terms of the expansion over the ‘angle’ deviations should be taken into account.
The vesicle dynamics cannot be described in terms of equ&méar the poing; as well,

since the coefficients in the right-hand side of the equation tend to zero as one approaches this
point. Its close vicinity needs a special consideration; the conclusion is the same as the one
made in the previous subsection.

Note also that the case of weak flog« 1, requires an additional analysis since there are
two soft degrees of freedom in the limit (corresponding to solid body motions of the equilibrium
uniaxial ellipsoid), instead of the single degree of freedom described by equédpnWe
postpone an analysis of the case to the next section.

6.3. Complete phase diagram

Collecting together all the results obtained above, one finds the complete phase diagram plotted
in figure9. The red line represents the tank-treading to trembling transition, whereas the orange
line determines the tank-treading to tumbling transition. A transition line from tumbling to
trembling, obtained numerically, is depicted by a dashed line in figuréd/e present the
coexistence region of spinning and tumbling. We also plot in fi§uitee green line separating

the damping and the oscillating relaxation modes in the tank-treading regime.

The tank-treading domain (containing stable stationary points) consists of the light violet
strip below the lineA = 2/+/3 (where® is positive) and the light green sub-region above the
line A = 2/+/3 (whered is negative forS > +/3). To avoid a misunderstanding, note that other
stationary solutions of the systegj and §9) exist in the domaim > +/2,/1— 1/, which
are stable in terms of the variabl@sand®. However, a stability investigation in the framework
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Figure 10. Phase diagram in the vicinity of the special point.

of the complete system of equatiosl shows that these solutions are unstable in the extended
space (with the variable$ and V¥ included). Therefore, these solutions cannot be realized as a
tank-treading motion.

The phase diagram has a complicated structure near a speciaBpoinf3, A =2/4/3. A
vicinity of the point is depicted in figur&0, where the regions of coexistence of two different
stable points (green triangle) and of a stable point and of a limit cycle (fuchsia triangle) are
shown. In other words, the green region in figdecorresponds to coexistence of two tank-
treading regimes, whereas the fuchsia region in figlfe€orresponds to coexistence of the
tank-treading and trembling regimes. The picture in figil@ean be obtained as a combination
of the pictures plotted in figurésand®é.
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Figure 11. ® angle in different dynamical regimes.

Different regimes of vesicle dynamics are illustrated in figliteln plotting the graphs, we
assumed that the system parameters are adiabatically changed along the ellipse curve depicted
on the left phase diagram. During this non-stationary process one observes different values of
the angle®. In the red part of the curve, corresponding to the trembling regime the éngle
oscillates within the boundaries shown on the right graph. Black and blue parts correspond to
the tank-treading regime where the anglés constant. Two tank-treading regimes coexist in
the green region, and the vesicle relaxes to one of them depending on the initial condition. On
the linee; — e, one of these tank-treading points bifurcates into the trembling cycle. Trembling
and tank-treading regimes coexist in the orange part of the curve. Note that there is hysteresis
in the system. The choice between coexisting regimes depends on the direction of the circuit.
One can also see that there are two types of bifurcations between tank-treading and trembling
regimes. The Hopf bifurcation is observed when passingthee, line and the saddle—node
one is observed when passing #e- & line.

7. Special cases

We established the general peculiarities of the vesicle dynamics in an external planar flow which
appears to be rich in different types of behavior. The phase diagram depicted in fgures0
contains a great deal of domains and has a complicated structure. The situation is simplified for
different limiting cases, which can be examined in more detail. Below, we present an analysis
of some limit cases that seem to be primarily compared with experiment. Strong external flows
are analyzed in a separate section.

7.1. Almost rotational flows and big viscosity contrast

Let us consider the cask >> 1. The definition $0) reads that the limitA — oo is achieved
either atw/s — oo, wheres andw are the strain and the angular velocity of the external flow,
see equations, or ata — oo, wherea is the ‘generalized viscosity contraslg). The case

w/S — oo corresponds to a purely rotational external flow, where the fluid rotates as a whole
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with all inclusions. The casg — oo corresponds to a solid body behavior of the vesicle, so one
should reproduce the classical Jeffery’s restli,[ which predicts that for external flows with
o > +/As the rigid ellipsoid is in the tumbling regirie

In accordance with this reasoning, we find from equat®f) that in the case\ > 1 the
vesicle rotates with the angular velocity of the external flow having a nearly equilibrium
shape. Corrections to the equilibrium shape induced by the elongational part of the flow
appear to be small due to averaging over the relatively fast rotation. Therefore in the main
approximation the vesicle shape is the equilibrium d&®,(where the anglée grows linearly
as time goes. And the question is to determine the atighetween the principal ellipsoid
semiaxis and the rotation ax&s

The ¢ dynamics appears to be much slower than rotations with the frequendy
establish an equation far, one has to take into account small deviations of the ‘angles],
® andW from their equilibrium valuesy2). The deviations are separated into terms oscillating
with the frequency» and approximately constant corrections induced by the oscillating terms.
The oscillating terms and the corrections can be analyzed by expanding the equadions (
After that the equation fof can be extracted, say, by averaging the equabdpfor J over the
oscillations. A result of this bulky procedure is relatively simple:

rod = %{12[7 +c0%29)] — F[1+3 cog20)] sin v}, (66)

To avoid a misunderstanding, note that the equation is correct proSieed\.

Tumbling and spinning correspond to stable stationary solutions of equétipthat can
be found by equating to zero the right-hand side of the equation. The sotutiof is always
unstable. The solutiott = /2 is always stable; it corresponds to tumblingSit S,q,

S _\/78\/1_0—120\/5
‘7 \ 263/10— 480/3

then there are two additional solutions, stable and unstable. The stable solution corresponds
to spinning that, consequently, can be realize® at S,q for large A >> 1. The valueS= Sy
corresponds to the left boundary of the spinning domain in figufiene stationary value of the

angled diminishes asS grows, it is arcsi/4 — 24/10/4/3 atS= S4, and passes to 28 at
largeS.

~ 1148, (67)

7.2. Purely elongational flow

The purely elongational flow corresponds to the case 0, that is, 9,V = —dxVy =s.
Therefore, in our designations, the elongation is directed along the main diagonal in the
X-Y plane.

The conditionw = 0 leads toA = 0, in accordance with the definitio®(). In this case,
the system of equation$8) and 69) has a stable stationary poif, ®y, determined by the
relations

dg=m/4, SsSin®y=Ccog30y). (68)

3 Note that the special limi — oo at fixedw/s < +/A (leading toA — oo) needs special care, since it is not
covered by equation$4) written in the main approximation in. Although the vesicle behaves as a rigid body in
this limit, it is in the tank-treading regime.
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The ‘angle’ ®, monotonically decreases frony6 to zero asSincreases from zero to infinity.
The value®, = /4 is quite natural since it corresponds to the vesicle orientation along the
elongation direction, as can be seen from equatdh [The stability check of the solutio®)
shows that the point6Q) is stable. In the limitS>> 1, both ‘angles’ relax to their equilibrium
values with the same rate/&0r s(3v/3A a) L.

Recently, a wrinkling phenomenon was observed in purely elongational flows at a sudden
inversion of the elongation direction, sets]. The effect can be explained in the framework of
the theoretical scheme developed in our paper; the corresponding analysis is presettied in [

7.3. Weak external flows

Let us consider weak external flows characterized by the condBienl. This case has
been already discussed in secti®r8 from the phenomenological point of view. Here the
case is analyzed in terms of the ‘angled’ and ®, enabling one to establish a value of
the phenomenological constant introduced in equatior(l).

As follows from equation§8), for S« 1 the ‘angle’® is close tor /6, which is a stable
point of the equation. Substituting the val@e= /6 into equation %9), one obtains a closed
equation for the ‘angle®

13, ® = (S/+/3) cog2d) — SA /2. (69)
If A < 2/+/3then equationd) has a stationary point
b= % arcco{@) , (70)

which is stable. Fon > 2/+/3 all the solutions correspond to indefinitely increasing), that
is, to the tumbling regime. Therefore = 2/+/3 is the transition point from tank-treading to
tumbling.

For ® = /6, the expressiorb{/) describes a prolate uniaxial ellipsoid with the principal
axis directed along the vecta3?) with ¢ = ® and®¥ = 0. Comparing then equatio89) with
(33) (obtained for a shear flow with= w = y /2), one finds

8V 10r
D= .
Jav A

As it should be, the transition poird =1 from tank-treading to tumbling corresponds to
A =2/+/3. Let us stress that the valugl] does not depend on the character of the external
flow. Therefore the equatio3{) with the parameter7(l) is correct for any weak external flow.

Note that in the ‘rigid body’ limita — oo (where the viscosity of the internal fluid or the
membrane viscosity tends to infinity) the quantifit) tends to zero. However, a description of
higher-order terms i\ shows that in the limiD stops to decrease and stabilizes at a value of
the order of/A. The reduction oD leads to a solid rotation of the vesicle in the particular case
of the external shear flow as follows from equatio®3) @nd 34). The behavior corresponds to
the classical result of Jeffery{)], who demonstrated that a solid ellipsoid rotates in an external
planar flow, provided > +/As.

(71)
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8. Strong external flows

Here we analyze the case of strong external planar flows, defined by the ineuality, in

our designations. In this case the leading role in determining the vesicle shape and its dynamics
is played by the external flow. However, surprisingly, the vesicle bending rigidity cannot be
neglected even in this limit case. Moreover, our scheme, where the rigidity is taken into account,
appears to be applicable even in the case of extremely strong Bowsl/+/A.

8.1. Truncated equations

In the case of strong external flows, whe3es large, the last term in the right-hand side of
equation $4) is small in comparison with the first one. After neglecting the term, one arrives at
the following system of equations written in terms of the ‘angles’ introduced by equ&tign (

_ . . _} cos(2d>)_
(t/S) 0;® = —sin® sin(2P), (t/S) 0 ® = 2[ oS0 A],

(/9 ¥ =A/2, 3JI=0. (72)

The system72) corresponds to the limit case considered by Mist&afd then by Vlahovska
and Gracia25]. In this subsection, we analyze solutions of the systé?h (Their relation to an
observable vesicle behavior is not straightforward and is discussed in the next subsection.

The system of equationg2?) has two integrals of motion] and an additional integralf’,
which can be introduced via the relation

sinY sSin®
A —cosY A —cos®cog2d)’

To specify Y unambiguously, we choose a root of the equatidB) (ying in the domain
|T| < arccosl/A). Existence of the integrals of motion implies that the character of the
vesicle evolution, described by the system of equati@@y epends on initial conditions (that
determine values of the integrals).

The system of equationgZ%) can be completely integrated. For this purpose, we introduce
a variable

(73)

t
0= exp{(S/r)/ dt’ cos[E(t")] sin[2¢(t/)]} : (74)
0

It is convenient to choose an initial time, as a moment, wiber O and |®| < arccogl/A)
(such a time exists for arbitrary initial conditions). Then the initial conditions tum+ol and
dp = 0, and one derives from the syste?) the following equation:

(t/9?8%p = —(A*—1)p+ A% — A COSTY, (75)

which can be obviously solved explicitly. The parametérsand ® are expressed, via the
variablesp andY, as

cos® cog2d) = A — (A —cosY)/p, (76)
c0sO sin2d) = (t/S)dp/p. (77)

A solution of equation{5) behaves differently aA <1 and atA > 1. If A < 1, then the
variablep goes exponentially to infinity as time grows; thus the right-hand sides of the equations
(76) and (/7) tend to constants giving the stationary potht= 0, 2® = arccosA. Thus, we
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arrive at the tank-treading regime. K > 1, then the variableo experiences oscillations.
Therefore the vesicle dynamics corresponds to some closed trajectory@a-dn@lane which
is determined by the values dfand Y. If the angle® grows (decreases) indefinitely, so that
the poles® = +/2 are inside the trajectory, the vesicle is in the tumbling regime. Otherwise,
if the oscillations of® are bounded the dynamics corresponds to trembling.

For the truncated systeni?) the tumbling and trembling regimes coexist for aty- 1.
A choice between the regimes is determined by a valuig.df cosY > 2A /(A% + 1), then the
closed trajectory corresponds to tumbling; otherwise the cycle corresponds to tremblihg. If
takes one of its boundary values, that is, if ¥os 1/A, then the trajectory degenerates into a
single point with

® =0, Ccos® = 1/A. (78)

Thus, even atA > 1 the truncated system of equationg2)( has two stationary points
corresponding to the tank-treading regime.

8.2. Slow dynamics

We demonstrated that the truncated system of equatiti®)scan be completely integrated.
However, the system cannot be directly used for the analysis of the vesicle dynamics in the
limit of strong flows S>> 1. Indeed, the type of solution of the system depends strongly on
initial conditions and admits different closed trajectories for any 1. Both these properties
contradict obviously the general properties of dissipative dynamics and the results obtained
in section5.1 The contradiction is resolved if one restores the terms omitted in the truncated
system {2) and originating from the last (nonlinearlih) term in the right-hand side of equation
(54). The restored«-proportional) term modifies the vesicle dynamics, leading to a relatively
slow evolution of both integrals of motiord and Y, that produces a well-defined behavior,
independent of the initial conditions.

Below, we consider the case > 1 where the truncated system of equatior® (eads to
limit cycles. Then, considering solutions of the complete system of equations, one can separate
fast motion along the closed trajectories and relatively slow evolution of the (approximate)
integrals of motion on timescales larger than the cycle period. Note that a typical timescale
associated with the fast dynamicstgS, whereas a typical time of the slow dynamicsris
The large ratio of the times justifies the separation. The equation controlling the slow evolution
can be found by averaging over the trajectory period of the expressions for the time derivatives
of J andY obtained from the complete syste®). For this averaging, one can use the fast
dynamics described by the syster2). The result can be symbolically written as

THYT =T, ToJd =J, (79)

whereY andJ are some functions ¢f, J andA.

The dynamical equations/9) have stationary points, which can be found from the
conditionsY =0 and J = 0. The expression fod is antisymmetric inJ as a consequence
of the initial symmetry of the dynamic equations under the reflectien —z (or 6 — —0).
Therefore there are stationary points with= 0, corresponding to a symmetric vesicle shape.

In the case J=0, one finds from equations5§), (59) and (3) that Y =
((07/00) cog30)), where angular brackets mean averaging over the period. Calculating the
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average, one obtains
L _AcosT -1 [ 4y (A2—1)*"
= A2 . 1 A (112 + 1)3/2

where ${ = (A —cosY) cscY. Note that the expressiorB@) is symmetric inY. It is a
consequence of the equatior®) and the relation {3) that leads to the conclusion that at
YT — —7 the solution transforms &8 — —© and® — ®. Therefore an average of any even
function of ®, like Y, should be even ifr'.

The stationary points witll = 0 can be found by equating the expressigf) o zero. If
1 < A < +/2 then there are two stationary points,= arccogl/A) and Y = —arccogl/A).
The situation corresponds to tank-treading. The first stationary point is stable and gives
the solution {8), the second one is unstable. Af > +/2, then the stationary point¥ =
+arccosl/A) survive but become unstable (the poifit= —arccosl/A) is unstable under
fluctuations with nonzerd). Besides aiA > +/2 there appears a new pair of stationary points
T = 47y, whereY, can be found by equating to zero the expression in square brackets in
equation 80). The positive solutiordy = Yy, is stable, whereas the negative solutitn: — Y,
appears to be unstable. The solutitn= Y, corresponds either to trembling or tumbling,
depending onA. A numerical investigation based on the expressi8f) Shows that the
boundary value ofr" is achieved atA ~ 1.52, the regionA > 1.52 corresponds to tumbling,
whereas the region < 1.52 corresponds to trembling.

If A >>+/3, then there exists an additional stationary point of the equatit®isvhere

J = (1/2) arcco$(A® —4) /(A% — 1)) (81)

and Y = —arccogl/A). The solution corresponds to the spinning regime that we discussed
in subsectiorb.3 The valueA = +/3 determines the asymptotic (at lar§g behavior of the

boundary of the spinning domain plotted in figure
The above results are in agreement with the general analysis of séction

(80)

8.3. Extremely strong flows

The analysis made in the previous subsections is, strictly speaking, correct only for the flows
with S< 1/+/A. For stronger flows, our consideration should be extended. Some additional
terms of the higher order io should be taken into account in the equation domwhich for
1/+/A < S are larger than those kept in equatiatv)( Leading corrections of such a kind
can be estimated asu. They appear after accounting for the deviations of the vesicle shape
from a spherical one while solving the Stokes equation for the internal and external problems.
The corrections are associated with the contributiShto the membrane velocity, whereas the
second term in the right-hand side of equatidii)(is associated with the contributiar’ to
the membrane velocity, see equatids)( Such corrections are discussed2i]|

There is an essential difference between the terfhsndv®@. If the termv® is neglected,
then the equations possess an additional symmetry, they are invariant under the simultaneous
time and space inversions, see subsecfidh Since the axes of our reference system are
attached to the eigenvectors of the strain ma$ithe space inversion is equivalent to the
transformationp — —¢ andé — 6, that is, it can be written a® —» —®, ¥V - —¥, ® - ©
andJ — J in terms of the ‘angles’q1). Therefore the equations for the ‘angles’ should be
invariant under the transformation

t—>—-t, &> —-P, 050, V-V J-]J (82)
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if the membrane bending rigidity is neglected. One can easily check that the truncated equations
(72) are invariant under the transformatids®), indeed. However, our analysis demonstrated
that the symmetry is preserved even if higheuiterms will be taken into account provided

K — 0.

If the corrections of the order &fu to the truncated equatiof®) are taken into account,
the system of limit cycles, which are characteristics of this equatign:atl, does not change
its topology due to the small perturbations. In this case one can derive the equation for
the slow dynamics of the quantity, like in the previous subsection. Sin@e— Y under
the transformation82), the resulting dynamic equations far averaged over the cycle will
be 0, T = 0. Thus the corrections do not destroy the conservation.oAnalogously, one can
demonstrate that the corrections cannot destroy the conditierD since they lead to the
averaged equatiofyJ = 0.

Thus the corrections related to tisgproportional terms in the equation for slightly
disturb the limit cycles but do not destroy the conservation laws of the integral of motion.
Consequently, the-proportional term should be taken into account to fix the values of the
integrals. And we just found the leadirgproportional term. It produces a selection leading to
stable limit cycles or to stable stationary points. Since the selection is produced among limit
cycles slightly disturbed in comparison with the ones corresponding to the truncated equation
(72), the results will be the same in the main approximatioairirherefore, the above results
obtained for strong flows can be immediately extended to the extremely strong flows, where

S>> 1/VA.

9. Conclusion

We have investigated the dynamics of nearly spherical vesicles in an external stationary
flow, focusing mainly on the shear flow. Our calculation scheme is based on solving the
3d hydrodynamic (Stokes) equation with boundary conditions posed on the membrane. We
accounted for both the membrane bending elasticity as well as the internal membrane viscosity,
the latter leading to an additional dissipation mechanism. We have demonstrated that the system
can be characterized by two dimensionless parameters that are combinations of the vesicle
characteristics and of the external flow velocity derivatives.

One of the most interesting phenomena in the vesicle dynamics is a transition from the
tank-treading regime to a regime where the vesicle shape changes in time. The latter occurs
at relatively large viscosity contrast or a large rotational component of the external flow. We
have demonstrated that in relatively weak flows direct transition from tank-treading to tumbling
occurs, whereas in relatively strong flows one observes an intermediate regime, trembling.
This behavior is in agreement with experiments by Kantsler and SteinBeamdl numerical
simulations by Noguchi and Gompped].[ We have also predicted a new regime, spinning,
that has to be observed in strong external flows. In the spinning regime, which coexists with
tumbling, the vesicle shape varies in time in a complicated manner, resembling precession.

The possibility of an intermediate regime between tank-treading and tumbling was
discussed theoretically, first by Misbal8][and then (qualitatively) by Noguchi and
Gompper P]. Note, however, that the computational scheme that was used by Mispah [
and then improved by Vlahovska and Gradé][is not self-consistent even though formally the
authors have accounted for the leading terms of the equation for the vesicle distortions in strong
external flows. This scheme leads to a strong dependence of the vesicle dynamics on initial
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conditions and should therefore be improved by including higher-order terms, as was done in
our work.

The impact of the high-order terms on the vesicle dynamics was also studi@d]in [
from the perspective of vesicle solutions rheology. The authors considered the same physical
situation as the one investigated in our work, and the perturbation scheme developddsn [
methodologically similar to the one described in our paper. Keeping the second-order angular
harmonic they perform an expansion up to the third ordef'iin the dynamical equation. As
a result, Dankeet al [27] reproduced our equation published &6] up to the terms of order
SVA (in our designations). In sectid) we have demonstrated that these corrections lead to
a vanishingly small shift of the phase diagram transition lines, provigésismall. As is seen
from the phase diagram presented 27][ even for A = 1 the shift is not critical. Therefore
our conclusions concerning two dimensionless parameters controlling the vesicle dynamics are
correct, contrary to an assertion madei][

We demonstrated that the tank-treading to tumbling and the tank-treading to trembling
transitions are essentially different. The first transition is described as a saddle—node bifurcation,
whereas the second one is described as a Hopf bifurcation. We found the ‘soft’ degrees of
freedom responsible for the transitions. Our theory predicts the existence of a special point
on the phase diagram where the above two transition lines merge. One expects an essential
‘critical’ slowness of the vesicle dynamics near the point. In our work we derived the power
laws describing the slowness.

A phenomenon recently discovered experimentally by Kantsteal [45] is worth
mentioning. It was observed that the relaxational dynamics of a vesicle in an external
elongational flow is accompanied by the formation of wrinkles on a membrane at an abrupt
change of the elongational direction. A theoretical explanation of this effect based on the
approach developed in this paper was presented6h [t was shown there that the wrinkle
formation is related to the dynamical instability provoked by the negative induced surface
tension of the membrane.

We have investigated nearly spherical vesicles assuming that the excess area fector
small. This allows one to formulate a powerful calculation procedure, enabling one to study
the vesicle dynamics in detail analytically. However, the scheme based on the Stokes equation
and correct boundary conditions at the membrane can be developed for a vesicle with arbitrary
excess area.

We believe that the qualitative results of our theory are valid for vesicles with arbitrary
excess area. Indeed, it is natural to expect that the character of the tank-treading regime
destruction is different in weak and strong flows. Therefore for the region where the transition
lines merge one should observe an extra slowdown of the vesicle dynamics. We also believe that
the spinning regime is characteristic for vesicles with arbitrary excess area.

One should be somewhat careful in comparing an experiment with the phase diagram
obtained in our work since the diagram is deduced ignoring thermal fluctuations. They play
a relatively small role in the physics of membranes, since the bending medybpears to
be much larger than temperature. However, in the narrow vicinities of the tank-treading to
tumbling transition and of the tank-treading to trembling transition, thermal fluctuation effects
are relevant. The effects, which can be examined in the spirit of the wérks(, 51], constitute
a subject of special investigation, to be done separately.

A natural application area of our results is dilute vesicle solutions. We believe that two
features of our theory, the slowdown near the transition lines (and especially near their merging
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point) and the tumbling—spinning bistability, can strongly influence rheological properties of the
solutions. This will be a subject of future research.
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