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Dynamics of a micro-capsule with compressible membrane placed into planar flow is considered. The form
of the capsule is assumed to be near-spherical and the membrane forces are calculated in the first order in
respect to the membrane displacement. We have established that the capsule dynamics is governed by two
dimensionless parameters in this limit, which account for membrane stretch nodulus B, viscosities if inner fluid

and solvent, capsule radius, external flow gradient and Taylor deformation parameter at rest. Phase diagram

for capsule dynamical regimes is plotted on the plane of these two dimensionless parameters in the limits of
low and high viscosity contrast between the fluid inside the capsule and the solvent.

1. Microcapsule is a soft particle closed with elastic
shell filled with a fluid. The size of experimentally pre-
pared capsules can reach 100 pm [1, 2] or millimeters [3].
Capsules represent a model of biological objects, most
notably red blood cells, which explains a considerable
scientific interest to the motion of capsules in external
flows. It is also possible to use capsules as containers to
deliver chemicals, mostly drugs, to a particular place in
living organism [4]. At smaller scales this mechanism is
realized in transport inside living cells with the help of
membrane vesicles [5].

There are two types of objects which are described
as capsules in scientific literature (see e.g. [6, 7]). The
difference is in the properties of elastic membrane of cap-
sules. In the present paper we theoretically examine
the motion of capsules in an external flow assuming the
shear and area compression modules of the membrane
are of the same order. In such case membrane compress-
ibility should be taken into account. This type of the
capsules was experimentally investigated in [1-3]. The
opposite limit of incompressible membrane with finite
shear modulus is theoretically considered in [6, 8].

The experimental study of motion of nearly spher-
ical capsules with compressible membrane in an ex-
ternal flow of solvent liquid was performed in [1-3].
It was reported that the capsule can experience tank-
treading, which is accompanied by oscillations in incli-
nation angle and shape (thus, the regime can be also
called trembling). Mechanical properties of capsules
and their motion in a flow determine rheological proper-
ties of a capsule suspension. For suspension of vesi-
cles this connection was theoretically investigated in
[9, 10] and the rheology of the suspension was mea-
sured in [11]. The mechanical properties of the cap-
sule can be also of importance in the process of trans-
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port with the help the capsule since the capsule mem-
brane should be broken only under particular conditions
which ensure the delivery of substance to a destina-
tion.

The theoretical study of capsules had begun with
the works [12, 13], and was continued by D.Barthes—
Biesel in her following papers (see in particular [14, 15]).
Numerical simulations for capsule in shear flow [7, 16]
showed that capsule which have non-spherical form at
rest can also undergo tumbling motion, if the shear
strength and the inverse viscosity contrast A between
the solvent and the fluid filling the capsule and the sol-
vent are not very large. Phase diagram was plotted for
the capsule dynamical regimes on the plane of two di-
mensionless parameters, capillary number Ca and the
viscosity contrast A [7, 16]. Recently it was suggested
phenomenological theory [17] and simplified numerical
method [14] to explain the results for the capsules. All
suggested schemes do not consider the general case of the
planar external flow when the ratio between strain and
rotational part of the flow can be arbitrary. The general
case was studied for vesicles, both theoretically [18] and
experimentally [19], and it was showed that there exist
two dimensionless parameters which include also rota-
tional part of the flow and Taylor deformation parameter
of vesicle at rest.

In this letter, we develop systematic theory describ-
ing motion of capsules which have non-spherical shape
at rest. We find the proper dimensionless parameters for
capsules and plot the phase diagram. We consider influ-
ence of capsule non-sphericity at rest and corrections to
angular velocity of the capsule. To our knowledge these
two question were not theoretically studied before. Our
results helps us to explain some of the experimental data,
reported in [1-3].
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2. On the scales of the size of a capsule the Reynolds
number for a fluid flow is very small. This allow us
to omit both nonlinear and time derivative terms in
Navier—Stokes equation. Thus the velocity field v is de-
scribed by linear and quasi-stationary Stokes equation
nAv = VP, where P is pressure. We also consider a
fluid to be incompressible: (V -v) = 0.

In order to formulate the boundary conditions on the
capsule shell one needs to consider the elastic forces act-
ing on the membrane. Let us choose a Lagrange ref-
erence system £ (where a = 1,2) on the surface of
the membrane. The current form of membrane is deter-
mined by the radius vector of an element: r*(£%), where
index i is three-dimensional. We denote as r{(£%) the
radius vector of the element in the unperturbed state.
Since the capsule is capable of rotation as a whole it is
essential for the theory of small deformations to intro-
duce a rotation matrix O%, so that:

rt = ROV (r) + u¥), (1)

where u?(£%) is displacement vector of an element. Evo-
lution of the rotation matrix is ;0% = Q*O* . Angu-
lar velocity Q¢ (% = €% Q! where ¢*! is Levi-Civita
symbol) of the capsule as a whole should be determined
through equation Iy = M? using found velocity field
on the membrane surface, where I/ is the inertia ten-
sor of the membrane and M? is its angular momentum
assuming that the mass surface density is constant over
all surface of the membrane at rest. We have also intro-
duced a mean radius of a capsule so that 4wR3/3 is its
volume which remains constant due to the impermeabil-
ity of the membrane for the liquid. Both 7§ and u’ are
thus dimensionless.
The strain tensor in the linear approximation is:

Uap = 5 (Oar Opu’ + Opri Dar’). (2)

In the same approximation the energy of deformations
can be written as:

F = 1/\dfl I:Ba% + N(2a2 - a%)] ) (3)

2

where a; and a» are the invariants of strain tensor: a; =
= uagg"‘ﬁ, a = uaguwg‘wgﬂ‘s (g*P is the contravariant
metric tensor on the unperturbed surface) and dA is the
square element of a surface. The first term represents
the energy of surface compression deformation while the
second is due to shear deformations. The elastic force
acting on the surface element is the variational derivative
of this energy in respect to vector u’.

We decompose both displacement and force vectors
into normal and tangential parts. The latter can also be

expressed in terms of two scalar functions, so that the
displacement vector is:

ut = upnd + GP(8,ni)0sus + G (Ond) G, (4)

where nj is the unit vector directed along 7} and u,

is the amplitude of the normal displacement. Derivative
o5 = (1/vVG)Gpae™ 0, where e*” is a unit antisymmet-
ric tensor and G is a determinant of the (covariant) met-
ric tensor Gog on the unit sphere. Contributions from
u; and @; describe the change in the surface density of
the membrane and the shear deformations in tangential
plane respectively. The latter part is not excited by an
external flow in the regime of small deformations, there-
fore we will not consider its contribution in our calcu-
lations. In (4), we used decomposition near sphere but
not near the capsule from at rest due to it is more con-
venient when the capsule form always remains nearly
spherical. The components of the force vector are ex-
pressed in terms of these functions:

fn =—2B(2u, + Auy)/R, (5)

fa = 0a[B(2un + Kuy) + u(A +2)w]/R,  (6)

where A" is a Beltrami—Laplace operator on unit sphere.

In the present paper we study the dynamics of nearly
spherical capsule. It is convenient to represent the
position-vector of an membrane element in unperturbed
state as i = nf;(l + upo), where u, o determines the
form of the capsule at rest. It is also convenient to ex-
pand all values in the series of spherical harmonics. Here
we do not consider the effect of wrinkles [6], so only the
contribution from the second harmonic is important to
us. So we have:
u=unind. (7)
Matrices u% and ufj are symmetric and traceless. It is
assumed in (7) that n® is a unit vector directed along
the unperturbed position-vector of an membrane ele-
ment Q%) in the laboratory reference system. Thus
w in (7) depends on spherical angles in laboratory refer-
ence system, in contrast with (1), (2) where £* can be
treated as the spherical angles in the reference system
which rotates with the capsule.

We assume that the capsule is placed in an external
flow V(r) with the linear profile, so that 0;V; = s;; +w;;,
where s;; and w;; are constant symmetric and antisym-
metric tensors respectively. We will also assume that the
flow is plane which means that in a corresponding refer-
ence frame the nonzero elements of the velocity gradient
matrix 0;V; are 0,V, = s + w, 0,Vy = s —w. This flow
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can be realized in a so-called “four roll mill low” device
[20]. We consider the liquids outside and inside the cap-
sule to have viscosities n and An respectively, where A is
a dimensionless viscosity contrast. The mass densities
of the liquids are assumed to be the same. The mem-
brane internal viscosity is nR)', its influence was first
considered in [15]. In our final calculations we consider
the ratio of the elastic modules to be B/p = 3 which cor-
responds to the rubber shell which conserves its volume.
In real experiments the ratio is B/p = 3.7 [1].

3. Equations which govern evolution of the capsule
shell can be written in the form

N A B .
0y = Qi — 4 §— —TI'a, 8
Al a—af) + Qs R a (8)

in terms of coefficients (7). We used the vector notation
@ = {dp,4;}. The derivation procedure of such equa-
tions is given in details in [13, 21, 22]. Here we present
only the results, the derivation of the result will be pre-
sented later in more detailed paper.

The two first terms in the right side of equation (8)
represent the contribution of the capsule rotation as a
whole. The third term in the right side of (8) is from the
strain components associated with s;;. The forth term
is due to the elastic forces and represents the relaxation
of the capsule membrane to the equilibrium configura-
tion. Such decomposition is possible because both the
fluid flow and the elastic force are governed by linear
equations.

Let us now make the qualitative analysis of the equa-
tion (8). The relaxation operator can be derived using
the expressions for the elastic forces. Acting on the array
@ = {{y, @} this operator is the 2 x 2 matrix:

Ci\ —2(7a+8)

P 1 [ a(n+16)"+4)
6(7TA+8)+4(13A+8X' +12)u/B

—12(A+16)"+4)—24(3A+4X +2)u/B )

9)

where C; = 38A% 4+ 150\ + 89X + 64> + 160\ + 48.
Each component of this expression is diagonal matrix
3 x 3 in the space of spherical harmonics with [ = 2
[13, 15]. Operator Q has similar structure and is given
by:

Q= C/Ci{2,1},

It represents the action of the external stretching flow.
Dimensionless surface viscosity A’ produces effect in (9),
(10) similar to A, so we put A’ = 0 below for brevity.
From the above expression one can see that the order
of magnitude of the displacement vector u is determined
by the parameter Ca = nRs/B, when the external flow is
pure elongational having w = 0. The relative strength of

Cy = 5(16 + 19\ + 40X) /2. (10)
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the rotational part of the flow is determined by another
dimensionless parameter:

(1+ A)nRw

A= B

(11)
Formally, definition (11) differs from the definition A ~
~ (14 X)(w/s)VA used in [22, 6], where A is the excess
area parameter. In our case A is not constant and is a
function of external flow, VA ~ Ca. Using the estima-
tion for A in the definition for A [22] we arrive to (11)
with the estimation. If one assumes that A < 1, then the
magnitude of the displacement vector u ~ Ca.

The unperturbed part of the capsule form uy o un-
dergoes rotation with the same angular velocity Q as
deformation @ does in (8) due to definition (1):

Bytino = Qiln,0 — TS (12)

Angular velocity (2 in (8), (12) deviates from rotation
@ imposed by the the external flow due to the capsule
non-sphericity. Keeping the main contribution into Q in
(8), one obtains that the deviation @ from equilibrium
state trends to the stationary asymptotics

1Als';at = f‘;l[Qg] (13)

at large times, where action of linear operator L', is de-
termined by I', @t = G& — @t + I'ti. These times are of
the most interest from experimental point of view. The
correction to angular velocity Q for stationary in time
deformation 4 is the same as for rigid particle [23]:

Q=0+ (ﬂn + ﬂn,0)§ — g(ﬂn + an,O)- (14)

If 0,1 is not zero, r.h.s. of (14) acquires additional terms
which are bilinear over 6t1:£ and 4y, Un,0.

4. Below we investigate separately the case of plane
external flow in more details. The plane flow induces
only harmonics which correspond to matrix elements u?/
with {i,j} = {z,y}. Thus u,(d, ) = D sin® cos[2(p —
— ®)] in the laboratory reference system, where D is
Taylor deformation parameter and ® is the capsule in-
clination angle in O XY -plane.

First we investigate the capsule form when it is ex-
actly sphere at rest. The orientation angle ® = w/4 if
rotational part of the flow is absent, w = 0. Taylor de-
formation parameter is D = (5/4)Ca(3p 1+ B~!) in the
case. The parameter D approaches constant limit when
B increases while p is fixed. Note however that linear
theory considered here remains valid until Ca < (u/B)?.
In the opposite limit one should take into account non-
linear (in displacement) contributions into capsule mem-
brane force. Here we also note that the limit of locally

2*
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incompressible membrane corresponds to the inequali-
ties Ca <« ug and CaB/u ~ 1. Our theory is not valid
in this limit, which was recently considered analytically
in [6].

Contribution of the vorticity part & of the flow be-
comes considerable when dimensionless parameter A
reaches values of the order of unity. The condition is
equivalent to Ca ~ 1 for shear flow and identical liquids
inside and outside the capsule. One should set dimen-
sionless parameter (1 + A)w/s > 1 in order to reach
experimentally observed values of A ~ 1 keeping cap-
sule form close to spherical. In what follows below we
assume the viscosity contrast A < 1, since the limit
corresponds to experimental situation [1, 3]. Taylor de-
formation parameter is

25Ca (36/25)A2 +1

Dsar = =5 \/324A4 +189A2 + 1
in this limit. At large A > 1 Taylor deformation para-
meter approaches the value Dgay — Co/C1, which does
not depend on the capsule membrane properties but only
on the external flow geometry and the viscosity contrast
A. The limit corresponds to liquid drop with absence
of surface tension, the motion of a drop immersed in
solvent was considered in [24]. Law (15) is graphically
depicted on Fig.1 in appropriate variables. The capsule

(15)

inclination angle

1 5
Dot = = arct _ 1
stat = g arctan [A (108A2 + 69)] (16)
for A — 0. The orientation angle approaches zero,

Pytar — 0.023/A when A > 1.

Let us now analyze the case when the capsule is
not purely spherical at rest. The deviation of the cap-
sule form from the sphere is described now by sum of
functions wy, gtat + Un,0, the first one being stationary
in time, see Eq. (13), while the second one oscillat-
ing with angular velocity w. We parametrize equilib-
rium shape of capsule as u,,o = Dy sin® 8 cos[2(p — ®o)],
where ®; = wt. The influence of contribution to uy
from three others harmonics with full angular momen-
tum be equal to [ = 2 will be discussed later. Thus
the capsule never achieves stationary form. The capsule
is visually in tumbling regime if Dgoy < Dy, and Tay-
lor parameter D changes during the period of tumbling.
The capsule is in trembling (or in tank-treading with os-
cillations) if Dstat > Do, Taylor deformation parameter
is D = {D2,, + D3 + 2Dsa; Do cos[2(®star — Bo)]}/2.
In particular, amplitude of oscillations of D is con-
stant and equal to Dy, that corresponds to experimen-
tal observations [1]. The inclination angle ® in OXY-
plane is determined by equation sin[2(® — ®gat)) =
= (Do /D) sin[2(®stat — Po)]-

(o(1 + X)/s)Dgppe

1.0

0.6

DID, .

0.2

III|III|III|I‘J\I|III|I

0.4 0 0.4
OO

stat

Fig.1. On the top: dependence of Taylor deformation pa-
rameter Dgiar on s and w at small A (dotted line) and
large A > 1 (solid line), plotted in appropriate axes for
(I1+A)w/s > 1. On the bottom: correlated oscillations of
capsule form and inclination angle, where ® is measured
in radians, for Do/Dstat be equal to 0.2 (solid line), 0.7
(dashed-solid line) and 1.3 (dashed line)

Joint dynamics of D and ® is depicted on Fig.1.
Tumbling occurs at weak external flows, the correspond-
ing lines are not closed on D—®-plane. At stronger ex-
ternal flows the capsule is in trembling regime, and the
lines become closed.

Two dimensionless parameters Dy/Ca and A fully
determine the type of the capsule dynamical regime at
the limit of small or large viscosity contrast A. Thus
it is possible to plot a two-dimensional phase diagram
for capsule dynamical regimes, as it was done for vesi-
cles [18]. It is depicted on Fig. 2, where A is substituted
by its algebraic combination in order to transition lines
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Fig.2. On the top: phase diagram for capsule dynamic
regimes plotted in universal dimensionless variables. Solid
line is for limit A > 1, dashed — for A\ < 1. Lines cor-
respond to transition from tumbling, which is under line,
to trembling, which is realized above line. On the bottom:
phase diagram plotted for shear flow s = w = 4. Taylor
deformation parameter at the rest is Dy = 0.2

between trebling and tumbling have finite length. Note,
that the form of the curve changes if ratio B/u changes.

We also plotted phase diagram in the form used in
[16] for particular case of shear flow, it is depicted on
Fig.2 on the bottom. On the plane the position of the
transition line between trembling and tumbling is not
invariant to Taylor deformation parameter at rest Dy.

It is reported in experimental work [1] about linear
dependence of angular velocity Q of the capsule and Tay-
lor deformation parameter D at Ca > Dy in shear flow.
It follows from (13), (14) that the correction to angular
velocity is

Q/w — 1= —(5/4)Ca®(276 + 209\ + 220)\").  (17)
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Nonlinear in flow strength correction to the deformation
amplitude is D/(25Ca/2) — 1 = —94A? from (15), and
the correction does not coincide with correction to an-
gular velocity (17) at limit A\, A’ — 0. In general case,
when (1+M\)w/s < 1, one needs to account non-quadratic
corrections in deformation for elastic energy to find the
correction to D. These corrections also determine ulti-
mate orientation of the capsule as a whole, since they
govern rotation of matrix g, around an axis lying in
plane OXY. The rotation leads to alternation in Dg
since it is determined as a Taylor parameter for the cap-
sule cross section in OXY plane.

5. We have considered dynamics of a micro-capsule
with compressible membrane placed into external flow
particularly interesting in the case of the planar flow.
The form of the capsule is assumed to be near-spherical
and the membrane forces were calculated in the linear
approximation in the membrane displacement. We have
established that the capsule dynamics can be described
by two dimensionless parameters in the limits of high
and low viscosity contrast between the fluid inside the
capsule and the solvent. One of the parameters describes
the relative strength of the rotational part of the external
flow and the other the ratio of the capillary number and
the Taylor deformation parameter of the capsule at rest.

We analytically found the capsule deformation as
a function of these two dimensionless parameters, see
Fig.1, and plotted the phase diagram of the capsule dy-
namical regimes, see Fig.2. Universal dependence of
such kind is interesting from experimental point of view
since it allows one to cover full plane of the diagram by
changing the appropriate physical parameters, as it was
done recently in [19].

It is interesting to compare our results with those
reported in [6, 8] concerning capsules with incompress-
ible membrane. The general properties of the phase di-
agram obtained from [6, 8] and in agreement with those
found by us. Particularly, capsule is in trembling (or
vacillating-breathing) regime at high Ca number, and in
tumbling regime if the number is small. Transition from
trembling to tumbling occurs when the viscosity con-
trast increases. The transition driving by the viscosity
contrast and the strength of the rotational part of the
external flow is similar to vesicle dynamics [22]. On the
contrary, the transition caused by capillary number Ca
is specific for capsules. The position of the transition
line is determined by the requirement that the deforma-
tion caused by the external flow has the same magnitude
as the initial non-sphericity of the capsule.
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